Prognostic Models in Heart Failure: Hope or Hype?
Abstract
1. Introduction
2. Overview of Prognostic Modeling
3. Prognostic Models in Heart Failure
3.1. Acute HF
3.2. Chronic HF
4. Prognostic Models in Clinical Practice: Hope or Hype?
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kapelios, C.J.; Shahim, B.; Lund, L.H.; Savarese, G. Epidemiology, Clinical Characteristics and Cause-specific Outcomes in Heart Failure with Preserved Ejection Fraction. Card. Fail. Rev. 2023, 9, e14. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 2020, 5, 15. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Shahim, B.; Kapelios, C.J.; Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure: An Updated Review. Card. Fail. Rev. 2023, 9, e11. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.; Jhund, P.S.; Claggett, B.L.; Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Yusuf, S.; Solomon, S.D.; McMurray, J.J. Prevalence and prognostic importance of precipitating factors leading to heart failure hospitalization: Recurrent hospitalizations and mortality. Eur. J. Heart Fail. 2018, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Lahoz, R.; Fagan, A.; McSharry, M.; Proudfoot, C.; Corda, S.; Studer, R. Recurrent heart failure hospitalizations are associated with increased cardiovascular mortality in patients with heart failure in Clinical Practice Research Datalink. ESC Heart Fail. 2020, 7, 1688–1699. [Google Scholar] [CrossRef]
- Kapłon-Cieślicka, A.; Benson, L.; Chioncel, O.; Crespo-Leiro, M.G.; Coats, A.J.S.; Anker, S.D.; Filippatos, G.; Ruschitzka, F.; Hage, C.; Drożdż, J.; et al. A comprehensive characterization of acute heart failure with preserved versus mildly reduced versus reduced ejection fraction—Insights from the ESC-HFA EORP Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2022, 24, 335–350. [Google Scholar] [CrossRef]
- Metra, M.; Tomasoni, D.; Adamo, M.; Bayes-Genis, A.; Filippatos, G.; Abdelhamid, M.; Adamopoulos, S.; Anker, S.D.; Antohi, L.; Böhm, M.; et al. Worsening of chronic heart failure: Definition, epidemiology, management and prevention. A clinical consensus statement by the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2023, 25, 776–791. [Google Scholar] [CrossRef]
- Gheorghe, A.; Griffiths, U.; Murphy, A.; Legido-Quigley, H.; Lamptey, P.; Perel, P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: A systematic review. BMC Public Health 2018, 18, 975. [Google Scholar] [CrossRef]
- Agbor, V.N.; Essouma, M.; Ntusi, N.A.B.; Nyaga, U.F.; Bigna, J.J.; Noubiap, J.J. Heart failure in sub-Saharan Africa: A contemporaneous systematic review and meta-analysis. Int. J. Cardiol. 2018, 257, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Agbor, V.N.; Ntusi, N.A.B.; Noubiap, J.J. An overview of heart failure in low- and middle-income countries. Cardiovasc. Diagn. Ther. 2020, 10, 244–251. [Google Scholar] [CrossRef]
- Ibănescu, R.; Mîțu, D.A.; Goje, I.D.; Goje, G.I.; Lighezan, D.F. History of Heart Failure Definition. Card. Fail. Rev. 2025, 11, e07. [Google Scholar] [CrossRef]
- Masip, J.; Peacok, W.F.; Arrigo, M.; Rossello, X.; Platz, E.; Cullen, L.; Mebazaa, A.; Price, S.; Bueno, H.; Di Somma, S.; et al. Acute Heart Failure in the 2021 ESC Heart Failure Guidelines: A scientific statement from the Association for Acute CardioVascular Care (ACVC) of the European Society of Cardiology. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Usman, M.S.; Van Spall, H.G.C.; Greene, S.J.; Pandey, A.; McGuire, D.K.; Ali, Z.A.; Mentz, R.J.; Fonarow, G.C.; Spertus, J.A.; Anker, S.D.; et al. The need for increased pragmatism in cardiovascular clinical trials. Nat. Rev. Cardiol. 2022, 19, 737–750. [Google Scholar] [CrossRef]
- Wehbe, R.M.; Khan, S.S.; Shah, S.J.; Ahmad, F.S. Predicting High-Risk Patients and High-Risk Outcomes in Heart Failure. Heart Fail. Clin. 2020, 16, 387–407. [Google Scholar] [CrossRef]
- Tepetes, N.I.; Kourek, C.; Papamichail, A.; Xanthopoulos, A.; Kostakou, P.; Paraskevaidis, I.; Briasoulis, A. Transition to Advanced Heart Failure: From Identification to Improving Prognosis. J. Cardiovasc. Dev. Dis. 2025, 12, 104. [Google Scholar] [CrossRef]
- Shah, S.J.; Borlaug, B.A.; Kitzman, D.W.; McCulloch, A.D.; Blaxall, B.C.; Agarwal, R.; Chirinos, J.A.; Collins, S.; Deo, R.C.; Gladwin, M.T.; et al. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020, 141, 1001–1026. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhong, W.F.; Liu, R.Y.; Huang, J.L.; Fu, J.X.; Gao, J.; Zhang, P.D.; Liu, D.; Li, Z.H.; He, Y.; et al. Improved prediction and risk stratification of major adverse cardiovascular events using an explainable machine learning approach combining plasma biomarkers and traditional risk factors. Cardiovasc. Diabetol. 2025, 24, 153. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.; Jhund, P.S.; Lund, L.H.; Padmanabhan, S.; Claggett, B.L.; Shen, L.; Petrie, M.C.; Abraham, W.T.; Desai, A.S.; Dickstein, K.; et al. Prognostic Models Derived in PARADIGM-HF and Validated in ATMOSPHERE and the Swedish Heart Failure Registry to Predict Mortality and Morbidity in Chronic Heart Failure. JAMA Cardiol. 2020, 5, 432–441. [Google Scholar] [CrossRef]
- Fonarow, G.C.; Adams, K.F.; Abraham, W.T.; Yancy, C.W.; Boscardin, W.J. Risk stratification for in-hospital mortality in acutely decompensated heart failure: Classification and regression tree analysis. JAMA 2005, 293, 572–580. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, J.S.; Schull, M.J.; Borgundvaag, B.; Edmonds, M.L.; Ivankovic, M.; McLeod, S.L.; Dreyer, J.F.; Sabbah, S.; Levy, P.D.; et al. Prospective Validation of the Emergency Heart Failure Mortality Risk Grade for Acute Heart Failure. Circulation 2019, 139, 1146–1156. [Google Scholar] [CrossRef]
- Collins, S.P.; Jenkins, C.A.; Harrell, F.E., Jr.; Liu, D.; Miller, K.F.; Lindsell, C.J.; Naftilan, A.J.; McPherson, J.A.; Maron, D.J.; Sawyer, D.B.; et al. Identification of Emergency Department Patients With Acute Heart Failure at Low Risk for 30-Day Adverse Events: The STRATIFY Decision Tool. JACC Heart Fail. 2015, 3, 737–747. [Google Scholar] [CrossRef]
- Peterson, P.N.; Rumsfeld, J.S.; Liang, L.; Albert, N.M.; Hernandez, A.F.; Peterson, E.D.; Fonarow, G.C.; Masoudi, F.A. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association get with the guidelines program. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Giamouzis, G.; Tryposkiadis, K.; Paraskevopoulou, E.; Karagiannis, G.; Patsilinakos, S.; Parissis, J.; Farmakis, D.; Butler, J.; Skoularigis, J.; et al. A simple score for early risk stratification in acute heart failure. Int. J. Cardiol. 2017, 230, 248–254. [Google Scholar] [CrossRef]
- Lee, D.S.; Austin, P.C.; Rouleau, J.L.; Liu, P.P.; Naimark, D.; Tu, J.V. Predicting mortality among patients hospitalized for heart failure: Derivation and validation of a clinical model. JAMA 2003, 290, 2581–2587. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Leimberger, J.D.; Califf, R.M.; Cuffe, M.S.; Massie, B.M.; Adams, K.F., Jr.; Gheorghiade, M.; O’Connor, C.M. Risk stratification after hospitalization for decompensated heart failure. J. Card. Fail. 2004, 10, 460–466. [Google Scholar] [CrossRef]
- Abraham, W.T.; Fonarow, G.C.; Albert, N.M.; Stough, W.G.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; Sun, J.L.; Yancy, C.W.; Young, J.B. Predictors of in-hospital mortality in patients hospitalized for heart failure: Insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J. Am. Coll. Cardiol. 2008, 52, 347–356. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Abraham, W.T.; Albert, N.M.; Clare, R.; Gattis Stough, W.; Gheorghiade, M.; Greenberg, B.H.; Yancy, C.W.; Young, J.B.; Fonarow, G.C. Predictors of mortality after discharge in patients hospitalized with heart failure: An analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am. Heart J. 2008, 156, 662–673. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Mentz, R.J.; Cotter, G.; Metra, M.; Cleland, J.G.; Davison, B.A.; Givertz, M.M.; Mansoor, G.A.; Ponikowski, P.; Teerlink, J.R.; et al. The PROTECT in-hospital risk model: 7-day outcome in patients hospitalized with acute heart failure and renal dysfunction. Eur. J. Heart Fail. 2012, 14, 605–612. [Google Scholar] [CrossRef]
- Auble, T.E.; Hsieh, M.; Gardner, W.; Cooper, G.F.; Stone, R.A.; McCausland, J.B.; Yealy, D.M. A prediction rule to identify low-risk patients with heart failure. Acad. Emerg. Med. 2005, 12, 514–521. [Google Scholar] [CrossRef]
- Okazaki, H.; Shirakabe, A.; Hata, N.; Yamamoto, M.; Kobayashi, N.; Shinada, T.; Tomita, K.; Tsurumi, M.; Matsushita, M.; Yamamoto, Y.; et al. New scoring system (APACHE-HF) for predicting adverse outcomes in patients with acute heart failure: Evaluation of the APACHE II and Modified APACHE II scoring systems. J. Cardiol. 2014, 64, 441–449. [Google Scholar] [CrossRef]
- Salah, K.; Kok, W.E.; Eurlings, L.W.; Bettencourt, P.; Pimenta, J.M.; Metra, M.; Bayes-Genis, A.; Verdiani, V.; Bettari, L.; Lazzarini, V.; et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: A European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF Score. Heart 2014, 100, 115–125. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Hasselblad, V.; Mehta, R.H.; Tasissa, G.; Califf, R.M.; Fiuzat, M.; Rogers, J.G.; Leier, C.V.; Stevenson, L.W. Triage after hospitalization with advanced heart failure: The ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness) risk model and discharge score. J. Am. Coll. Cardiol. 2010, 55, 872–878. [Google Scholar] [CrossRef]
- Scrutinio, D.; Ammirati, E.; Guida, P.; Passantino, A.; Raimondo, R.; Guida, V.; Sarzi Braga, S.; Pedretti, R.F.; Lagioia, R.; Frigerio, M.; et al. Clinical utility of N-terminal pro-B-type natriuretic peptide for risk stratification of patients with acute decompensated heart failure. Derivation and validation of the ADHF/NT-proBNP risk score. Int. J. Cardiol. 2013, 168, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Mebazaa, A.; Juillière, Y.; Cohen-Solal, A.; Guize, L.; Alla, F.; Rougé, P.; Blin, P.; Barlet, M.H.; Paolozzi, L.; et al. Clinical profile, contemporary management and one-year mortality in patients with severe acute heart failure syndromes: The EFICA study. Eur. J. Heart Fail. 2006, 8, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, L.; Senni, M.; Metra, M.; Gorini, M.; Cacciatore, G.; Chinaglia, A.; Di Lenarda, A.; Mortara, A.; Oliva, F.; Maggioni, A.P. Multicenter prospective observational study on acute and chronic heart failure: One-year follow-up results of IN-HF (Italian Network on Heart Failure) outcome registry. Circ. Heart Fail. 2013, 6, 473–481. [Google Scholar] [CrossRef]
- Logeart, D.; Isnard, R.; Resche-Rigon, M.; Seronde, M.F.; de Groote, P.; Jondeau, G.; Galinier, M.; Mulak, G.; Donal, E.; Delahaye, F.; et al. Current aspects of the spectrum of acute heart failure syndromes in a real-life setting: The OFICA study. Eur. J. Heart Fail. 2013, 15, 465–476. [Google Scholar] [CrossRef]
- Lassus, J.; Gayat, E.; Mueller, C.; Peacock, W.F.; Spinar, J.; Harjola, V.P.; van Kimmenade, R.; Pathak, A.; Mueller, T.; Disomma, S.; et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int. J. Cardiol. 2013, 168, 2186–2194. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Koester, C.; Al-Akchar, M.; Tandan, N.; Regmi, M.; Bhattarai, M.; Al-Bast, B.; Kulkarni, A.; Robinson, R. HOSPITAL Score, LACE Index and LACE+ Index as predictors of 30-day readmission in patients with heart failure. BMJ Evid. Based Med. 2020, 25, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.T.; Tseng, Y.T.; Chu, T.W.; Chen, J.; Lai, M.Y.; Tang, W.R.; Shiao, C.C. N-terminal pro b-type natriuretic peptide (NT-pro-BNP) -based score can predict in-hospital mortality in patients with heart failure. Sci. Rep. 2016, 6, 29590. [Google Scholar]
- Yap, J.; Lim, F.Y.; Chia, S.Y.; Allen, J.C., Jr.; Jaufeerally, F.R.; Macdonald, M.R.; Chai, P.; Loh, S.Y.; Lim, P.; Zaw, M.W.W.; et al. Prediction of Survival in Asian Patients Hospitalized With Heart Failure: Validation of the OPTIMIZE-HF Risk Score. J. Card. Fail. 2019, 25, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Yap, J.; Chia, S.Y.; Lim, F.Y.; Allen, J.C.; Teo, L.; Sim, D.; Go, Y.Y.; Jaufeerally, F.R.; Seow, M.; Kwok, B.; et al. The Singapore Heart Failure Risk Score: Prediction of Survival in Southeast Asian Patients. Ann. Acad. Med. Singap. 2019, 48, 86–94. [Google Scholar] [CrossRef]
- Cameli, M.; Pastore, M.C.; De Carli, G.; Henein, M.Y.; Mandoli, G.E.; Lisi, E.; Cameli, P.; Lunghetti, S.; D’aScenzi, F.; Nannelli, C.; et al. ACUTE HF score, a multiparametric prognostic tool for acute heart failure: A real-life study. Int. J. Cardiol. 2019, 296, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Lupón, J.; Gaggin, H.K.; de Antonio, M.; Domingo, M.; Galán, A.; Zamora, E.; Vila, J.; Peñafiel, J.; Urrutia, A.; Ferrer, E.; et al. Biomarker-assist score for reverse remodeling prediction in heart failure: The ST2-R2 score. Int. J. Cardiol. 2015, 184, 337–343. [Google Scholar] [CrossRef]
- Sartipy, U.; Dahlström, U.; Edner, M.; Lund, L.H. Predicting survival in heart failure: Validation of the MAGGIC heart failure risk score in 51,043 patients. Eur. J. Heart Fail. 2014, 16, 173–179. [Google Scholar] [CrossRef]
- Barlera, S.; Tavazzi, L.; Franzosi, M.G.; Marchioli, R.; Raimondi, E.; Masson, S.; Urso, R.; Lucci, D.; Nicolosi, G.L.; Maggioni, A.P.; et al. Predictors of mortality in 6975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico-Heart Failure trial: Proposal for a nomogram. Circ. Heart Fail. 2013, 6, 31–39. [Google Scholar] [CrossRef]
- Pocock, S.J.; Wang, D.; Pfeffer, M.A.; Yusuf, S.; McMurray, J.J.; Swedberg, K.B.; ÖsTergren, J.; Michelson, E.L.; Pieper, K.S.; Granger, C.B. Predictors of mortality and morbidity in patients with chronic heart failure. Eur. Heart J. 2006, 27, 65–75. [Google Scholar] [CrossRef]
- Levy, W.C.; Mozaffarian, D.; Linker, D.T.; Sutradhar, S.C.; Anker, S.D.; Cropp, A.B.; Anand, I.; Maggioni, A.; Burton, P.; Sullivan, M.D.; et al. The Seattle Heart Failure Model: Prediction of survival in heart failure. Circulation 2006, 113, 1424–1433. [Google Scholar] [CrossRef]
- Lupón, J.; Januzzi, J.L.; de Antonio, M.; Vila, J.; Peñafiel, J.; Bayes-Genis, A. Validation of the Barcelona Bio-Heart Failure Risk Calculator in a cohort from Boston. Rev. Esp. Cardiol. (Engl. Ed.) 2015, 68, 80–81. [Google Scholar] [CrossRef]
- Lupón, J.; Simpson, J.; McMurray, J.J.V.; de Antonio, M.; Vila, J.; Subirana, I.; Barallat, J.; Moliner, P.; Domingo, M.; Zamora, E.; et al. Barcelona Bio-HF Calculator Version 2.0: Incorporation of angiotensin II receptor blocker neprilysin inhibitor (ARNI) and risk for heart failure hospitalization. Eur. J. Heart Fail. 2018, 20, 938–940. [Google Scholar] [CrossRef]
- Postmus, D.; van Veldhuisen, D.J.; Jaarsma, T.; Luttik, M.L.; Lassus, J.; Mebazaa, A.; Nieminen, M.S.; Harjola, V.; Lewsey, J.; Buskens, E.; et al. The COACH risk engine: A multistate model for predicting survival and hospitalization in patients with heart failure. Eur. J. Heart Fail. 2012, 14, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Tryposkiadis, K.; Giamouzis, G.; Konstantinou, D.; Giannakoulas, G.; Karvounis, H.; Kattan, M.W.; Skoularigis, J.; Parissis, J.; Starling, R.C.; et al. Larissa Heart Failure Risk Score: A proposed simple score. Eur. J. Heart Fail. 2018, 20, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Senni, M.; Parrella, P.; De Maria, R.; Cottini, C.; Böhm, M.; Ponikowski, P.; Filippatos, G.; Tribouilloy, C.; Di Lenarda, A.; Oliva, F.; et al. Predicting heart failure outcome from cardiac and comorbid conditions: The 3C-HF score. Int. J. Cardiol. 2013, 163, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Yoshihisa, A.; Sato, Y.; Kanno, Y.; Watanabe, S.; Abe, S.; Sato, T.; Oikawa, M.; Kobayashi, A.; Yamaki, T.; et al. Clinical Significance of Get With the Guidelines-Heart Failure Risk Score in Patients With Chronic Heart Failure After Hospitalization. J. Am. Heart Assoc. 2018, 7, e008316. [Google Scholar] [CrossRef]
- Agostoni, P.; Corrà, U.; Cattadori, G.; Veglia, F.; La Gioia, R.; Scardovi, A.B.; Emdin, M.; Metra, M.; Sinagra, G.; Limongelli, G.; et al. Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: A multiparametric approach to heart failure prognosis. Int. J. Cardiol. 2013, 167, 2710–2718. [Google Scholar] [CrossRef]
- Collier, T.J.; Pocock, S.J.; McMurray, J.J.; Zannad, F.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pitt, B. The impact of eplerenone at different levels of risk in patients with systolic heart failure and mild symptoms: Insight from a novel risk score for prognosis derived from the EMPHASIS-HF trial. Eur. Heart J. 2013, 34, 2823–2829. [Google Scholar] [CrossRef]
- Álvarez-García, J.; Ferrero-Gregori, A.; Puig, T.; Vázquez, R.; Delgado, J.; Pascual-Figal, D.; Alonso-Pulpón, L.; González-Juanatey, J.R.; Rivera, M.; Worner, F.; et al. A simple validated method for predicting the risk of hospitalization for worsening of heart failure in ambulatory patients: The Redin-SCORE. Eur. J. Heart Fail. 2015, 17, 818–827. [Google Scholar] [CrossRef]
- Segar, M.W.; Patel, K.V.; Berry, J.D.; Grodin, J.L.; Pandey, A. Generalizability and Implications of the H2FPEF Score in a Cohort of Patients With Heart Failure With Preserved Ejection Fraction. Circulation 2019, 139, 1851–1853. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Whellan, D.J.; Wojdyla, D.; Leifer, E.; Clare, R.M.; Ellis, S.J.; Fine, L.J.; Fleg, J.L.; Zannad, F.; Keteyian, S.J.; et al. Factors related to morbidity and mortality in patients with chronic heart failure with systolic dysfunction: The HF-ACTION predictive risk score model. Circ. Heart Fail. 2012, 5, 63–71. [Google Scholar] [CrossRef]
- Aaronson, K.D.; Schwartz, J.S.; Chen, T.M.; Wong, K.L.; Goin, J.E.; Mancini, D.M. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 1997, 95, 2660–2667. [Google Scholar] [CrossRef]
- Carson, P.E.; Anand, I.S.; Win, S.; Rector, T.; Haass, M.; Lopez-Sendon, J.; Miller, A.; Teerlink, J.R.; White, M.; McKelvie, R.S.; et al. The Hospitalization Burden and Post-Hospitalization Mortality Risk in Heart Failure With Preserved Ejection Fraction: Results From the I-PRESERVE Trial (Irbesartan in Heart Failure and Preserved Ejection Fraction). JACC Heart Fail. 2015, 3, 429–441. [Google Scholar] [CrossRef]
- Win, S.; Hussain, I.; Hebl, V.B.; Dunlay, S.M.; Redfield, M.M. Inpatient Mortality Risk Scores and Postdischarge Events in Hospitalized Heart Failure Patients: A Community-Based Study. Circ. Heart Fail. 2017, 10, e003926. [Google Scholar] [CrossRef]
- Kitai, T.; Xanthopoulos, A.; Tang, W.H.W.; Kaji, S.; Furukawa, Y.; Oishi, S.; Akiyama, E.; Suzuki, S.; Yamamoto, M.; Kida, K.; et al. Validation of the Larissa Heart Failure Risk Score for risk stratification in acute heart failure. Int. J. Cardiol. 2020, 307, 119–124. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Bourazana, A.; Matsue, Y.; Fujimoto, Y.; Oishi, S.; Akiyama, E.; Suzuki, S.; Yamamoto, M.; Kida, K.; Okumura, T.; et al. Larissa Heart Failure Risk Score and Mode of Death in Acute Heart Failure: Insights from REALITY-AHF. J. Clin. Med. 2023, 12, 3722. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Skoularigis, J.; Briasoulis, A.; Magouliotis, D.E.; Zajichek, A.; Milinovich, A.; Kattan, M.W.; Triposkiadis, F.; Starling, R.C. Analysis of the Larissa Heart Failure Risk Score: Predictive Value in 9207 Patients Hospitalized for Heart Failure from a Single Center. J. Pers. Med. 2023, 13, 1721. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Giamouzis, G.; Dimos, A.; Skoularigki, E.; Starling, R.C.; Skoularigis, J.; Triposkiadis, F. Red Blood Cell Distribution Width in Heart Failure: Pathophysiology, Prognostic Role, Controversies and Dilemmas. J. Clin. Med. 2022, 11, 1951. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, K.; Yerly, P.; Monney, P.; Garnier, A.; Regamey, J.; Hugli, O.; Martin, D.; Metrich, M.; Antonietti, J.P.; Hullin, R. Red cell distribution width and mortality in acute heart failure patients with preserved and reduced ejection fraction. ESC Heart Fail. 2016, 3, 198–204. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Papamichalis, M.; Zajichek, A.; Milinovich, A.; Kattan, M.W.; Skoularigis, J.; Starling, R.C.; Triposkiadis, F. In-hospital red blood cell distribution width change in patients with heart failure. Eur. J. Heart Fail. 2019, 21, 1659–1661. [Google Scholar] [CrossRef] [PubMed]
- Canepa, M.; Fonseca, C.; Chioncel, O.; Laroche, C.; Crespo-Leiro, M.G.; Coats, A.J.S.; Mebazaa, A.; Piepoli, M.F.; Tavazzi, L.; Maggioni, A.P.; et al. Performance of Prognostic Risk Scores in Chronic Heart Failure Patients Enrolled in the European Society of Cardiology Heart Failure Long-Term Registry. JACC Heart Fail. 2018, 6, 452–462. [Google Scholar] [CrossRef]
- Lee, D.S.; Straus, S.E.; Farkouh, M.E.; Austin, P.C.; Taljaard, M.; Chong, A.; Fahim, C.; Poon, S.; Cram, P.; Smith, S.; et al. Trial of an Intervention to Improve Acute Heart Failure Outcomes. N. Engl. J. Med. 2023, 388, 22–32. [Google Scholar] [CrossRef]
- Rich, J.D.; Burns, J.; Freed, B.H.; Maurer, M.S.; Burkhoff, D.; Shah, S.J. Meta-Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score: Validation of a Simple Tool for the Prediction of Morbidity and Mortality in Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2018, 7, e009594. [Google Scholar] [CrossRef]
- Khan, S.S.; Ning, H.; Shah, S.J.; Yancy, C.W.; Carnethon, M.; Berry, J.D.; Mentz, R.J.; O’Brien, E.; Correa, A.; Suthahar, N.; et al. 10-Year Risk Equations for Incident Heart Failure in the General Population. J. Am. Coll. Cardiol. 2019, 73, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Bastos, J.M.; Colaço, B.; Baptista, R.; Gavina, C.; Vitorino, R. Innovations in heart failure management: The role of cutting-edge biomarkers and multi-omics integration. J. Mol. Cell. Cardiol. Plus 2025, 11, 100290. [Google Scholar] [CrossRef]
- Sethi, Y.; Patel, N.; Kaka, N.; Kaiwan, O.; Kar, J.; Moinuddin, A.; Goel, A.; Chopra, H.; Cavalu, S. Precision Medicine and the future of Cardiovascular Diseases: A Clinically Oriented Comprehensive Review. J. Clin. Med. 2023, 12, 1799. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.Y.; Cui, N.Q.; Jia, T.T.; Song, J.P. Prognostic models for patients suffering a heart failure with a preserved ejection fraction: A systematic review. ESC Heart Fail. 2024, 11, 1341–1351. [Google Scholar] [CrossRef]
- Kao, D.P. Electronic health records and heart failure. Heart Fail. Clin. 2022, 18, 201–211. [Google Scholar] [CrossRef] [PubMed]
- McDowell, K.; Kondo, T.; Talebi, A.; Teh, K.; Bachus, E.; de Boer, R.A.; Campbell, R.T.; Claggett, B.; Desai, A.S.; Docherty, K.F.; et al. Prognostic Models for Mortality and Morbidity in Heart Failure With Preserved Ejection Fraction. JAMA Cardiol. 2024, 9, 457–465. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.; Jung, H.; Kim, H. Essential properties and explanation effectiveness of explainable artificial intelligence in healthcare: A systematic review. Heliyon 2023, 9, e16110. [Google Scholar] [CrossRef]
- Xu, C.; Li, H.; Yang, J.; Peng, Y.; Cai, H.; Cai, H.; Zhou, J.; Gu, W.; Chen, L. Interpretable prediction of 3-year all-cause mortality in patients with chronic heart failure based on machine learning. BMC Med. Inform. Decis. Mak. 2023, 23, 267. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z. Multi-omics strategies for personalized and predictive medicine: Past, current, and future translational opportunities. Emerg. Top. Life Sci. 2022, 6, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable Devices for Remote Monitoring of Heart Rate and Heart Rate Variability—What We Know and What Is Coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef] [PubMed]
- Odeh, V.A.; Chen, Y.; Wang, W.; Ding, X. Recent Advances in the Wearable Devices for Monitoring and Management of Heart Failure. Rev. Cardiovasc. Med. 2024, 25, 386. [Google Scholar] [CrossRef]
Prognostic Tool—Study | Validity Control Population | HF Criteria | Prediction | Indices | AUC for Validity Control Population |
---|---|---|---|---|---|
Acute Heart Failure | |||||
Acute Decompensated Heart Failure National Registry (ADHERE) [22] | 32,229 | NA | In-hospital mortality |
| 0.75 |
Emergency Heart Failure Mortality Risk Grade (EHMRG) [23] | 5158 | From low-risk to high-risk patients | 7-day mortality (EHMRG7) 30-day mortality (EHMRG30-ST) |
| 0.803 for 7-day mortality |
Improving Heart Failure Risk Stratification in the Emergency Department (STRATIFY) [24] | 1033 | Low risk | 30-day adverse events (acute coronary syndrome, coronary revascularization, emergent dialysis, intubation, mechanical cardiac support, CPR, and death) |
| 0.68 |
Get With The Guidelines–Heart Failure (GWTG-HF) [25] | 11,933 | HFrEF, HFmrEF, and HFpEF | In-hospital mortality |
| 0.75 |
Larissa Heart Failure Risk Score (LHFRS) [26] | 141 | Acute HF, HFrEF, HFmrEF, and HFpEF | Mortality and/or rehospitalization for HF at 365 days |
| 0.80 (1-year all-cause mortality) 0.82 (1-year HF rehospitalization) |
Enhanced Feedback for Effective Cardiac Treatment (EFFECT) [27] | 1407 | NA | 30-day mortality 1-year mortality |
| 0.79 (30-day mortality) 0.76 (1-year mortality) |
Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Heart Failure (OPTIME-HF) [28] | 949 | HFrEF | 60-day mortality Death or rehospitalization at 60 days |
| 0.76 |
Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) [29] | 181,830 | NA | In-hospital mortality |
| 0.746 |
Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) [30] | 949 | NA | 60–90 days post-discharge mortality |
| 0.72 |
Placebo-Controlled Randomized Study of the Selective A1 Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized With Acute Decompensated Heart Failure and Volume Overload (PROTECT) [31] | 1453 | NA | 7-day mortality |
| 0.67 |
Acute Heart Failure Index (AHFI) [32] | 8384 | NA | In-hospital mortality and complications |
| 0.59 |
Acute Physiology and Chronic Health Evaluation—Heart Failure (APACHE-HF) [33] | 824 | HFrEF and HFmrEF | 90-day mortality |
| 0.78 |
European Collaboration on Acute Decompensated Heart Failure (ELAN) [34] | 325 | NA | 180-day mortality |
| 0.77 |
Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) [35] | 471 | NA | 6-month mortality |
| 0.76 0.65 (without BNP and diuretic dose in the model) |
Acute Decompensated Heart Failure/N-terminal proBNP Risk Score (ADHF/NT-proBNP risk score) [36] | 371 | Acute decompensated HF, HFrEF | 1-year mortality |
| 0.77 |
Etude Française de l’Insuffisance Cardiaque Aiguë (EFICA) [37] | 599 (initial sample) | NA | 1-month mortality 12-month mortality |
| Not validated |
Italian Network on Heart Failure (IN-HF) [38] | 1855 (initial sample) | NA | 1-year all-cause mortality |
| Not validated |
Observatoire national de l’insuffisance cardiaque aiguë (OFICA) [39] | 1658 (initial sample) | NA | In-hospital mortality |
| Not validated |
Multinational Observational Cohort on Acute Heart Failure (MOCA) [40] | 5306 (initial sample) | NA | 1-month mortality 12-month mortality |
| Not validated |
Hemoglobin, Oncology discharge, Sodium level, Procedure, Index admission type, Type of previous admissions, Admissions in the past year, and Length of stay (HOSPITAL) [41] | 692 | HFpEF | 30-day all-cause readmission |
| 0.595 |
Length of stay, Acuity of admission, Comorbidity, Emergency department use + additional variables in LACE+ (LACE index and LACE+) [41] | 692 | HFpEF | 30-day all-cause readmission |
| 0.551 (LACE index) 0.568 (LACE+ index), |
NT-pro-BNP-based score [42] | 269 (initial sample) | HFrEF and HFpEF | In-hospital mortality |
| 0.96 |
Modified OPTIMIZE-HF [43] | 15,219 (initial sample) | HFpEF | In-hospital mortality |
| 0.741 |
Singapore Heart Failure Risk Score (SHFRS) [44] | 729/804 (cohort 1/ cohort 2) | HFrEF, HFmrEF, and HFpEF | 1-year all-cause mortality 2-year all-cause mortality |
| 0.731 (cohort 1) 0.726 (cohort 2) |
Acute Heart Failure Score (ACUTE HF) [45] | 771 (initial sample) | Acute HF, HFrEF | 30-day all-cause mortality 6-month all-cause mortality 5-year all-cause mortality |
| 0.78 (30-day all-cause mortality) 0.79 (6-month all-cause mortality) 0.76 (5-year all-cause mortality) |
Soluble ST2-Based Score for Reverse Remodeling Prediction (ST2-R2) [46] | 569 | HFrEF | 4-year mortality |
| Hazard ratio = 0.87 |
Chronic Heart Failure | |||||
Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) [47] | 51,043 | Chronic HF, HFrEF, HFmrEF, and HFpEF | 3-year mortality |
| 0.741 |
Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico–Heart Failure (GISSI-HF) [48] | 6975 | HFrEF and HFpEF | 4-year mortality |
| 0.75 |
Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) [49] | 7599 | HFrEF and HFpEF | Composite of cardiovascular death or HF hospitalization at 2 years All-cause mortality |
| 0.75 (cardiovascular death and/or hospitalization for HF at 2 years) 0.74 (mortality) |
Seattle Heart Failure Model (SHFM) [50] | 9942 | HFrEF | 1-year survival 2-year survival 3-year survival |
| 0.729 |
Barcelona Bio-Heart Failure Risk Calculator (BCN Bio-HF) [51,52] | 151 | HFrEF | All-cause mortality at 2 years HF hospitalization at 2 years |
| 0.83 (all-cause mortality) 0.79 (HF hospitalization) |
Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure Risk Engine (COACH) [53] | 620 | HFrEF and HFpEF | 18-month survival |
| 0.702 |
Larissa Heart Failure Risk Score (LHFRS) [54] | 454 | HFrEF and HFpEF | Mortality and/or rehospitalization for HF at 365 days |
| 0.78 |
Cardiac and Comorbid Conditions in Heart Failure (3C-HF) [55] | 4258 | HFrEF and HFpEF | 1-year all-cause mortality |
| 0.87 |
Get With The Guidelines–Heart Failure (GWTG-HF) [56] | 1452 (initial sample) | Chronic HF, HFrEF, and HFpEF | 965.8-day all-cause mortality and cardiac events |
| Hazard ratio = 1.537 (965.8-day all-cause mortality) Hazard ratio = 1.584 (cardiac events) |
The Metabolic Exercise test data combined with Cardiac and Kidney Indexes (MECKI) [57] | 2716 | HFrEF | 1-year cardiovascular death 2-year cardiovascular death 3-year cardiovascular death 4-year cardiovascular death |
| 0.804 (1-year) 0.789 (2-year) 0.762 (3-year) 0.760 (4-year) |
Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF) [58] | 342 | Chronic HF, HFrEF | 2.1-year cardiovascular mortality or admission for HF |
| 0.685 |
Spanish Heart Failure Network (REDINSCOR) Score [59] | 992 | HFrEF and HFpEF | 1-month readmission 1-year readmission |
| 0.72 (1-month) 0.66 (1-year) |
Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elderly, Filling Pressure (H2FPEF) [60] | 360 | HFpEF | 3.1-year cardiovascular death, aborted cardiac arrest, or HF admission |
| Hazard ratio=1.18 |
Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) [61] | 2331 (initial sample) | Chronic HF, HFrEF | 2.5-year all-cause mortality or all-cause admission |
| 0.63 |
Heart Failure Survival Score (HFSS) [62] | 199 | Chronic congestive HF, HFrEF | 1-year death without transplant |
| 0.74 |
Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) [63] | 4128 (initial sample) | HFpEF | Cardiovascular death and/or hospitalization for HF at 3 years All-cause mortality at 3 years Death from HF and/or hospitalization for HF at 3 years |
| 0.711 (Cardiovascular death and/or hospitalization for HF at 3 years) 0.736 (All-cause mortality at 3 years) 0.765 (Death from HF and/or hospitalization for HF at 3 years) |
Prognostic Model | Strengths | Limitations |
---|---|---|
ADHERE |
|
|
EHMRG |
|
|
STRATIFY |
|
|
GWTG-HF |
|
|
LHFRS |
|
|
MAGGIC |
|
|
GISSI-HF |
|
|
CHARM |
|
|
SHFM |
|
|
BCN Bio-HF |
|
|
COACH |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoularigkis, S.; Kourek, C.; Xanthopoulos, A.; Briasoulis, A.; Androutsopoulou, V.; Magouliotis, D.; Athanasiou, T.; Skoularigis, J. Prognostic Models in Heart Failure: Hope or Hype? J. Pers. Med. 2025, 15, 345. https://doi.org/10.3390/jpm15080345
Skoularigkis S, Kourek C, Xanthopoulos A, Briasoulis A, Androutsopoulou V, Magouliotis D, Athanasiou T, Skoularigis J. Prognostic Models in Heart Failure: Hope or Hype? Journal of Personalized Medicine. 2025; 15(8):345. https://doi.org/10.3390/jpm15080345
Chicago/Turabian StyleSkoularigkis, Spyridon, Christos Kourek, Andrew Xanthopoulos, Alexandros Briasoulis, Vasiliki Androutsopoulou, Dimitrios Magouliotis, Thanos Athanasiou, and John Skoularigis. 2025. "Prognostic Models in Heart Failure: Hope or Hype?" Journal of Personalized Medicine 15, no. 8: 345. https://doi.org/10.3390/jpm15080345
APA StyleSkoularigkis, S., Kourek, C., Xanthopoulos, A., Briasoulis, A., Androutsopoulou, V., Magouliotis, D., Athanasiou, T., & Skoularigis, J. (2025). Prognostic Models in Heart Failure: Hope or Hype? Journal of Personalized Medicine, 15(8), 345. https://doi.org/10.3390/jpm15080345