Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = Natural Bond Orbital

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7190 KiB  
Article
The Influences of π-Conjugated Aliphatic Chains in Ionic Liquids of Antimony Pentachloride with Pyridine Imidazolium Hybrid Salts: A DFT Study
by Manuel Luque-Román, Jesús Baldenebro-López, José J. Campos-Gaxiola, Adriana Cruz-Enríquez, Carlos A. Peñuelas, Alberto Báez-Castro, Rody Soto-Rojo, Tomás Delgado-Montiel, Samuel Soto-Acosta and Daniel Glossman-Mitnik
Inorganics 2025, 13(8), 269; https://doi.org/10.3390/inorganics13080269 (registering DOI) - 16 Aug 2025
Abstract
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their [...] Read more.
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their ground-state geometry. Using conceptual DFT, parameters such as chemical hardness, electrophilicity index, electroaccepting power, and electrodonating power were studied. The energy gap was obtained for all ten molecular systems, ranging from −4.038 to −3.706 eV as the chain length increased, favoring intramolecular charge transfer in long-chain systems. Natural bond orbital (NBO) analysis showed charge redistribution between anion and cation as the π-conjugated aliphatic chain grows. At the same time, non-covalent interaction (NCI) studies revealed key attractions and repulsive interactions, such as H···Cl and Cl···π, which are modulated by chain length. These results demonstrate that the structural modification of the cation allows for the fine-tuning of the electronic properties of ionic liquids (ILs). Increasing the conjugated aliphatic chain length was observed to reduce the chemical hardness and electrophilicity index, as well as affecting the Egap of the molecular systems. This work demonstrates that there is an optimal size for the inorganic ion, allowing it to form an optimal IL compound. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

21 pages, 2838 KiB  
Article
Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements
by Zheng-Feng Zhang and Ming-Der Su
Molecules 2025, 30(15), 3222; https://doi.org/10.3390/molecules30153222 - 31 Jul 2025
Viewed by 197
Abstract
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature [...] Read more.
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

18 pages, 2185 KiB  
Article
Halogen Migration in the Photofragmentation of Halothane
by Anna Rita Casavola, Filippo Morini, Mattea Carmen Castrovilli, Jacopo Chiarinelli, Laura Carlini, Antonella Cartoni, Daniele Catone, Paola Bolognesi, Robert Richter, Bratislav Marinkovic, Sanja Tosic and Lorenzo Avaldi
Molecules 2025, 30(14), 2902; https://doi.org/10.3390/molecules30142902 - 9 Jul 2025
Viewed by 299
Abstract
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ [...] Read more.
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ and CHBrF+ ions, which involves the transfer of a F atom between the two moieties of the parent molecule, was observed. To understand the mechanisms leading to the halogen migration, a detailed theoretical study of the production of CHClF+, m/z 67+, based on DFT calculations and natural bond orbital (NBO) analysis was conducted. The results contribute to the understanding of the photochemistry of halothane, its polluting behavior in the high atmosphere, and the formation of highly reactive species. Full article
Show Figures

Figure 1

20 pages, 7908 KiB  
Article
DFT Study of PVA Biocomposite/Oyster Shell (CaCO3) for the Removal of Heavy Metals from Wastewater
by Jose Alfonso Prieto Palomo, Juan Esteban Herrera Zabala and Joaquín Alejandro Hernández Fernández
J. Compos. Sci. 2025, 9(7), 340; https://doi.org/10.3390/jcs9070340 - 1 Jul 2025
Viewed by 413
Abstract
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which [...] Read more.
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which CaCO3-based biocomposites derived from mollusk shells have shown exceptional performance. In this study, a hybrid biocomposite composed of poly(vinyl alcohol) (PVA) and oyster shell-derived CaCO3 was computationally investigated using Density Functional Theory (DFT) to elucidate the electronic and structural basis for its high metal-removal efficiency. Calculations were performed at the B3LYP/6-311++G(d,p), M05-2X/6-311+G(d,p), and M06-2X/6-311++G(d,p) levels using GAUSSIAN 16. Among them, B3LYP was identified as the most balanced in terms of accuracy and computational cost. The hybridization with CaCO3 reduced the HOMO-LUMO gap by 20% and doubled the dipole moment (7.65 Debye), increasing the composite’s polarity and reactivity. Upon chelation with metal ions, the gap further dropped to as low as 0.029 eV (Cd2+), while the dipole moment rose to 17.06 Debye (Pb2+), signaling enhanced charge separation and stronger electrostatic interactions. Electrostatic potential maps revealed high nucleophilicity at carbonate oxygens and reinforced electrophilic fields around the hydrated metal centers, correlating with the affinity trend Cu2+ > Cd2+ > Pb2+. Fukui function analysis indicated a redistribution of reactive sites, with carbonate oxygens acting as ambiphilic centers suitable for multidentate coordination. Natural Bond Orbital (NBO) analysis confirmed the presence of highly nucleophilic lone pairs and weakened bonding orbitals, enabling flexible adsorption dynamics. Furthermore, NCI/RDG analysis highlighted attractive noncovalent interactions with Cu2+ and Pb2+, while FT-IR simulations demonstrated the formation of hydrogen bonding (O–H···O=C) and Ca2+···O coordination bridges between phases. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

26 pages, 3934 KiB  
Article
Structural and Spectroscopic Properties of Magnolol and Honokiol–Experimental and Theoretical Studies
by Jacek Kujawski, Beata Drabińska, Katarzyna Dettlaff, Marcin Skotnicki, Agata Olszewska, Tomasz Ratajczak, Marianna Napierała, Marcin K. Chmielewski, Milena Kasprzak, Radosław Kujawski, Aleksandra Gostyńska-Stawna and Maciej Stawny
Int. J. Mol. Sci. 2025, 26(13), 6085; https://doi.org/10.3390/ijms26136085 - 25 Jun 2025
Viewed by 414
Abstract
This study presents an integrated experimental and theoretical investigation of two pharmacologically significant neolignans—magnolol and honokiol—with the aim of characterizing their structural and spectroscopic properties in detail. Experimental Fourier-transform infrared (FT-IR), ultraviolet–visible (UV-Vis), and nuclear magnetic resonance (1H NMR) spectra were [...] Read more.
This study presents an integrated experimental and theoretical investigation of two pharmacologically significant neolignans—magnolol and honokiol—with the aim of characterizing their structural and spectroscopic properties in detail. Experimental Fourier-transform infrared (FT-IR), ultraviolet–visible (UV-Vis), and nuclear magnetic resonance (1H NMR) spectra were recorded and analyzed. To support and interpret these findings, a series of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were conducted using several hybrid and long-range corrected functionals (B3LYP, CAM-B3LYP, M06X, PW6B95D3, and ωB97XD). Implicit solvation effects were modeled using the CPCM approach across a variety of solvents. The theoretical spectra were systematically compared to experimental data to determine the most reliable computational approaches. Additionally, natural bond orbital (NBO) analysis, molecular electrostatic potential (MEP) mapping, and frontier molecular orbital (FMO) visualization were performed to explore electronic properties and reactivity descriptors. The results provide valuable insight into the structure–spectrum relationships of magnolol and honokiol and establish a computational benchmark for further studies on neolignan analogues. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

14 pages, 2689 KiB  
Article
Tunable Electronic Bandgaps and Optical and Magnetic Properties in Antiferromagnetic MPS3/GaN (M = Mn, Fe, and Ni) Heterobilayers
by Shijian Tian, Li Han, Libo Zhang, Kaixuan Zhang, Mengjie Jiang, Jie Wang, Shiqi Lan, Xuyang Lv, Yichong Zhang, Aijiang Lu, Yan Huang, Huaizhong Xing and Xiaoshuang Chen
Nanomaterials 2025, 15(11), 832; https://doi.org/10.3390/nano15110832 - 30 May 2025
Viewed by 507
Abstract
Research on two dimensional (2D) antiferromagnetic materials and heterobilayers is gaining prominence in spintronics. This study focuses on MPS3 monolayers and their van der Waals heterobilayers with GaN monolayers. We systematically investigated the structural stability, electronic properties, and magnetic characteristics of MPS [...] Read more.
Research on two dimensional (2D) antiferromagnetic materials and heterobilayers is gaining prominence in spintronics. This study focuses on MPS3 monolayers and their van der Waals heterobilayers with GaN monolayers. We systematically investigated the structural stability, electronic properties, and magnetic characteristics of MPS3 (M = Mn, Fe, and Ni) monolayers via first-principles calculations, and explored their potential applications in optoelectronics and spintronics. Through phonon spectrum analysis, the dynamic stability of MPS3 monolayers was confirmed, and their bond lengths, charge distributions, and wide-bandgap semiconductor properties were analyzed in detail. In addition, the potential applications of MPS3 monolayers in UV detection were explored. Upon constructing the MPS3/GaN heterobilayer structure, a significant reduction in the bandgap was observed, thereby expanding its potential applications in the visible light spectrum. The intrinsic antiferromagnetic nature of MPS3 monolayers was confirmed through calculations, with the magnetic moments of the magnetic atoms M being 4.560, 3.672, and 1.517, respectively. Moreover, the heterobilayer structures further enhanced the magnetic moments of these elements. The magnetic properties of MPS3 monolayers were further analyzed using spin-orbit coupling (SOC), confirming their magnetic anisotropy. These results provide a theoretical basis for the design of novel two-dimensional spintronic and optoelectronic devices based on MPS3. Full article
Show Figures

Figure 1

24 pages, 3364 KiB  
Article
One-Pot Approach Towards Peptoids Synthesis Using 1,4-Dithiane-2,5-Diol via Multicomponent Approach and DFT-Based Computational Analysis
by Musrat Shaheen and Akbar Ali
Molecules 2025, 30(11), 2340; https://doi.org/10.3390/molecules30112340 - 27 May 2025
Viewed by 1408
Abstract
Peptoids are peptidomimetics in which the side chain is attached to the nitrogen of the amide group rather than the α-carbon. This alteration in the backbone structure is highly valued because it endows beneficial properties, including enhanced resistance to proteolysis, greater immunogenicity, [...] Read more.
Peptoids are peptidomimetics in which the side chain is attached to the nitrogen of the amide group rather than the α-carbon. This alteration in the backbone structure is highly valued because it endows beneficial properties, including enhanced resistance to proteolysis, greater immunogenicity, improved biostability, and superior bioavailability. In this current study, we focused on the Ugi-4CR-based one-pot synthesis of peptoids using 1,4-dithiane-2,5-diol as the carbonyl component together with amine, carboxylic acid, and isocyanides. Four new peptoids—5a, 5b, 5c, and 5d—were designed and efficiently prepared in good chemical yields and were subjected to DFT investigations for their electronic behavior. These compounds have free OH, SH, and terminal triple bonds for further chemistry. In a computational analysis, the spectral data of compounds 5a5d were juxtaposed with calculated spectral values derived from the B3LYP/6-311G(d,p) level. The electronic excitation and orbital contributions of 5a5d were predicted using TD-DFT calculations. A natural bond order (NBO) analysis was utilized to investigate the electronic transition of newly synthesized peptoids, focusing on their charge distribution patterns. Furthermore, MEP and NPA analyses were conducted to predict charge distribution in these compounds. The reactivity and stability of the targeted peptoids were evaluated by global reactivity descriptors, which were determined with frontier molecular orbital analysis. The DFT results revealed that compound 5c displayed marginally higher reactivity compared to 5a, 5b, and 5d, possibly due to its extended conjugation. Full article
Show Figures

Figure 1

41 pages, 13934 KiB  
Article
Unveiling Palmitoyl Thymidine Derivatives as Antimicrobial/Antiviral Inhibitors: Synthesis, Molecular Docking, Dynamic Simulations, ADMET, and Assessment of Protein–Ligand Interactions
by Sarkar M. A. Kawsar, Samiah Hamad Al-mijalli, Gassoumi Bouzid, Emad M. Abdallah, Noimul H. Siddiquee, Mohammed A. Hosen, Mabrouk Horchani, Houcine Ghalla, Hichem B. Jannet, Yuki Fujii and Yasuhiro Ozeki
Pharmaceuticals 2025, 18(6), 806; https://doi.org/10.3390/ph18060806 - 27 May 2025
Viewed by 2018
Abstract
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and [...] Read more.
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and evaluate a series of 5′-O-(palmitoyl) derivatives (compounds 26), incorporating various aliphatic and aromatic acyl groups, for their potential antimicrobial activities. Methods: The structures of the synthesized derivatives were confirmed through physicochemical, elemental, and spectroscopic techniques. In vitro antibacterial efficacy was assessed, including minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determinations for the most active compounds (4 and 5). The antifungal activity was evaluated based on mycelial growth inhibition. Density functional theory (DFT) calculations were employed to investigate the electronic and structural properties, including the global reactivity, frontier molecular orbital (FMO), natural bond orbital (NBO), and molecular electrostatic potential (MEP). Molecular docking studies were conducted against the monkeypox virus and the Marburg virus. The top-performing compounds (3, 5, and 6) were further evaluated via 200 ns molecular dynamics (MD) simulations. ADMET predictions were performed to assess drug-likeness and pharmacokinetic properties. Results: Compounds 4 and 5 demonstrated remarkable antibacterial activity compared with the precursor molecule, while most derivatives inhibited fungal mycelial growth by up to 79%. Structure-activity relationship (SAR) analysis highlighted the enhanced antibacterial/antifungal efficacy with CH3(CH2)10CO– and CH3(CH2)12CO–acyl chains. In silico docking revealed that compounds 3, 5, and 6 had higher binding affinities than the other derivatives. MD simulations confirmed the stability of the protein-ligand complexes. ADMET analyses revealed favorable drug-like profiles for all the lead compounds. Conclusions: The synthesized compounds 3, 5, and 6 exhibit promising antimicrobial and antiviral activities. Supported by both in vitro assays and comprehensive in silico analyses, these derivatives have emerged as potential candidates for the development of novel therapeutics against bacterial, fungal, and viral infections, including monkeypox and Marburg viruses. Full article
Show Figures

Graphical abstract

14 pages, 1716 KiB  
Article
Beyond Empirical Trends: Density Functional Theory-Based Nuclear Magnetic Resonance Analysis of Mono-Hydroxyflavone Derivatives
by Feng Wang and Vladislav Vasilyev
Appl. Sci. 2025, 15(11), 5928; https://doi.org/10.3390/app15115928 - 24 May 2025
Viewed by 485
Abstract
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into [...] Read more.
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into its potential as a bioactive scaffold. Among mono-hydroxyflavone (n-HF) isomers, 3-HF exhibits an extensive intramolecular hydrogen-bonding network linking the phenyl B-ring to the A- and γ-pyrone C-rings, enabled by the distinctive C3-OH substitution. Despite a slight non-planarity (dihedral angle: 15.4°), this hydrogen-bonding network enhances rigidity and influences the electronic environment. A 13C-NMR chemical shift analysis revealed pronounced quantum mechanical effects of the C3-OH group, diverging from the trends observed in other flavones. A natural bond orbital (NBO) analysis highlighted an unusual charge distribution, with predominantly positive charges on the γ-pyrone C-ring carbons, in contrast to the typical negative charges in flavones. These effects impact C1s orbital energies, suggesting that the electronic structure plays a more significant role in 13C-NMR shifts than simple ring assignments. Given the established antiviral activity of hydroxylated flavones, the distinct electronic properties of 3-HF may enhance its interaction with SARS-CoV-2 Mpro, making it a potential candidate for further investigation. This study underscores the importance of quantum mechanical methods in elucidating the structure–activity relationships of flavones and highlights 3-HF as a promising scaffold for future antiviral drug development. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

19 pages, 7995 KiB  
Article
Insights into the Factors Controlling the Origin of Activation Barriers in the [2 + 2] Cycloaddition Reactions of Heavy Imine-like Molecules Featuring a Ge=Group 15 Double Bond with Heterocumulenes
by Zheng-Feng Zhang and Ming-Der Su
Molecules 2025, 30(9), 1905; https://doi.org/10.3390/molecules30091905 - 25 Apr 2025
Viewed by 536
Abstract
The [2 + 2] cycloaddition reactions of the heterocumulene (N=C=N) with the heavy imine-like molecule Ge=G15-Rea (G15 = Group 15 element) were examined using density functional theory (M06-2X-D3/def2-TZVP). The theoretical findings indicate that the doubly bonded Ge=G15 moiety in Ge=G15-Rea (L [...] Read more.
The [2 + 2] cycloaddition reactions of the heterocumulene (N=C=N) with the heavy imine-like molecule Ge=G15-Rea (G15 = Group 15 element) were examined using density functional theory (M06-2X-D3/def2-TZVP). The theoretical findings indicate that the doubly bonded Ge=G15 moiety in Ge=G15-Rea (L1L2Ge=G15L3) is characterized by electron-sharing bonding between the triplet L1L2Ge and triplet G15–L3 fragments. All five Ge=G15-based heavy imine analogues readily undergo [2 + 2] cycloaddition reactions with N=C=N. Energy decomposition analysis (EDA–NOCV) suggests that the [2 + 2] cycloaddition reaction between Ge=G15-Rea and N=C=N involves a donor–acceptor (singlet–singlet) interaction instead of an electron-sharing (triplet–triplet) interaction. Frontier molecular orbital (FMO) theory and the energy decomposition analysis–natural orbitals for chemical valence (EDA–NOCV) findings emphasize that the key bonding interaction involves the occupied p-π orbital of Ge=G15-Rea and the vacant p-π* orbital of C=N=C. Based on the activation strain model results, the activation barrier of the [2 + 2] cycloaddition reaction is predominantly controlled by the deformation energies of Ge=G15-Rea and N=C=N. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

24 pages, 5601 KiB  
Article
Binding Zinc and Oxo-Vanadium Insulin-Mimetic Complexes to Phosphatase Enzymes: Structure, Electronics and Implications
by Victor V. Volkov, Carole C. Perry and Riccardo Chelli
Molecules 2025, 30(7), 1469; https://doi.org/10.3390/molecules30071469 - 26 Mar 2025
Viewed by 682
Abstract
We explore the structural and electronic properties of representative insulin-mimetic oxovanadium and zinc complexes as computed in vacuum, in water clusters and upon binding to PTEN and PTP1B phosphatases. Albeit diverse, the enzymes’ active sites represent evolutionary variant choices of the same type [...] Read more.
We explore the structural and electronic properties of representative insulin-mimetic oxovanadium and zinc complexes as computed in vacuum, in water clusters and upon binding to PTEN and PTP1B phosphatases. Albeit diverse, the enzymes’ active sites represent evolutionary variant choices of the same type of biochemistry. Though different in respect to covalency and the orbital nature of bonding, theory predicts comparable ionic radii, bond lengths and square pyramidal coordination for the considered vanadyl and zinc systems when in an aqueous environment. Employing docking, DFT and quantum mechanics/molecular mechanics methods, we address possible polar interactions in the protein environments and compute infrared/Raman modes and optical electronic properties, which may be suitable for the structural analysis of the specific chemical moieties in binding studies. Accounting for how protein embedding may alter the electronic states of metal centres, we discuss artificial intelligence-assisted protein field engineering to assist biomedical and quantum information applications. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 5168 KiB  
Article
Unveiling the Micro-Mechanism of Functional Group Regulation for Enhanced Dielectric Properties in Novel Natural Ester Insulating Oil TME-C10
by Min Chen, Tao Zhang, Jinyuan Zhang, Chunyi Liu, Dong Chen and Jin Zhang
Molecules 2025, 30(7), 1431; https://doi.org/10.3390/molecules30071431 - 24 Mar 2025
Viewed by 476
Abstract
The functional groups in the molecular structure of natural ester insulating oil have a significant impact on its physicochemical and electrical properties. This article takes the novel synthetic ester TME-C10 and traditional natural ester GT molecules as research objects, and based on [...] Read more.
The functional groups in the molecular structure of natural ester insulating oil have a significant impact on its physicochemical and electrical properties. This article takes the novel synthetic ester TME-C10 and traditional natural ester GT molecules as research objects, and based on density functional theory (DFT) calculations, systematically explores the micro-mechanism of the effects of C=C double bonds, ester groups (-COOC), and β-H groups on the performance of insulating oils. The results show that the chemical stability and anti-aging ability of the TME-C10 molecule are significantly improved by eliminating the C=C double bond and β-H group. The electronic behavior of the TME-C10 molecule is mainly controlled by the ester group (-COOC), while the GT molecule is significantly affected by the unsaturated C=C double bond, resulting in a significant difference in the mode of electronic transition between the two molecules: the TME-C10 molecule shows the nσ transition, while the GT molecule is the ππ transition. In addition, the HOMO orbital energy level, electron transition energy, and ionization energy of the GT molecules are lower than those of the TME-C10 molecules. Under the action of an external electric field, the TME-C10 molecules exhibit excellent dielectric properties. In summary, the TME-C10 molecules not only overcome the aging defects of traditional natural ester insulating oils, but also possess excellent insulation properties, making it a new type of insulating oil material with broad application prospects. Full article
Show Figures

Figure 1

69 pages, 11327 KiB  
Review
Quantum Mechanical Approaches to Strongly Correlated Electron Systems: Structure, Bonding, and Properties of Diradicals, Triradicals, and Polyradicals
by Satoru Yamada, Isamu Shigemoto, Takashi Kawakami, Hiroshi Isobe, Mitsuo Shoji, Koichi Miyagawa and Kizashi Yamaguchi
Chemistry 2025, 7(2), 38; https://doi.org/10.3390/chemistry7020038 - 12 Mar 2025
Viewed by 2126
Abstract
The structure, bonding, and properties of diradicals, triradicals, and polyradicals have been investigated using broken symmetry (BS) molecular orbital (MO) and BS density functional theory (DFT) methods, which are regarded as the first steps in the mean-field approach toward strongly correlated electron systems [...] Read more.
The structure, bonding, and properties of diradicals, triradicals, and polyradicals have been investigated using broken symmetry (BS) molecular orbital (MO) and BS density functional theory (DFT) methods, which are regarded as the first steps in the mean-field approach toward strongly correlated electron systems (SCES). The natural orbital (NO) analyses of the BS MO and BS DFT solutions were performed to elucidate the natural orbitals of their occupation numbers, which are used for derivations of the diradical character (y) and several chemical indices for the open-shell molecules under investigation. These chemical indices are also obtained using SCES, the next theoretical step, which uses symmetry-recovered resonating BS (RBS) and multi-determinant methods such as multi-reference (MR) configuration interaction (CI) and MR-coupled cluster (CC) methods that employ the NOs generated in the first step. The nonlinear optical response properties of organic open-shell species were theoretically investigated with several procedures, such as MR CI (CC), the numerical Liouville, and Monte Carlo wavefunction methods, as the third step to SCES. The second-order hyperpolarizability (γ) of diradicals such as a phenalenyl radical dimer were mainly investigated in relation to the generation of quantum squeezed lights, which are used for the construction of the quantum entangled states for quantum optical devices such as quantum sensing and quantum computation. Basic quantum mechanical concepts, such as the Pegg–Barnett quantum phase operator, were also revisited in relation to the design and chemical synthesis of stable diradicals and polyradicals such as optical quantum molecular materials and future molecular qubits materials. Full article
Show Figures

Figure 1

24 pages, 2813 KiB  
Article
Axial Ligand Effects on the Mechanism of Ru-CO Bond Photodissociation and Photophysical Properties of Ru(II)-Salen PhotoCORMs/Theranostics: A Density Functional Theory Study
by Niq Catevas and Athanassios Tsipis
Molecules 2025, 30(5), 1147; https://doi.org/10.3390/molecules30051147 - 3 Mar 2025
Viewed by 1056
Abstract
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/−1 (X = Cl, F, SCN, DMSO, Phosphabenzene, Phosphole, TPH, CN, N3, NO3 [...] Read more.
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/−1 (X = Cl, F, SCN, DMSO, Phosphabenzene, Phosphole, TPH, CN, N3, NO3, CNH, NHC, P(OH)3, PF3, PH3). The effect of ligands X on the Ru-CO bond was quantified by the trans-philicity, Δσ13C NMR parameter. The potential of Δσ13C to be used as a probe of the CO photodissociation by Ru(II) transition metal complexes is established upon comparing it with other trans-effect parameters. An excellent linear correlation is found between the energy barrier for the Ru-CO photodissociation and the Δσ13C parameter, paving the way for studying photoCORMs with the 13C NMR method. The strongest trans-effect on the Ru-CO bond in the [Ru(salen)(X)(CO)]0/−1 complexes are found when X = CNH, NHC, and P(OH)3, while the weakest for X = Cl, NO3 and DMSO trans-axial ligands. The Ru-CO bonding properties were scrutinized using Natural Bond Orbital (NBO), Natural Energy Decomposition Analysis (NEDA) and Natural Orbital of Chemical Valence (NOCV) methods. The nature of the Ru-CO bond is composite, i.e., electrostatic, covalent and charge transfer. Both donation and backdonation between CO ligand and Ru metal centre equally stabilize the Ru(II) complexes. Ru-CO photodissociation proceeds via a 3MC triplet excited state, exhibiting a conical intersection with the T1 3MLCT excited state. Calculations show that these complexes show bands within visible while they are expected to be red emitters. Therefore, the [Ru(salen)(X)(CO)]0/−1 complexes under study could potentially be used for dual action, photoCORMs and theranostics compounds. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

24 pages, 2647 KiB  
Review
Nay to Prey: Challenging the View of Horses as a “Prey” Species
by Netzin G. Steklis, Mateo Peñaherrera-Aguirre and Horst Dieter Steklis
Animals 2025, 15(5), 641; https://doi.org/10.3390/ani15050641 - 22 Feb 2025
Cited by 1 | Viewed by 1016
Abstract
This paper challenges the prevalent characterization of domesticated horses as prey species that inherently view humans as predators. Drawing on evolutionary, ethological, and cognitive evidence, we propose the “mutualistic coevolution hypothesis”, which posits that horses and humans have evolved a partnership marked by [...] Read more.
This paper challenges the prevalent characterization of domesticated horses as prey species that inherently view humans as predators. Drawing on evolutionary, ethological, and cognitive evidence, we propose the “mutualistic coevolution hypothesis”, which posits that horses and humans have evolved a partnership marked by cooperation rather than fear. We critically assess the “prey hypothesis”, emphasizing a predator–prey model, which dominates equine training and the literature, and we argue that it inadequately explains horses’ morphology, behaviors, and cognitive capacities. Comparative studies on horses’ socio-cognitive skills suggest that domestication has fostered emotional, behavioral, and cognitive adaptations supporting a human–horse bond. This review examines evidence from archaeological findings and experimental research on horses’ responsiveness to human gestures, emotions, and social cues, underscoring their complex cognition and capacity for collaboration. Furthermore, morphological and behavioral analyses reveal inconsistencies in using orbital orientation or predation-related traits as evidence for categorizing horses as prey species. By emphasizing the coevolutionary dynamics underlying human–horse interactions, we advocate for replacing traditional training models centered on fear and submission with approaches that leverage horses’ mutualistic and social nature. This perspective offers insights for enhancing horse welfare and improving human–equine relationships. Full article
(This article belongs to the Special Issue Second Edition: Research on the Human–Companion Animal Relationship)
Show Figures

Figure 1

Back to TopTop