Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (29,882)

Search Parameters:
Keywords = NO metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 7563 KiB  
Article
Design and Evaluation of a Inonotus obliquus–AgNP–Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential
by Ana-Maria Stanoiu, Cornelia Bejenaru, Adina-Elena Segneanu, Gabriela Vlase, Ionela Amalia Bradu, Titus Vlase, George Dan Mogoşanu, Maria Viorica Ciocîlteu, Andrei Biţă, Roxana Kostici, Dumitru-Daniel Herea and Ludovic Everard Bejenaru
Polymers 2025, 17(15), 2163; https://doi.org/10.3390/polym17152163 (registering DOI) - 7 Aug 2025
Abstract
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and [...] Read more.
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and bioavailability of its bioactive constituents. Two distinct delivery systems were designed to enhance the functionality of I. obliquus extracts: (i) microencapsulation in maltodextrin (MIO) and (ii) a sequential approach involving preparation of silver nanoparticle-loaded I. obliquus (IO–AgNPs), followed by microencapsulation to yield the hybrid MIO–AgNP system. Comprehensive metabolite profiling using GC–MS and ESI–QTOF–MS revealed 142 bioactive constituents, including terpenoids, flavonoids, phenolic acids, amino acids, coumarins, styrylpyrones, fatty acids, and phytosterols. Structural integrity and successful encapsulation were confirmed by XRD, FTIR, and SEM analyses. Both IO–AgNPs and MIO–AgNPs demonstrated potent antioxidant activity, significant acetylcholinesterase inhibition, and robust antimicrobial effects against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli. Cytotoxicity assays revealed pronounced activity against MCF-7, HCT116, and HeLa cell lines, with MIO–AgNPs exhibiting superior efficacy. The synergistic integration of maltodextrin and AgNPs enhanced compound stability and bioactivity. As the first report on Romanian I. obliquus, this study highlights its therapeutic potential and establishes polymer-based nanoencapsulation as an effective strategy for optimizing its applications in combating microbial resistance and cancer. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 567 KiB  
Review
Mephedrone and Its Metabolites: A Narrative Review
by Ordak Michal, Tkacz Daria, Juzwiuk Izabela, Wiktoria Gorecka, Nasierowski Tadeusz, Muszynska Elzbieta and Bujalska-Zadrozny Magdanena
Int. J. Mol. Sci. 2025, 26(15), 7656; https://doi.org/10.3390/ijms26157656 (registering DOI) - 7 Aug 2025
Abstract
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the [...] Read more.
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the structure, pharmacokinetic properties, and metabolic pathways of mephedrone, highlighting its phase I and phase II metabolites as potential biomarkers for detection and forensic applications. A comprehensive literature search was performed without date restrictions. The search employed key terms such as “mephedrone metabolites”, “pharmacokinetics of mephedrone”, “phase I metabolites of mephedrone”, and “phase II metabolites of mephedrone”. Additionally, the reference lists of selected studies were screened to ensure a thorough review of the literature. Mephedrone is a chiral compound existing in two enantiomeric forms, exhibiting different affinities for monoamine transporters and distinct pharmacological profiles. In vivo animal studies indicate rapid absorption, significant tissue distribution, and the formation of multiple phase I metabolites (e.g., normephedrone, dihydromephedrone, 4-carboxymephedrone) that influence its neurochemical effects. Phase II metabolism involves conjugation reactions leading to metabolites such as N-succinyl-normephedrone and N-glutaryl-normephedrone, further complicating its metabolic profile. These findings underscore the importance of elucidating mephedrone’s metabolic pathways to improve detection methods, enhance our understanding of its toxicological risks, and inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

13 pages, 1663 KiB  
Article
Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage
by Eleonora Pagnotta, Laura Righetti, Gabriele Micheletti, Carla Boga, Annamaria Massafra, Luisa Ugolini, Lorena Malaguti, Roberto Matteo, Federica Nicoletti, Roberto Colombo, Agostino Fricano and Laura Bassolino
Appl. Sci. 2025, 15(15), 8757; https://doi.org/10.3390/app15158757 (registering DOI) - 7 Aug 2025
Abstract
Glucosinolates are secondary metabolites of the Brassicales, playing a role in plant protection and as health-promoting compounds. Here, Na2SO4 was used to modulate the aliphatic glucosinolate content in different organs of Eruca sativa Mill. In flowers, which accumulate the highest [...] Read more.
Glucosinolates are secondary metabolites of the Brassicales, playing a role in plant protection and as health-promoting compounds. Here, Na2SO4 was used to modulate the aliphatic glucosinolate content in different organs of Eruca sativa Mill. In flowers, which accumulate the highest amount of glucosinolates, Na2SO4 increased the concentration of glucoraphanin, in roots of glucoerucin and in apical leaves it doubled the amount of dimeric 4-mercaptobutyl glucosinolate. The biosynthetic gene Branched-Chain Aminotransferase 4 was also induced in roots at the highest salt concentration, while in leaves all tested genes biosynthetic genes were downregulated or unaffected. Cytochromes P450 83A1 monooxygenase was downregulated at the highest salt concentration in all organs. Overall, E. sativa is a reliable source of glucosinolates, which can be modulated with Na2SO4. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

21 pages, 742 KiB  
Review
Gut Microbiota and Its Metabolites Modulate Pregnancy Outcomes by Regulating Placental Autophagy and Ferroptosis
by Xingyu Du, Mabrouk Elsabagh, Feiyang He, Huisi Wu, Bei Zhang, Kewei Fan, Mengzhi Wang and Hao Zhang
Antioxidants 2025, 14(8), 970; https://doi.org/10.3390/antiox14080970 (registering DOI) - 7 Aug 2025
Abstract
During pregnancy, the regulation of autophagy and ferroptosis dynamically supports placental development and fetal health. Both processes—autophagy, clearing damaged organelles to maintain placental function, and ferroptosis, driven by iron-dependent lipid peroxidation—are involved in pathological conditions such as preeclampsia. Emerging evidence suggests that gut [...] Read more.
During pregnancy, the regulation of autophagy and ferroptosis dynamically supports placental development and fetal health. Both processes—autophagy, clearing damaged organelles to maintain placental function, and ferroptosis, driven by iron-dependent lipid peroxidation—are involved in pathological conditions such as preeclampsia. Emerging evidence suggests that gut microbiota-derived metabolites act as key regulators of this balance, yet their specific roles across different trimesters remain unclear. This review compiles evidence on how gut microbiota metabolites, like short-chain fatty acids and trimethylamine N-oxide, serve as trimester-specific modulators of the autophagy–ferroptosis balance during pregnancy. We explain how these metabolites influence pregnancy outcomes by regulating placental autophagy and ferroptosis. Furthermore, we explore potential diagnostic and therapeutic approaches for pregnancy complications, focusing on metabolite-based biomarkers and interventions that target microbial–metabolic interactions. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
14 pages, 1038 KiB  
Article
Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells
by Yu Han, Bo Yu, Wenao Weng, Liangyu Shi and Jing Zhang
Animals 2025, 15(15), 2324; https://doi.org/10.3390/ani15152324 (registering DOI) - 7 Aug 2025
Abstract
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability [...] Read more.
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability in a concentration- and time-dependent manner. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) revealed distinct metabolic profiles between control and DON-treated groups. Metabolomic analysis identified 127 differential metabolites (VIP > 1, p < 0.05), primarily in purine metabolism, glutathione metabolism, and arginine–proline metabolism. Integration with transcriptomic data confirmed that these pathways play key roles in DON-induced immunotoxicity. Specifically, changes in purine metabolism suggested disrupted nucleotide synthesis and energy balance, while glutathione depletion indicated weakened antioxidant defense. These findings provided a systems biology perspective on DON’s metabolic reprogramming of immune cells and identified potential therapeutic targets to reduce mycotoxin-related immunosuppression in swine. Full article
(This article belongs to the Section Animal Physiology)
16 pages, 611 KiB  
Article
Effects of Increasing Dietary Inclusion of White Lupin on Growth Performance, Meat Quality, and Fatty Acid Profile on Growing-Fattening Pigs
by Georgeta Ciurescu, Mihaela Dumitru, Nicoleta Aurelia Lefter and Dan-Traian Râmbu
Agriculture 2025, 15(15), 1709; https://doi.org/10.3390/agriculture15151709 (registering DOI) - 7 Aug 2025
Abstract
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], [...] Read more.
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], meat quality, and fatty acid profile (FA). A total of 54 male crossbred pigs [(Topigs Large White × Norsvin Landrace) × Duroc], aged 12 weeks, with an initial average BW of 30.30 ± 0.77 kg, were divided into three dietary groups of 18 piglets each. The control group (CON) was fed a standardized SBM-based complete feed. In the experimental groups (WL1 and WL2) the SBM was replaced with increasing levels of WL seeds [WL1-5.0% and WL2-10.0% (grower period, 30–60 kg BW), and WL1-7.0% and WL2-14.0% (finisher period, 61–110 kg BW)]. All diets were formulated to be isocaloric and isonitrogenous with similar content of total lysine and sulphur amino acids, calcium, and available phosphorus. At the end of 83 days’ fattening trial, the animals were slaughtered. Longissimus dorsi muscle (LD) was sampled for analyses of the physicochemical traits. The results show that increasing the dietary raw WL concentration decreased final BW (p = 0.039), ADG (p < 0.0001), and ADFI (p = 0.004) throughout the experimental period, especially in the second phase of feeding. Dietary treatments did not affect the pigs’ blood biochemical constituents. Concerning LD muscle characteristics, the redness color (a*) and collagen content was higher (p < 0.0001) in the WL1/WL2 vs. CON group. Beneficial decrease in the values of some textural attributes (hardness, gumminess, chewiness, and resilience) of LD in the WL1/WL2 vs. CON group was registered. The use of WL had a significant effect on the content of FAs, especially for eicosapentaenoic (p = 0.014) and n-3 PUFA (p = 0.045), which were higher than those fed the CON diet. In conclusion, WL could be used as a replacement of SBM in growing–finishing pigs’ diets, with significant improvements in the meat fatty acid profile and technological properties. Full article
16 pages, 601 KiB  
Article
Pelleted Sulla Forage (Hedysarum coronarium L.) as a Resource for Sheep Feeding Systems: In Vitro Nutritional Value and Sustainability Perspectives
by Barbara Piccirillo, Marialetizia Ponte, Marianna Pipi, Antonino Di Grigoli, Adriana Bonanno, Monica I. Cutrignelli, Alessandro Vastolo and Serena Calabrò
Animals 2025, 15(15), 2322; https://doi.org/10.3390/ani15152322 (registering DOI) - 7 Aug 2025
Abstract
Enhancing forage protein is key to sustainable ruminant nutrition. The nutritive value of Hedysarum coronarium L. was investigated by studying different preservation systems (fresh vs. dehydrated pellet vs. hay) (Exp. 1) and morphological fractions (flowers vs. leaves vs. stems) (Exp. 2). For the [...] Read more.
Enhancing forage protein is key to sustainable ruminant nutrition. The nutritive value of Hedysarum coronarium L. was investigated by studying different preservation systems (fresh vs. dehydrated pellet vs. hay) (Exp. 1) and morphological fractions (flowers vs. leaves vs. stems) (Exp. 2). For the fresh and pelleted systems, two cuts were used. Proximately, total polyphenols and condensed tannins were detected. In vitro fermentation characteristics were studied by incubating samples with buffered sheep rumen fluid, estimating methane production by volatile fatty acids. Fresh and pelleted sulla were more nutritionally advantageous than hay, in terms of metabolizable energy and protein-to-fiber ratio. Pelleting at the beginning of flowering proved to be a suitable forage for sheep feeding due to protein (15.1% DM), metabolizable energy (9.64 MJ/kg DM), structural carbohydrates (39.5% DM), and total polyphenols (13.5 GAE g/kg DM) content. This cut showed an in vitro fermentation rate (9.86 mL/h), organic matter degradability (55.7%), and volatile fatty acids (87.3 mmoL/g) that were higher (p < 0.05) than hay. Flowers and leaves showed higher (p < 0.05) levels of secondary metabolites than stems as well as lower methane production. These results suggest the potential influence of these compounds in reducing rumen emissions. Dehydration and pelleting resulted in an effective preservation method for maintaining nutrients in sulla forage. Full article
(This article belongs to the Section Animal Nutrition)
18 pages, 2326 KiB  
Protocol
1H Nuclear Magnetic Resonance (NMR) Metabolomics in Rodent Plasma: A Reproducible Framework for Preclinical Biomarker Discovery
by Mohd Naeem Mohd Nawi, Ranina Radzi, Azizan Ali, Siti Zubaidah Che Lem, Azlina Zulkapli, Ezarul Faradianna Lokman, Mansor Fazliana, Sreelakshmi Sankara Narayanan, Karuthan Chinna, Mohd Fairulnizal Md Noh, Zulfitri Azuan Mat Daud and Tilakavati Karupaiah
Methods Protoc. 2025, 8(4), 92; https://doi.org/10.3390/mps8040092 (registering DOI) - 7 Aug 2025
Abstract
This protocol paper outlines a robust and reproducible framework for a 1H nuclear magnetic resonance (NMR) metabolomics analysis of rodent plasma, designed to facilitate preclinical biomarker discovery. The protocol details optimised steps for plasma collection in a preclinical rodent model, sample preparation, [...] Read more.
This protocol paper outlines a robust and reproducible framework for a 1H nuclear magnetic resonance (NMR) metabolomics analysis of rodent plasma, designed to facilitate preclinical biomarker discovery. The protocol details optimised steps for plasma collection in a preclinical rodent model, sample preparation, and NMR data acquisition using presaturation Carr–Purcell–Meiboom–Gill (PRESAT-CPMG) pulse sequences, ensuring high-quality spectral data and effective suppression of macromolecule signals. Comprehensive spectral processing and metabolite assignment are described, with guidance on multivariate and univariate statistical analyses to identify metabolic changes and potential biomarkers. The framework emphasises methodological rigour and reproducibility, enabling accurate quantification and interpretation of metabolites relevant to disease mechanisms or therapeutic interventions. By providing a standardised approach, this protocol supports longitudinal and translational studies, bridging findings from rodent models to clinical applications and advancing the reliability of metabolomics-based biomarker discovery in preclinical research. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Graphical abstract

19 pages, 1159 KiB  
Article
Determining the Effect of Different Concentrations of Spent Coffee Grounds on the Metabolomic Profile of Swiss Chard
by Thabiso Motseo and Lufuno Ethel Nemadodzi
Int. J. Plant Biol. 2025, 16(3), 88; https://doi.org/10.3390/ijpb16030088 (registering DOI) - 7 Aug 2025
Abstract
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and [...] Read more.
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and has been proven to be detrimental to the soil in the long run. Hence, there is a growing need to use organic waste material, such as spent coffee grounds (SCGs), to grow crops. Spent coffee grounds are made of depleted coffee beans that contain important soluble compounds. This study aimed to determine the influence of different levels (0.32 g, 0.63 g, 0.92 g, and 1.20 g) of spent coffee grounds on the metabolomic profile of Swiss chard. The 1H-nuclear magnetic resonance (NMR) results showed that Swiss chard grown with different levels of SCGs contains a total of 10 metabolites, which included growth-promoting metabolites (trehalose; betaine), defense mechanism metabolites (alanine; cartinine), energy-reserve metabolites (sucrose; 1,6 Anhydro-β-D-glucose), root metabolites (thymine), stress-related metabolites (2-deoxyadenosine), caffeine metabo-lites (1,3 Dimethylurate), and body-odor metabolites (trimethylamine). Interestingly, caprate, with the abovementioned metabolites, was detected in Swiss chard grown without the application of SCGs. The findings of the current study suggest that SCGs are an ideal organic material for growing Swiss chard for its healthy metabolites. Full article
15 pages, 1282 KiB  
Article
Biosolutions from Native Trichoderma Strains Against Grapevine Trunk Diseases
by Laura Zanfaño, Guzmán Carro-Huerga, Álvaro Rodríguez-González, Daniela Ramírez-Lozano, Sara Mayo-Prieto, Santiago Gutiérrez and Pedro A. Casquero
Agronomy 2025, 15(8), 1901; https://doi.org/10.3390/agronomy15081901 (registering DOI) - 7 Aug 2025
Abstract
Fungi of the genus Trichoderma show strong potential as biological control agents (BCAs) against grapevine trunk diseases (GTDs) through mechanisms like antibiotic metabolite production and lytic enzymes. This study evaluated the biocontrol activity of four native Trichoderma strains—T. gamsii T065 and T071, [...] Read more.
Fungi of the genus Trichoderma show strong potential as biological control agents (BCAs) against grapevine trunk diseases (GTDs) through mechanisms like antibiotic metabolite production and lytic enzymes. This study evaluated the biocontrol activity of four native Trichoderma strains—T. gamsii T065 and T071, T. carraovejensis T154, and T. harzianum T214—against Phaeoacremonium minimum, Phaeomoniella chlamydospora, and Diplodia seriata. Culture filtrates obtained at 8, 16, and 24 days post-incubation were tested using antibiogram and mycelial inhibition assays. Strains T071, T154, and T214 effectively inhibited D. seriata, while T154 and T214 also suppressed P. chlamydospora. Nevertheless, the limited effectiveness of all filtrates against P. minimum suggests that antibiosis is not the predominant mechanism involved in its control. These findings highlight the potential of specific Trichoderma strains and incubation times to directly control GTD pathogens and support the development of scalable biocontrol solutions. Full article
(This article belongs to the Special Issue Molecular Advances in Crop Protection and Agrobiotechnology)
Show Figures

Figure 1

17 pages, 8538 KiB  
Article
Thermodynamic and Kinetic Aspects of Calcium Oxalate Crystallization and Renal Lithiasis
by Jaume Dietrich, Antònia Costa-Bauza and Félix Grases
Biomolecules 2025, 15(8), 1141; https://doi.org/10.3390/biom15081141 - 7 Aug 2025
Abstract
Thermodynamic factors (supersaturation of substances that form crystals) and kinetic factors (heterogeneous nucleants and crystallization inhibitors) affect the formation of crystals and stones in the urinary tract. We studied the effect of five different polyhydroxycarboxylic acids and phytate on the formation of calcium [...] Read more.
Thermodynamic factors (supersaturation of substances that form crystals) and kinetic factors (heterogeneous nucleants and crystallization inhibitors) affect the formation of crystals and stones in the urinary tract. We studied the effect of five different polyhydroxycarboxylic acids and phytate on the formation of calcium oxalate crystals in artificial urine. All tested molecules are known to inhibit the crystallization of this calcium salt, and to also form complexes with calcium ions. Considering the typical concentration of polyhydroxycarboxylic acids in urine (similar to that of the calcium ion) and their ability to inhibit crystallization, their most important effect is the capacity to complex calcium—a thermodynamic effect. For phytate and its metabolites, which are present in concentrations much lower than that of the calcium ion, the most important effect is as a crystallization inhibitor—a kinetic effect. Among the five polyhydroxycarboxylic acids examined here, hydroxycitrate had the strongest complexing capacity, and the addition of phytate to hydroxycitrate led to greater inhibition of crystallization. Therefore, because oral consumption of hydroxycitrate does not increase the urinary pH, it is likely that the combined consumption of hydroxycitrate and phytate can provide certain benefits for patients with increased risk of developing calcium oxalate stones. We also discussed the effects of these different molecules on the different calcium oxalate stones, including papillary calcium oxalate monohydrate stones, cavity calcium oxalate monohydrate stones, calcium oxalate dihydrate stones, and mixed calcium oxalate dihydrate/hydroxyapatite stones. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 - 7 Aug 2025
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

18 pages, 5124 KiB  
Article
Effects of Different Drying Methods on the Quality of Forest Ginseng Revealed Based on Metabolomics and Enzyme Activity
by Junjia Xing, Xue Li, Wenyu Dang, Limin Yang, Lianxue Zhang, Wei Li, Yan Zhao, Jiahong Han and Enbo Cai
Foods 2025, 14(15), 2753; https://doi.org/10.3390/foods14152753 - 7 Aug 2025
Abstract
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) [...] Read more.
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) method on the quality of FG using metabolomics and enzyme activity. The results revealed that the enzyme activities of dried FG were reduced considerably. PCAD preserved higher enzyme activity than HAD. Metabolomics data demonstrate that HAD promotes the formation of primary metabolites (amino acids, lipids, nucleotides, etc.), whereas PCAD promotes the formation of secondary metabolites (terpenoids, phenolic acids, etc.). A change-transformation network was built by combining the metabolites listed above and their biosynthetic pathways, and it was discovered that these biosynthetic pathways were primarily associated with the mevalonate (MVA) pathway, lipid metabolism, phenylpropane biosynthesis, and nucleotide metabolism. It is also believed that these findings are related to the chemical stimulation induced by thermal degradation and the ongoing catalysis of enzyme responses to drought stress. The facts presented above will give a scientific basis for the selection of FG drying processes, as well as helpful references for increasing the nutritional quality of processed FG. Full article
Show Figures

Figure 1

24 pages, 639 KiB  
Review
A Systemic Perspective of the Link Between Microbiota and Cardiac Health: A Literature Review
by Ionica Grigore, Oana Roxana Ciobotaru, Delia Hînganu, Gabriela Gurau, Dana Tutunaru and Marius Valeriu Hînganu
Life 2025, 15(8), 1251; https://doi.org/10.3390/life15081251 - 7 Aug 2025
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention [...] Read more.
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention for its potential role in influencing inflammation, cardiometabolic risk, and long-term outcomes. Despite their apparent independence, these domains are increasingly recognized as interconnected and influential in cardiovascular pathophysiology. Methods: This narrative review was conducted by analyzing studies published between 2015 and 2024 from databases including PubMed, Scopus, and Web of Science. Keywords such as “lipid profile,” “metabolomics,” “gut microbiota,” “oral health,” and “cardiovascular disease” were used. Original research, meta-analyses, and reviews relevant to hospitalized cardiac patients were included. A critical integrative approach was applied to highlight cross-domain connections. Results and Discussion: Evidence reveals significant interrelations between altered lipid profiles, gut dysbiosis (including increased TMAO levels), metabolic imbalances, and oral inflammation. Each component contributes to a systemic pro-inflammatory state that worsens cardiovascular prognosis, particularly in long-term hospitalized patients. Despite isolated research in each domain, there is a paucity of studies integrating all four. The need for interdisciplinary diagnostic models and preventive strategies is emphasized, especially in populations with frailty or immobilization. Conclusions: Monitoring lipid metabolism, metabolomic shifts, gut microbial balance, and oral status should be considered part of comprehensive cardiovascular care. Gut microbiota exerts a dual role in cardiac health: when balanced, it supports anti-inflammatory and metabolic homeostasis; when dysbiotic, it contributes to systemic inflammation and worsened cardiac outcomes. Future research should aim to develop integrative screening tools and personalized interventions that address the multifactorial burden of disease. A systemic approach may improve both short- and long-term outcomes in this complex and vulnerable patient population. Full article
(This article belongs to the Special Issue The Emerging Role of Microbiota in Health and Diseases)
Show Figures

Figure 1

Back to TopTop