Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,219)

Search Parameters:
Keywords = NT157

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7789 KiB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 (registering DOI) - 6 Aug 2025
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 1191 KiB  
Article
Linking Heart Function to Prognosis: The Role of a Novel Echocardiographic Index and NT-proBNP in Acute Heart Failure
by Dan-Cristian Popescu, Mara Ciobanu, Diana Țînț and Alexandru-Cristian Nechita
Medicina 2025, 61(8), 1412; https://doi.org/10.3390/medicina61081412 - 4 Aug 2025
Abstract
Background and Objectives: Risk stratification in acute heart failure (AHF) remains challenging, particularly in settings where biomarker availability is limited. Echocardiography offers valuable hemodynamic insights, but no single parameter fully captures the complexity of biventricular dysfunction and pressure overload. This study aimed to [...] Read more.
Background and Objectives: Risk stratification in acute heart failure (AHF) remains challenging, particularly in settings where biomarker availability is limited. Echocardiography offers valuable hemodynamic insights, but no single parameter fully captures the complexity of biventricular dysfunction and pressure overload. This study aimed to evaluate a novel echocardiographic index (ViRTUE IndexVTI-RVRA-TAPSE Unified Evaluation) integrating a peak systolic gradient between the right ventricle and right atrium (RV-RA gradient), tricuspid annular plane systolic excursion (TAPSE), the velocity–time integral in the left ventricular outflow tract (VTI LVOT), NT-proBNP (N-terminal pro–B-type Natriuretic Peptide) levels, and in-hospital mortality among patients with AHF. Materials and Methods: We retrospectively analyzed 123 patients admitted with AHF. Echocardiographic evaluation at admission included TAPSE, VTI LVOT, and the RV-RA gradient. An index was calculated as RVRA gradient TAPSE x VTI LVOT. NT-proBNP levels and in-hospital outcomes were recorded. Statistical analysis included correlation, logistic regression, and ROC curve evaluation. Results: The proposed index showed a significant positive correlation with NT-proBNP values (r = 0.543, p < 0.0001) and good discriminative ability for elevated NT-proBNP (AUC = 0.79). It also correlated with in-hospital mortality (r = 0.193, p = 0.032) and showed moderate prognostic performance (AUC = 0.68). Higher index values were associated with greater mortality risk. Conclusions: This novel index, based on standard echocardiographic measurements, reflects both systolic dysfunction and pressure overload in AHF. Its correlation with NT-proBNP and in-hospital mortality highlights its potential as a practical, accessible bedside tool for early risk stratification, particularly when biomarker testing is unavailable or delayed. Full article
(This article belongs to the Special Issue Updates on Prevention of Acute Heart Failure)
Show Figures

Figure 1

14 pages, 286 KiB  
Hypothesis
Botulinum Toxin-A, Generating a Hypothesis for Orofacial Pain Therapy
by Yair Sharav, Rafael Benoliel and Yaron Haviv
Toxins 2025, 17(8), 389; https://doi.org/10.3390/toxins17080389 - 4 Aug 2025
Abstract
Orofacial pain encompasses a spectrum of disorders ranging from musculoskeletal disorders, such as myofascial pain, and temporomandibular disorders to neuropathic situations, such as trigeminal neuralgia and painful post-traumatic trigeminal neuropathy, and neurovascular pain such as orofacial migraine and cluster orofacial pain. Each require [...] Read more.
Orofacial pain encompasses a spectrum of disorders ranging from musculoskeletal disorders, such as myofascial pain, and temporomandibular disorders to neuropathic situations, such as trigeminal neuralgia and painful post-traumatic trigeminal neuropathy, and neurovascular pain such as orofacial migraine and cluster orofacial pain. Each require tailored prophylactic pharmacotherapy, such as carbamazepine, gabapentin, pregabalin, amitriptyline, metoprolol, and topiramate. Yet a substantial subset of patients remains refractory. Botulinum toxin type A (BoNT-A) has demonstrated growing efficacy in the treatment of multiple forms of orofacial pain, which covers the whole range of these disorders. We describe the analgesic properties of BoNT-A for each of the three following orofacial pain disorders: neuropathic, myofascial, and neurovascular. Then, we conclude with a section on the neuromodulatory mechanisms of BoNT-A. This lays the basis for the generation of a hypothesis for the segmental therapeutic action of BoNT-A on the whole range of orofacial pain disorders. In addition, the advantage of BoNT-A for providing a safe sustained effect after a single application for chronic pain prophylaxis is discussed, as opposed to the daily use of current conventional prophylactic medications. Finally, we summarize the clinical applications of BoNT-A for chronic orofacial pain therapy. Full article
20 pages, 23283 KiB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 - 4 Aug 2025
Viewed by 41
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

19 pages, 2574 KiB  
Article
The Neuroregenerative Effects of IncobotulinumtoxinA (Inco/A) in a Nerve Lesion Model of the Rat
by Oscar Sánchez-Carranza, Wojciech Danysz, Klaus Fink, Maarten Ruitenberg, Andreas Gravius and Jens Nagel
Int. J. Mol. Sci. 2025, 26(15), 7482; https://doi.org/10.3390/ijms26157482 - 2 Aug 2025
Viewed by 235
Abstract
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats [...] Read more.
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats using the chronic constriction injury (CCI) model. Inco/A was administered perineurally at two time points: on days 0 and 21 post CCI. Functional and histological assessments were conducted to evaluate the effect of Inco/A on nerve regeneration. Sciatic Functional Index (SFI) measurements and Compound Muscle Action Potential (CMAP) recordings were conducted at different time points following CCI. Inco/A-treated animals exhibited a 65% improved SFI and 22% reduction in CMAP onset latencies compared to the vehicle-treated group, suggesting accelerated functional nerve recovery. Tissue analysis revealed enhanced remyelination in Inco/A-treated animals and 60% reduction in CGRP and double S100β signal expression compared to controls. Strikingly, 30% reduced immune cell influx into the injury site was observed following Inco/A treatment, suggesting that its anti-inflammatory effect contributes to nerve regeneration. These findings show that two injections of Inco/A promote functional recovery by enhancing neuroregeneration and modulating inflammatory processes, supporting the hypothesis that Inco/A has a neuroprotective and restorative role in nerve injury conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 968 KiB  
Article
Ten-Year Results of a Single-Center Trial Investigating Heart Rate Control with Ivabradine or Metoprolol Succinate in Patients After Heart Transplantation
by Fabrice F. Darche, Alexandra C. Alt, Rasmus Rivinius, Matthias Helmschrott, Philipp Ehlermann, Norbert Frey and Ann-Kathrin Rahm
J. Cardiovasc. Dev. Dis. 2025, 12(8), 297; https://doi.org/10.3390/jcdd12080297 - 1 Aug 2025
Viewed by 202
Abstract
Aims: Sinus tachycardia after heart transplantation (HTX) due to cardiac graft denervation is associated with reduced post-transplant survival and requires adequate treatment. We analyzed the long-term effects of heart rate control with ivabradine or metoprolol succinate in HTX recipients. Methods: This observational retrospective [...] Read more.
Aims: Sinus tachycardia after heart transplantation (HTX) due to cardiac graft denervation is associated with reduced post-transplant survival and requires adequate treatment. We analyzed the long-term effects of heart rate control with ivabradine or metoprolol succinate in HTX recipients. Methods: This observational retrospective single-center study analyzed the ten-year results of 110 patients receiving ivabradine (n = 54) or metoprolol succinate (n = 56) after HTX. Analysis included comparison of demographics, medications, heart rates, blood pressure values, echocardiographic features, cardiac catheterization data, cardiac biomarkers, and post-transplant survival including causes of death. Results: Both groups showed no significant differences concerning demographics or medications (except for ivabradine and metoprolol succinate). At 10-year follow-up, HTX recipients with ivabradine showed a significantly lower heart rate (72.7 ± 8.5 bpm) compared to baseline (88.8 ± 7.6 bpm; p < 0.001) and to metoprolol succinate (80.1 ± 8.1 bpm; p < 0.001), a significantly lower NT-proBNP level (588.4 ± 461.4 pg/mL) compared to baseline (3849.7 ± 1960.0 pg/mL; p < 0.001) and to metoprolol succinate (1229.0 ± 1098.6 pg/mL; p = 0.005), a significantly lower overall mortality (20.4% versus 46.4%; p = 0.004), and mortality due to graft failure (1.9% versus 21.4%; p = 0.001). Multivariate analysis showed a significantly decreased risk of death within 10 years after HTX in patients with post-transplant use of ivabradine (HR 0.374, CI 0.182–0.770; p = 0.008). Conclusions: In this single-center trial, patients with ivabradine revealed a significantly more pronounced heart rate reduction, a lower NT-proBNP level, and a superior 10-year survival after HTX. Full article
(This article belongs to the Collection Current Challenges in Heart Failure and Cardiac Transplantation)
Show Figures

Figure 1

21 pages, 360 KiB  
Review
Prognostic Models in Heart Failure: Hope or Hype?
by Spyridon Skoularigkis, Christos Kourek, Andrew Xanthopoulos, Alexandros Briasoulis, Vasiliki Androutsopoulou, Dimitrios Magouliotis, Thanos Athanasiou and John Skoularigis
J. Pers. Med. 2025, 15(8), 345; https://doi.org/10.3390/jpm15080345 - 1 Aug 2025
Viewed by 168
Abstract
Heart failure (HF) poses a substantial global burden due to its high morbidity, mortality, and healthcare costs. Accurate prognostication is crucial for optimizing treatment, resource allocation, and patient counseling. Prognostic tools range from simple clinical scores such as ADHERE and MAGGIC to more [...] Read more.
Heart failure (HF) poses a substantial global burden due to its high morbidity, mortality, and healthcare costs. Accurate prognostication is crucial for optimizing treatment, resource allocation, and patient counseling. Prognostic tools range from simple clinical scores such as ADHERE and MAGGIC to more complex models incorporating biomarkers (e.g., NT-proBNP, sST2), imaging, and artificial intelligence techniques. In acute HF, models like EHMRG and STRATIFY aid early triage, while in chronic HF, tools like SHFM and BCN Bio-HF support long-term management decisions. Despite their utility, most models are limited by poor generalizability, reliance on static inputs, lack of integration into electronic health records, and underuse in clinical practice. Novel approaches involving machine learning, multi-omics profiling, and remote monitoring hold promise for dynamic and individualized risk assessment. However, these innovations face challenges regarding interpretability, validation, and ethical implementation. For prognostic models to transition from theoretical promise to practical impact, they must be continuously updated, externally validated, and seamlessly embedded into clinical workflows. This review emphasizes the potential of prognostic models to transform HF care but cautions against uncritical adoption without robust evidence and practical integration. In the evolving landscape of HF management, prognostic models represent a hopeful avenue, provided their limitations are acknowledged and addressed through interdisciplinary collaboration and patient-centered innovation. Full article
(This article belongs to the Special Issue Personalized Treatment for Heart Failure)
10 pages, 483 KiB  
Article
The Lack of Impact of Primary Care Units on Screening Services in Thailand and the Transition to Local Administrative Organization Policy
by Noppcha Singweratham, Jiruth Sriratanaban, Daoroong Komwong, Mano Maneechay and Pallop Siewchaisakul
Healthcare 2025, 13(15), 1884; https://doi.org/10.3390/healthcare13151884 - 1 Aug 2025
Viewed by 164
Abstract
Background/Objectives: In Thailand, the transition of primary care units (PCUs) to Local Administrative Organizations (LAOs) has raised concerns regarding the potential impact on healthcare service delivery. This study aimed to compare health services between PCUs that have been transferred to LAOs and [...] Read more.
Background/Objectives: In Thailand, the transition of primary care units (PCUs) to Local Administrative Organizations (LAOs) has raised concerns regarding the potential impact on healthcare service delivery. This study aimed to compare health services between PCUs that have been transferred to LAOs and those that have not. Methods: A total of 15 transferred PCUs (T-PCUs) and 45 non-transferred PCUs (NT-PCUs), matched by population within the same provinces, were purposively sampled. The study population consisted of the cumulative number of diabetes (DM) and hypertension (HTN) screenings retrieved from the National Health Security Office (NHSO) database from 2017 to 2023. The impact of the LAO transfer policy on health service delivery was assessed using generalized estimating equation (GEE) models. All analyses were performed using Stata version 15. Results: The result showed no significant difference in the population and size of PCUs. DM screening was non-significantly lower by 18.9% (AdjRR: 0.811), and HTN screening was lower by 18.6% (AdjRR: 0.814), when comparing T-PCU with NT-PCU. Similarly, the DM and HTN screening in T-PCU was non-significantly lower than NT-PCU when interacting with time. Both T-PCU and NT-PCU show decreases over time; however, the decrease was not statistically significant. Conclusions: Our results show a non-significant difference in DM and HTN screening between T-PCU and NT-PCU. Therefore, decentralization did not clearly demonstrate a negative impact on the delivery of these health services. Further research is needed to consider other confounding and covariate factors for DM and HTN screening. Full article
Show Figures

Figure 1

28 pages, 6702 KiB  
Article
Mechanistic Insights into the Fracture Toughness Enhancement of Nano-TiO2 and Basalt Fiber Bar Reinforced Magnesium Phosphate Cement
by Wei-Kang Li, Sheng-Ai Cui, Yu-Peng Li, Ya-Lei Zeng, Guang Zeng and Wei Xia
Nanomaterials 2025, 15(15), 1183; https://doi.org/10.3390/nano15151183 - 1 Aug 2025
Viewed by 276
Abstract
Magnesium phosphate cement (MPC) exhibits brittleness when utilized as a repair material for bridge decks. To address this issue, this study employs nano-TiO2 (NT) and a novel material (basalt fiber bar) as modifiers. A double-K fracture model is developed for the modified [...] Read more.
Magnesium phosphate cement (MPC) exhibits brittleness when utilized as a repair material for bridge decks. To address this issue, this study employs nano-TiO2 (NT) and a novel material (basalt fiber bar) as modifiers. A double-K fracture model is developed for the modified MPC to quantitatively evaluate the enhancement of fracture toughness induced by NT and basalt fiber bars. The cracking behavior and toughening mechanisms of the NT and basalt fiber bar reinforced MPC are investigated using extended finite element theory and composite material theory. Additionally, a formula is proposed to calculate the incremental fracture toughness of NT and basalt fiber bar reinforced MPC. The results indicated that NT and basalt fiber bar can effectively enhance the ultimate bending capacity of MPC. The improvement increases with the fiber volume fraction, and noticeable bending hardening occurs when the fiber content exceeds 2%. With the same fiber volume fraction, the peak load can be increased by up to 11.7% with the addition of NT. The crack initiation toughness of the NT group without basalt fiber bars is 58% higher than that of the CC group. The content and diameter of basalt fiber bar are critical parameters affecting the toughness of the NT and basalt fiber bar reinforced MPC. Full article
(This article belongs to the Special Issue Nanomodification of Civil Engineering Materials)
Show Figures

Figure 1

15 pages, 7392 KiB  
Article
Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China
by Fuli Wang, Chengzhong Yang, Yalin Xiong, Qian Xiang, Xiaojuan Cui and Jianjun Peng
Animals 2025, 15(15), 2254; https://doi.org/10.3390/ani15152254 - 31 Jul 2025
Viewed by 157
Abstract
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively [...] Read more.
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively evaluate the genetic diversity, population structure, gene flow, and demographic history of tufted deer across this critical region. We analyzed mitochondrial DNA (mtDNA) from 46 non-invasively collected fecal samples from three distinct populations: Jinfo Mountain (JF, n = 13), Simian Mountain (SM, n = 21), and the Northeastern Mountainous region (NEM, n = 12). Genetic variation was assessed using the cytochrome b (Cyt b) and D-loop regions, with analyses including Fst, gene flow (Nm), neutrality tests, and Bayesian Skyline Plots (BSP). Our results revealed the highest genetic diversity in the SM population, establishing it as a genetic hub. In contrast, the JF population exhibited the lowest diversity and significant genetic differentiation (>0.23) from the SM and NEM populations, indicating profound isolation. Gene flow was substantial between SM and NEM but severely restricted for the JF population. Demographic analyses, including BSP, indicated a long history of demographic stability followed by a significant expansion beginning in the Middle to Late Pleistocene. We conclude that the SM/NEM metapopulation serves as the genetic core for the species in this region, while the highly isolated JF population constitutes a distinct and vulnerable Management Unit (MU). This historical demographic expansion is likely linked to climatic and environmental changes during the Pleistocene, rather than recent anthropogenic factors. These findings underscore the urgent need for a dual conservation strategy: targeted management for the isolated JF population and the establishment of ecological corridors to connect the Jinfo Mountain and Simian Mountain populations, ensuring the long-term persistence of this unique species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 24344 KiB  
Article
The Influence of Dimensional Parameters on the Characteristics of Magnetic Flux Concentrators Used in Tunneling Magnetoresistance Devices
by Ran Bi, Huiquan Zhang, Shi Pan, Xinting Liu, Ruiying Chen, Shilin Wu and Jun Hu
Sensors 2025, 25(15), 4739; https://doi.org/10.3390/s25154739 - 31 Jul 2025
Viewed by 186
Abstract
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing [...] Read more.
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing magnetic flux concentrators (MFCs) offers an effective approach to enhance TMR sensitivity. In this study, the finite element method was employed to analyze the effects of different MFC geometric structures on the uniformity of the magnetic field in the air gap and the magnetic circuit gain (MCG). It was determined that the MCG of the MFC is not directly related to the absolute values of its parameters but rather to their ratios. Simulation analyses evaluated the impact of these parameter ratios on both the MCG and its spatial distribution uniformity, leading to the formulation of MFC design optimization principles. Building on these simulation-derived principles, several MFCs were fabricated using the 1J85 material, and an experimental platform was established to validate the simulation findings. The fabricated MFCs achieved an MCG of 7.325 times. Based on the previously developed TMR devices, a detection sensitivity of 2.46 nT/Hz @1Hz was obtained. By optimizing parameter configurations, this work provides theoretical guidance for further enhancing the performance of TMR sensors in magnetic field measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 1331 KiB  
Article
Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa
by Bongi Beatrice Mankonkwana, Evelyn Madoroba, Kudakwashe Magwedere and Patrick Butaye
Microorganisms 2025, 13(8), 1786; https://doi.org/10.3390/microorganisms13081786 - 31 Jul 2025
Viewed by 245
Abstract
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. [...] Read more.
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. Samples were collected from 500 chicken carcass rinsates at various processing stages in three abattoirs. Salmonella detection and identification was conducted in accordance with the ISO 6579 methodology. NTS serotyping was performed with serotype-specific PCRs. The Kirby–Bauer disk diffusion method was used to determine antimicrobial resistance in Salmonella. PCR was used to analyze thirteen antimicrobial genes and four virulence genes. Salmonella spp. was detected in 11.8% (59/500; CI: 9.5–15) of the samples tested. The predominant serovars were Salmonella Enteritidis (n = 21/59; 35.59%) and Salmonella Typhimurium (n = 35; 59.32%). Almost all Salmonella isolates were susceptible to all tested antimicrobials except three. Despite the low resistance to tetracyclines at the phenotypic level, approximately half of the strains carried tetA genes, which may be due to “silent” antimicrobial resistance genes. Diverse virulence genes were detected among the confirmed NTS serotypes. We found a predominance of S. Enteritidis and S. Typhimurium from chicken carcasses with diverse virulence and resistance genes. As we detected differences between the slaughterhouses, an in-depth study should be performed on the risk of Salmonella in low- and high-throughput abattoirs. The integrated monitoring and surveillance of NTS in poultry is warranted in South Africa to aid in the design of mitigation strategies. Full article
(This article belongs to the Special Issue Salmonella and Food Safety)
Show Figures

Figure 1

9 pages, 440 KiB  
Article
Botulinum Neurotoxin A Injections in Spasmodic Entropion: A Clinical Retrospective Cohort Study
by Brigitte Girard, Fabienne Carré and Simon Begnaud
Toxins 2025, 17(8), 383; https://doi.org/10.3390/toxins17080383 - 31 Jul 2025
Viewed by 181
Abstract
While surgical procedure has been considered as the golden standard treatment for spasmodic entropion, Botulinum Neurotoxin A can be indicated in the treatment of spasmodic entropion for fragile elderly patients. This retrospective cohort study included 50 outdoor patients treated for spasmodic entropion, for [...] Read more.
While surgical procedure has been considered as the golden standard treatment for spasmodic entropion, Botulinum Neurotoxin A can be indicated in the treatment of spasmodic entropion for fragile elderly patients. This retrospective cohort study included 50 outdoor patients treated for spasmodic entropion, for whom palpebral surgery was recused. The intent of the present study was to describe an alternative outdoor treatment, to detail precisely the Botulinum Neurotoxin (BoNT) treatment pattern, the dosage of BoNT needed, the frequency of re-injection, the efficiency and the complications encountered. Fifty patients, 87.9 years old in average (±14.3) have been injected with BoNT. The average total dosage of BoNT is 7.62 ± 1.38 units of Incobotulinum, 10.2 ± 1.03 units of Onabotulinum and 17.2 ± 1.33 Speywood-units of Abobotulinum. Spasmodic entropion resolved in 3 ± 2 days after the BT injection. The average for re-injection is every 4.25 ± 1.30 months. By adjusting age and total dose, we have not been able to show any statistically significant relationship between time needed for re-injection and type of botulinum toxin A (p = 0.59). Patients with spasmodic entropion have responded significantly to BoNT injection. No systemic complications have been reported in this study. BoNT treatment is safe and effective for fragile elderly patients with spasmodic entropion and can be proposed instead of surgery or while waiting for their procedure. Full article
(This article belongs to the Special Issue Application of Botulinum Toxin in Facial Diseases)
Show Figures

Figure 1

17 pages, 3112 KiB  
Article
Impacts of Conservation Tillage on Soil Organic Carbon Mineralization in Eastern Inner Mongolia
by Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(8), 1847; https://doi.org/10.3390/agronomy15081847 - 30 Jul 2025
Viewed by 210
Abstract
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of [...] Read more.
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of SOC dynamics, especially in semi-arid agroecosystems like eastern Inner Mongolia, remain poorly understood. In this study, we assessed the combined effects of no tillage (NT) vs. rotary tillage (RT), three straw types (maize/MS, wheat/WS, and oilseed rape/OS), and three application rates (0.4%/low, 0.8%/medium, and 1.2%/high) on SOC concentration and mineralization using controlled laboratory incubation with soils from long-term plots. The key findings revealed that NT significantly increased the SOC concentration in the topsoil (0–20 cm) by an average of 14.5% compared to that in the RT. Notably, combining NT with medium-rate wheat straw (0.8%) resulted in the achievement of the highest SOC accumulation (28.70 g/kg). SOC mineralization increased with straw inputs, exhibiting significant straw type × rate interactions. Oilseed rape straw showed the highest specific mineralization rate (33.9%) at low input, while maize straw mineralized fastest under high input with RT. Therefore, our results demonstrate that combining NT with either 0.8% wheat straw or 1.2% maize straw represents an optimal application strategy, as the SOC concentration is enhanced by 12–18% for effective carbon sequestration in this water-limited semi-arid region. Therefore, optimizing SOC sequestration requires the integration of appropriate crop residue application rates and tillage methods tailored to different cropping systems. Full article
Show Figures

Figure 1

Back to TopTop