Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Nardostachys jatamansi DC.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1019 KiB  
Article
Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
by Janhvi Mishra Rawat, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj and Debasis Mitra
Bacteria 2025, 4(3), 38; https://doi.org/10.3390/bacteria4030038 - 1 Aug 2025
Viewed by 127
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In this study, a simple, reproducible protocol for in vitro propagation of N. jatamansi was established using shoot tip explants, cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators, including N6-benzylaminopurine, thidiazuron (TDZ), and naphthalene acetic acid (NAA). MS media supplemented with 2.0 μM TDZ and 0.5 µM NAA created a significant shoot induction with an average of 6.2 shoots per explant. These aseptically excised individual shoots produced roots on MS medium supplemented with Indole Butyric Acid or NAA within 14 days of the transfer. The PGPR, viz., Bacillus subtilis and Pseudomonas corrugata, inoculation resulted in improved growth, higher chlorophyll content, and survival of in vitro-rooted plants (94.6%) after transfer to the soil. Moreover, the PGPRs depicted a two-fold higher total phenolics (45.87 mg GAE/g DW) in plants. These results clearly demonstrate the beneficial effects of P. corrugata and B. subtilis on the growth, survival, and phytochemical content of N. jatamansi. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

23 pages, 7439 KiB  
Article
Nardostachys jatamansi Extract and Nardosinone Exert Neuroprotective Effects by Suppressing Glucose Metabolic Reprogramming and Modulating T Cell Infiltration
by Congyan Duan, Weifang Lin, Mingjie Zhang, Bianxia Xue, Wangjie Sun, Yang Jin, Xiaoxu Zhang, Hong Guo, Qing Yuan, Mingyu Yu, Qi Liu, Naixuan Wang, Hong Wang, Honghua Wu and Shaoxia Wang
Cells 2025, 14(9), 644; https://doi.org/10.3390/cells14090644 - 28 Apr 2025
Viewed by 944
Abstract
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. [...] Read more.
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. This study investigated the effects of ethyl acetate extract (NJ-1A) from N. jatamansi and its active constituent nardosinone on neuroinflammatory mediator release, glucose metabolic reprogramming, and T cell migration using both in vitro and in vivo experimental models. Methods: Lipopolysaccharide(LPS)-induced BV-2 microglial cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced male C57BL/6N mouse chronic model of Parkinson’s disease were applied. Results: Both NJ-1A and Nar could significantly suppress LPS-induced production of M1 pro-inflammatory factors or markers in microglia and could inhibit the glycolytic process and promote oxidative phosphorylation via the AKT/mTOR signaling pathway. Furthermore, they exhibited the capacity to attenuate chemokine release from activated microglia, consequently reducing T cell migration. In vivo experiments revealed that NJ-1A and Nar effectively inhibited microglial activation, diminished T cell infiltration, and mitigated the loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra of MPTP-induced mice. Conclusions: NJ-1A and nardosinone exert neuroprotective effects through the modulation of microglial polarization states, regulation of metabolic reprogramming, and suppression of T cell infiltration. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

13 pages, 2256 KiB  
Article
Identification of Key Genes Involved in Sesquiterpene Synthesis in Nardostachys jatamansi Based on Transcriptome and Component Analysis
by Xiaohui Tang, Tingju Li, Zhiyu Hao, Wenji Zhao, Yanlong Han, Guofu Jia, Zhengjun He, Chaoxiang Ren, Ke Rao, Jin Pei and Jiang Chen
Genes 2024, 15(12), 1539; https://doi.org/10.3390/genes15121539 - 28 Nov 2024
Viewed by 995
Abstract
Background: Nardostachys jatamansi (D. Don) DC. (N. jatamansi.) is an endangered medicinal plant native to the Himalayas that is widely used in traditional medicine due to its terpenoid compounds, especially sesquiterpenes, which are abundant in N. jatamansi. However, the [...] Read more.
Background: Nardostachys jatamansi (D. Don) DC. (N. jatamansi.) is an endangered medicinal plant native to the Himalayas that is widely used in traditional medicine due to its terpenoid compounds, especially sesquiterpenes, which are abundant in N. jatamansi. However, the mechanism of sesquiterpene metabolism remains unclear. Methods: Transcriptome sequencing analyses of different parts (roots and rhizomes, leaves, anthocaulus and flowers) and developmental stages (rejuvenation, budding, flowering, fruiting and withering) of cultivated N. jatamansi were conducted using the Illumina platform. Key genes involved in regulating the sesquiterpene metabolism pathway in N. jatamansi were identified by combining component analyses of various tissues and developmental stages. Furthermore, these key genes were validated through MeJA treatment and a chemical composition analysis. Results: A transcriptome sequencing analysis was performed on 24 samples from four tissues and in five developmental stages, yielding 183.18 Gb of clean data with a Q30 base percentage of 92% or above. A total of 269,136 UniGenes were obtained and annotated. Genes related to sesquiterpene synthesis were screened and validated by RT–qPCR using annotation results from various databases. Twelve candidate genes involved in sesquiterpene synthase were identified. Following MeJA treatment, an RT–qPCR analysis revealed that the expression of the NjTPS-49, NjTPS-54, NjTPS-56, NjTPS-57 and NjTPS-59 genes was positively regulated. Additionally, an HPLC analysis indicated an increase in the nardosinone content after MeJA treatment. This study demonstrates that NjTPS-49, NjTPS-54, NjTPS-56, NjTPS-57 and NjTPS-59 are potential candidate genes for sesquiterpene synthesis. Conclusion: The obtained findings establish the groundwork for elucidating the mechanism of sesquiterpene synthesis in N. jatamansi and contribute to the conservation of N. jatamansi resources. Full article
(This article belongs to the Special Issue Molecular Genetics and Multi-omics in Medicinal Plants)
Show Figures

Figure 1

23 pages, 18922 KiB  
Article
Degradation Profiling of Nardosinone at High Temperature and in Simulated Gastric and Intestinal Fluids
by Bian-Xia Xue, Tian-Tian Yang, Ru-Shang He, Wen-Ke Gao, Jia-Xin Lai, Si-Xia Liu, Cong-Yan Duan, Shao-Xia Wang, Hui-Juan Yu, Wen-Zhi Yang, Li-Hua Zhang, Qi-Long Wang and Hong-Hua Wu
Molecules 2023, 28(14), 5382; https://doi.org/10.3390/molecules28145382 - 13 Jul 2023
Cited by 1 | Viewed by 2021
Abstract
Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain [...] Read more.
Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain unclear. In this study, four main degradation products, including two previously undescribed compounds [2–deoxokanshone M (64.23%) and 2–deoxokanshone L (1.10%)] and two known compounds [desoxo-narchinol A (2.17%) and isonardosinone (3.44%)], were firstly afforded from the refluxed products of nardosinone in boiling water; their structures were identified using an analysis of the extensive NMR and X–ray diffraction data and the simulation and comparison of electronic circular dichroism spectra. Compared with nardosinone, 2–deoxokanshone M exhibited potent vasodilatory activity without any of the significant anti-neuroinflammatory activity that nardosinone contains. Secondly, UPLC–PDA and UHPLC–DAD/Q–TOF MS analyses on the degradation patterns of nardosinone revealed that nardosinone degraded more easily under high temperatures and in simulated gastric fluid compared with the simulated intestinal fluid. A plausible degradation pathway of nardosinone was finally proposed using nardosinonediol as the initial intermediate and involved multiple chemical reactions, including peroxy ring-opening, keto–enol tautomerization, oxidation, isopropyl cleavage, and pinacol rearrangement. Our findings may supply certain guidance and scientific evidence for the quality control and reasonable application of nardosinone-related products. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

11 pages, 4112 KiB  
Article
Pharmacognostical and Phytochemical Evaluation of a Unani Polyherbal Formulation: Dawa ul Kurkum by HPTLC
by Meenakshi Gupta, Sajida Sumaiya, Sher Ali, Tanveer Naved, Archana Sharma, Ajaz Ahmad, Mohammed Sikander and Maryam Sarwat
Separations 2023, 10(2), 89; https://doi.org/10.3390/separations10020089 - 28 Jan 2023
Cited by 7 | Viewed by 4367
Abstract
Background: Dawa ul Kurkum (Duk) is a widely used Unani formulation. It consists of seven plant herbs, including stigmas of Crocus sativus L., rhizomes of Nardostachys jatamansi (D.Don) DC., the bark of Cinnamomum cassia (L.) J. Presl., shoot of Cymbopogon jwarancusa (Jones ex [...] Read more.
Background: Dawa ul Kurkum (Duk) is a widely used Unani formulation. It consists of seven plant herbs, including stigmas of Crocus sativus L., rhizomes of Nardostachys jatamansi (D.Don) DC., the bark of Cinnamomum cassia (L.) J. Presl., shoot of Cymbopogon jwarancusa (Jones ex Roxb.) Schult., the resin of Commiphora wightii (Arn.) Bhandari, roots of Saussurea lappa (Decne.) Sch.Bip., and bark of Cinnamomum zeylanicum Blume. However, no study has been previously conducted to characterize this formulation. Thus, the present study was designed to carry out the pharmacognostic and phytochemical characterization of Duk. Methods: Duk was prepared following the protocols in Bayaz e Kabeer and The National Formulary of Unani Medicine Part-I. The characterization included organoleptic properties, fluorescence analysis, preliminary phytochemical screening, antioxidant activity, and active constituent profiling using HPTLC. Results: Evaluation of Duk showed the presence of carbohydrates, flavonoids, quinones, glycosides, cardiac glycosides, terpenoids, phenols, coumarin, steroids, and phytosterols. The total phenolic and flavonoid content was 5.75 ± 0.23 mg GAE/g and 10 ± 0.18 mg QUE/g, respectively. HPTLC of Duk showed the presence of p-coumaric acid, cinnamaldehyde, citral, crocin, isovaleric acid, guggulsterone, and dehydrocostus lactone. Conclusions: Our findings supported the use of Duk as a conventional medicine, and these results could be used as a reference for the standardization of Duk. Full article
Show Figures

Graphical abstract

13 pages, 3868 KiB  
Article
Potential Anti-Tumor Activity of Nardoguaianone L Isolated from Nardostachys jatamansi DC. in SW1990 Cells
by Chun-Yan Sang, Yi-Dan Zheng, Li-Mei Ma, Kai Wang, Cheng-Bo Wang, Tian Chai, Komila A. Eshbakova and Jun-Li Yang
Molecules 2022, 27(21), 7490; https://doi.org/10.3390/molecules27217490 - 3 Nov 2022
Cited by 6 | Viewed by 2499
Abstract
Natural products (NPs) were a rich source of diverse bioactive molecules. Most anti-tumor agents were built on natural scaffolds. Nardostachys jatamansi DC. was an important plant used to process the traditional Chinese herbal medicines “gansong”. Pancreatic cancer was the fourth most common cause [...] Read more.
Natural products (NPs) were a rich source of diverse bioactive molecules. Most anti-tumor agents were built on natural scaffolds. Nardostachys jatamansi DC. was an important plant used to process the traditional Chinese herbal medicines “gansong”. Pancreatic cancer was the fourth most common cause of cancer-related death in the world. Hence, there was an urgent need to develop novel agents for the treatment of pancreatic cancer. In this paper, nardoguaianone L (G-6) is isolated from N. jatamansi, which inhibited SW1990 cells colony formation and cell migration, and induced cell apoptosis. Furthermore, we analyzed the differential expression proteins after treatment with G-6 in SW1990 cells by using iTRAQ/TMT-based quantitative proteomics technology, and the results showed that G-6 regulated 143 proteins’ differential expression by GO annotation, including biological process, cellular component, and molecular function. Meanwhile, KEGG enrichment found that with Human T-cell leukemia virus, one infection was the most highly enhanced pathway. Furthermore, the MET/PTEN/TGF-β pathway was identified as a significant pathway that had important biological functions, including cell migration and motility by PPI network analysis in SW1990 cells. Taken together, our study found that G-6 is a potential anti-pancreatic cancer agent with regulation of MET/PTEN/TGF-β pathway. Full article
Show Figures

Graphical abstract

12 pages, 2904 KiB  
Article
Nardoguaianone L Isolated from Nardostachys jatamansi Improved the Effect of Gemcitabine Chemotherapy via Regulating AGE Signaling Pathway in SW1990 Cells
by Yi-Dan Zheng, Li-Mei Ma, Jin-Jian Lu, Tian Chai, Mohammad Reza Naghavi, Jun-Yi Ma, Chun-Yan Sang and Jun-Li Yang
Molecules 2022, 27(20), 6849; https://doi.org/10.3390/molecules27206849 - 13 Oct 2022
Cited by 4 | Viewed by 2461
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide and is known as “the king of cancers”. Currently, gemcitabine (GEM) as the clinical drug of choice for chemotherapy of advanced pancreatic cancer has poor drug sensitivity and ineffective chemotherapy. Nardoguaianone L [...] Read more.
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide and is known as “the king of cancers”. Currently, gemcitabine (GEM) as the clinical drug of choice for chemotherapy of advanced pancreatic cancer has poor drug sensitivity and ineffective chemotherapy. Nardoguaianone L (G-6) is a novel guaiane-type sesquiterpenoid isolated from Nardostachys jatamansi DC., and it exhibits anti-tumor activity. Based on the newly discovered G-6 with anti-pancreatic cancer activity in our laboratory, this paper aimed to evaluate the potential value of the combination of G-6 and GEM in SW1990 cells, including cell viability, cell apoptosis, colony assay and tandem mass tags (TMT) marker-based proteomic technology. These results showed that G-6 combined with GEM significantly inhibited cell viability, and the effect was more obvious than that with single drug. In addition, the use of TMT marker-based proteomic technology demonstrated that the AGE-RAGE signaling pathway was activated after medication-combination. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) assays were used to validate the proteomic results. Finally, apoptosis was detected by flow cytometry. In conclusion, G-6 combined with GEM induced an increase in ROS level and a decrease in MMP in SW1990 cells through the AGE-RAGE signaling pathway, ultimately leading to apoptosis. G-6 improved the effect of GEM chemotherapy and may be used as a potential combination therapy for pancreatic cancer. Full article
Show Figures

Figure 1

17 pages, 2157 KiB  
Article
(−)-Naringenin 4′,7-dimethyl Ether Isolated from Nardostachys jatamansi Relieves Pain through Inhibition of Multiple Channels
by Ru-Rong Gu, Xian-Hua Meng, Yin Zhang, Hai-Yan Xu, Li Zhan, Zhao-Bing Gao, Jun-Li Yang and Yue-Ming Zheng
Molecules 2022, 27(5), 1735; https://doi.org/10.3390/molecules27051735 - 7 Mar 2022
Cited by 12 | Viewed by 3151
Abstract
(−)-Naringenin 4′,7-dimethyl ether ((−)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential [...] Read more.
(−)-Naringenin 4′,7-dimethyl ether ((−)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential analgesic activity of (−)-NRG-DM and its implicated mechanism. The analgesic activity of (−)-NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with vehicle or (−)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (−)-NRG-DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (−)-NRG-DM did not affect motor coordination in mice evaluated by the rotarod test, in which the animals were intraperitoneally injected with vehicle or (−)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each group). In acutely isolated mouse dorsal root ganglion neurons, (−)-NRG-DM (1~30 μM) potently dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition, the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa) were significantly suppressed. Consistently, (−)-NRG-DM dramatically inhibited heterologously expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous IK and INa. A pharmacokinetic study revealed the plasma concentration of (−)-NRG-DM is around 7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study showed that (−)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal channels (mediating IK and INa). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

14 pages, 8168 KiB  
Article
Effect of Nardostachys jatamansi DC. on Apoptosis, Inflammation and Oxidative Stress Induced by Doxorubicin in Wistar Rats
by Mhaveer Singh, Mohammad Ahmed Khan, Kamal Y. T., Javed Ahmad, Usama A. Fahmy, Sabna Kotta, Nabil A. Alhakamy and Sayeed Ahmad
Plants 2020, 9(11), 1579; https://doi.org/10.3390/plants9111579 - 15 Nov 2020
Cited by 12 | Viewed by 4971
Abstract
The study aimed to investigate the protective action of jatamansi (Nardostachys jatamansi DC.) against doxorubicin cardiotoxicity. Methanolic extract of jatamansi (MEJ) was prepared and standardized using HPTLC fingerprinting, GC-MS chemoprofiling, total phenolic content, and antioxidant activity in vitro. Further in vivo activity [...] Read more.
The study aimed to investigate the protective action of jatamansi (Nardostachys jatamansi DC.) against doxorubicin cardiotoxicity. Methanolic extract of jatamansi (MEJ) was prepared and standardized using HPTLC fingerprinting, GC-MS chemoprofiling, total phenolic content, and antioxidant activity in vitro. Further in vivo activity was evaluated using rodent model. Animals were divided into five groups (n = 6) namely control (CNT) (Normal saline), toxicant (TOX, without any treatment), MEJ at low dose (JAT1), MEJ at high dose (JAT2), and standard desferrioxamine (STD). All groups except control received doxorubicin 2.5 mg per Kg intra-peritoneally for 3 weeks in twice a week regimen. After 3 weeks, the blood samples and cardiac tissues were collected from all groups for biochemical and histopathological evaluation. Treatment with MEJ at both dose levels exhibited significant reduction (p < 0.001 vs. toxicant) of serum CK-MB (heart creatine kinase), LDH (Lactate dehydrogenase) & HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) levels, and tissue MDA (melondialdehyde) level; insignificant difference was observed (p > 0.05) in TNF-alpha (tumour necrosis factor), IL-6 (interleukine-6) levels and caspase activity as compared to TOX. Histopathological evaluation of cardiac tissues of different treatment groups further reinforced the findings of biochemical estimation. This study concludes that jatamansi can protect cardiac tissues from oxidative stress-induced cell injury and lipid peroxidation as well as against inflammatory and apoptotic effects on cardiac tissues. Full article
Show Figures

Figure 1

27 pages, 12025 KiB  
Article
Comparative and Functional Screening of Three Species Traditionally used as Antidepressants: Valeriana officinalis L., Valeriana jatamansi Jones ex Roxb. and Nardostachys jatamansi (D.Don) DC.
by Laura Cornara, Gabriele Ambu, Domenico Trombetta, Marcella Denaro, Susanna Alloisio, Jessica Frigerio, Massimo Labra, Govinda Ghimire, Marco Valussi and Antonella Smeriglio
Plants 2020, 9(8), 994; https://doi.org/10.3390/plants9080994 - 5 Aug 2020
Cited by 21 | Viewed by 8571
Abstract
The essential oils (EOs) of three Caprifoliaceae species, the Eurasiatic Valeriana officinalis (Vo), the Himalayan Valeriana jatamansi (Vj) and Nardostachys jatamansi (Nj), are traditionally used to treat neurological disorders. Roots/rhizomes micromorphology, DNA barcoding and EOs phytochemical characterization were carried out, while biological effects [...] Read more.
The essential oils (EOs) of three Caprifoliaceae species, the Eurasiatic Valeriana officinalis (Vo), the Himalayan Valeriana jatamansi (Vj) and Nardostachys jatamansi (Nj), are traditionally used to treat neurological disorders. Roots/rhizomes micromorphology, DNA barcoding and EOs phytochemical characterization were carried out, while biological effects on the nervous system were assessed by acetylcholinesterase (AChE) inhibitory activity and microelectrode arrays (MEA). Nj showed the highest inhibitory activity on AChE (IC50 67.15 μg/mL) followed by Vo (IC50 127.30 μg/mL) and Vj (IC50 246.84 μg/mL). MEA analyses on rat cortical neurons, carried out by recording mean firing rate (MFR) and mean bursting rate (MBR), revealed stronger inhibition by Nj (IC50 18.8 and 11.1 μg/mL) and Vo (16.5 and 22.5 μg/mL), compared with Vj (68.5 and 89.3 μg/mL). These results could be related to different EO compositions, since sesquiterpenes and monoterpenes significantly contribute to the observed effects, but the presence of oxygenated compounds such as aldehydes and ketones is a discriminating factor in determining the order of potency. Our multidisciplinary approach represents an important tool to avoid the adulteration of herbal drugs and permits the evaluation of the effectiveness of EOs that could be used for a wide range of therapeutic applications. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Graphical abstract

19 pages, 604 KiB  
Article
Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS
by Sakina Razack, Kandikattu Hemanth Kumar, Ilaiyaraja Nallamuthu, Mahadeva Naika and Farhath Khanum
Antioxidants 2015, 4(1), 185-203; https://doi.org/10.3390/antiox4010185 - 12 Mar 2015
Cited by 68 | Viewed by 10780
Abstract
The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE) showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, [...] Read more.
The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE) showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, homovanillin, epicatechin, rutin hydrate and quercetin-3-rhamnoside) analyzed by RP-HPLC, whereas hexane extract revealed an array of metabolites (fatty acids, sesquiterpenes, alkane hydrocarbons and esters) by GC-MS analysis. The antioxidant assays showed the enhanced potency of NJE with a half maximal inhibitory concentration (IC50) value of 222.22 ± 7.4 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 13.90 ± 0.5 μg/mL for 2,2′-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 113.81 ± 4.2 μg/mL for superoxide, 948 ± 21.1 μg/mL for metal chelating and 12.3 ± 0.43 mg FeSO4 equivalent/g of extract for ferric reducing antioxidant power assays and was more potent than hexane extract. NJE effectively inhibited 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidation of biomolecules analyzed by pBR322 plasmid DNA damage, protein oxidation of bovine serum albumin and lipid peroxidation assays. The observed effects might be due to the high content of polyphenols, 53.06 ± 2.2 mg gallic acid equivalents/g, and flavonoids, 25.303 ± 0.9 mg catechin equivalents/g, of NJE compared to the hexane fraction. Additionally, the extract abrogated the protein, carbonyl, and ROS formation, and NJE showed cytotoxicity in SH-SY5Y neuronal cells above 75 μg/mL. Thus, the study suggests that the herb unequivocally is a potential source of antioxidants and could aid in alleviating oxidative stress-mediated disorders. Full article
(This article belongs to the Special Issue Analytical Determination of Polyphenols)
Show Figures

Graphical abstract

Back to TopTop