1H Nuclear Magnetic Resonance (NMR) Metabolomics in Rodent Plasma: A Reproducible Framework for Preclinical Biomarker Discovery
Abstract
1. Introduction
2. Experimental Design
2.1. Sample Size Calculation
- N: total number of subjects;
- k: number of experimental groups (k = 6);
- n: number of subjects per group.
- DF Range: A DF range of 10 (minimum) to 20 (maximum) was selected to ensure statistical robustness while balancing practical constraints.
- Per-Group Calculation:
- Minimum n (DF = 10):
- Maximum n (DF = 20):
- 3.
- Total Sample Size:
- Minimum N (n = 3):
- Maximum N (n = 4):
2.2. Materials
- Deuterium oxide (D2O) (Merck, Frankfurter Strasse 250, Darmstadt, Germany, Cat. no.: 113366).
- Potassium dihydrogen phosphate (KH2PO4); ≥99.0% purity, (Merck, Frankfurter Strasse 250, Darmstadt, Germany, Cat. no.: 104873).
- Sodium 3-(trimethylsilyl) propionic-2,2,3,3-d4 (TSP) (Sigma-Aldrich, St. Louis, MO, USA, Cat. no.: 269913).
- Imidazole (Sigma-Aldrich, St. Louis, MO, USA, Cat. no.: I2399).
- Sodium deuteroxide (NaOD) (Merck, Frankfurter Strasse 250, Darmstadt, Germany, Cat. no.: 372072).
- Several 3 kDa centrifugal filters, 0.5 mL (Merck, Frankfurter Strasse 250, Darmstadt, Germany, Cat. no.: UFC500396).
- Safe-Lock micro test tubes, 1.5 mL (Eppendorf, Hamburg, Germany, Cat. no.: 0030120086).
- A long-form NMR pipette, tip length 9 inch (Sigma-Aldrich, St. Louis, MO, USA, Cat. no.: Z255688).
- Several 5 mm 600 MHz NMR tubes, length 7 inch (Norell, Morganton, NC, USA, Cat. no.: 509-UP-7).
- A 250 mL solvent bottle.
- An NMR tube rack for 5 mm tube (Sigma-Aldrich, St. Louis, MO, USA, Cat. no.: Z118257).
- Deionised water (for filter pre-washing).
- Ice.
- Dry ice.
- Liquid nitrogen.
2.3. Equipment
- A mechanical pipette (Eppendorf, Hamburg, Germany).
- A long-form NMR pipette, tip length 9 inch (Sigma-Aldrich, St. Louis, MO, USA, Cat. no.: Z255688).
- A vortex mixer (IKA, Staufen, Baden-Württemberg, Germany).
- A magnetic stirrer (IKA, Staufen, Baden-Württemberg, Germany).
- A high-speed centrifuge (Kubota, Osaka, Japan).
- A −80 °C Biomedical Freezer (SANYO, Osaka, Japan).
- A liquid nitrogen tank (Chart Biomedical, GA, USA).
- A pH metre (Hanna Instruments, RI, USA).
- A 600 MHz NMR Spectrometer (JEOL, Tokyo, Japan).
2.4. Computational Tools
- Chenomx NMR Suite (Chenomx Inc., Edmonton, AB, Canada).
- SIMCA-P (Sartorius Stedim Data Analytics AB, Göttingen, Germany).
- SPSS (IBM, Chicago, IL, USA).
3. Procedure
3.1. Sample Collection
- Blood collection: Collect blood via a cardiac puncture into lithium heparin tubes immediately after euthanasia after the end of the experiment.
CRITICAL STEP EDTA or citrate tubes are not used, as these might introduce strong signals in NMR spectra, which could obscure adjacent metabolites.
- Plasma isolation: Centrifuge blood at 1500× g for 10 min at 4 °C within 30 min of blood collection.
- Storage: Aliquot plasma into 1.5 mL tubes and temporarily place on dry ice or in a liquid nitrogen tank for temporary storage. Transfer samples to −80 °C within 2–4 h of plasma separation.
3.2. NMR Sample Preparation
- Step 1: Thawing and preprocessing
- Thaw frozen plasma samples on ice on the day of NMR analysis.
- Vortex 500 μL plasma for 1 min.
- Centrifuge at 10,000 rpm for 2 min to pellet solid debris.
- Step 2: Macromolecule removal through ultrafiltration
- Pre-wash filters to remove glycerol: Rinse 3 kDa centrifugal filters with 400 µL deionised water. Centrifuge at 13,800 rpm for 10 min for each wash. Repeat this process twice.
- Remove residual water: Invert filters and centrifuge at 13,800 rpm for 5 min.
CRITICAL STEP Ensure there are no traces of water inside the filter and casing. Use a pipette if necessary. Filter is now ready for usage.
- Load 400 μL plasma supernatant thawed during Step 1 onto pre-washed filters.
- Centrifuge at 13,800 rpm for 30 min at room temperature to remove proteins/lipids.
- Step 3: Buffer preparation and dilution
- Prepare a phosphate buffer (pH = 7.4) based on the volume required (e.g., 100 mL), with 1.232 g KH2PO4 in 100 mL D2O containing 100 mg TSP (0.1%) and 100 mg imidazole (0.1%). TSP functions as an internal standard, while imidazole functions as a pH indicator. The concentration of TSP in this buffer preparation is approximately 5.8 mM.
- Use a magnetic stirrer and stirrer bar to homogenise the buffer for 5 min.
- Add NaOD in small volumes ≈ 100 µL whilst homogenising the buffer using a magnetic stirrer for 5 min and checking the pH.
- Repeat step 3 to achieve pH = 7.4. Wrap the solvent bottle using aluminium foil and store at 4 °C until usage.
- Dilute filtrate with buffer in a 1:2 (v/v) ratio (e.g., 200 μL filtrate + 400 μL buffer) in a 1.5 mL tube.
- Vortex the tube for 2 min.
- Step 4: Transfer to NMR tubes
- Pipette 600 μL of the diluted sample into a 5 mm NMR tube using a long-form NMR pipette.
CRITICAL STEP Ensure that the NMR tubes are free of water which would interfere with the spectral acquisition. Use a tissue to make sure the external surface of the tube is completely dry.
- Seal tubes and store at 4 °C until spectral acquisition using an NMR spectrometer.
3.3. Quality Control
3.4. NMR Acquisition
- Instrument Setup:
- Use a 600 MHz JEOL JNM-ECZ600R NMR spectrometer (Jeol Ltd., Tokyo, Japan) maintained at 26 °C. Always use NMR tubes rated for the frequency of the spectrometer to ensure reliable, high-quality data and protect samples and the NMR instrument itself.
- Select the deuterium lock channel on the NMR spectrometer and lock onto the D2O signal.
- Perform shimming to optimise magnetic field homogeneity.
- After the sample is inserted and the temperature is stabilised, the spectrometer is locked onto the deuterium resonance (2H) of the D2O solvent. The automated gradient shimming routine is applied first; this function uses the deuterium lock signal to map the magnetic field profile across the sample volume and automatically adjusts shim coil currents to correct field inhomogeneities.
- The system uses a digital matrix shim set, which includes axial shim coils Z1 through Z6 corresponding to first- through sixth-order corrections along the z-axis. Specifically, Z1 compensates for linear gradients, Z2 for quadratic curvature, and Z3 to Z6 for higher-order magnetic field distortions. Following automatic shimming, the manual refinement of shim values (Z1–Z6) is carried out as needed. The adjustment sequence begins with Z1–Z3 to improve the 2H lock signal sharpness and continues with Z4–Z6 to correct subtle baseline distortions or peak asymmetries.
- Throughout the process, the stability of the lock signal and the shape of a reference peak (typically the water signal at ~4.7 ppm) are monitored. Shimming is considered complete when a narrow, symmetric reference peak and stable lock level are achieved.
- Apply the presaturation-Carr–Purcell–Meiboom–Gill (PRESAT-CPMG) pulse sequence to suppress water signals and protein resonances.
- 2.
- Spectral Acquisition Parameters:
- Spectral width: 12 ppm;
- Number of scans: 64;
- Total acquisition time: 26 min;
- Time domain points: 131,072 points;
- Flip angle: 90°;
- Pre-saturation frequency: set to water resonance (≈4.7 ppm in plasma);
- Acquisition time per scan: 17.47 s;
- Relaxation delay: 7 s;
- Repetition time: 24.47 s;
- Presaturation duration: 7 s;
- CPMG tau (τ) delay: 0.19291 milliseconds;
- Number of echoes (n): 125;
- Effective echo time (2τ): 0.38582 milliseconds;
- Total echo train duration (2nτ): 48.23 milliseconds.
- 3.
- Adaptability to Different Brands
3.5. Data Preprocessing
- Spectral Processing (Chenomx 9.0):
- Spectrum files are imported into Chenomx NMR Suite for post-acquisition processing.
- Prior to Fourier transformation, free induction decays (FIDs) are zero-filled to the next power of two if needed to improve digital resolution. The zero-filled FIDs are then Fourier-transformed to convert the time-domain signal into the frequency-domain spectrum (e.g., 131,072 points in this study), enhancing spectral resolution and enabling more precise peak identification.
- Apply an exponential line broadening (apodization) function of 0.5 Hz to enhance the SNR. Apply 1–2 Hz line broadening if the signal-to-noise ratio is critically poor and resolution loss is tolerable. Do note that broader peaks reduce integration accuracy for closely spaced resonances. Several points should be considered for selecting the degree of line broadening, as reviewed from other studies [43,44]:
- Setting an SNR threshold for quantitation: For example, a minimum SNR of 10:1 is often recommended for reliable peak detection and integration. This threshold can be determined using reference peaks such as TSP.
- Evaluating the risk of peak overlap: Greater line broadening is only justifiable when analyte peaks are well separated, as excessive broadening risks merging closely spaced resonances and introduces quantitation error.
- Consistent batch processing: The same apodization parameters should be applied to all spectra within a batch, as varying these settings can artificially skew SNR measurements and introduce operator-dependent variability.
- Perform autophasing to ensure consistent and accurate phase correction across all spectra.
- Apply baseline correction using the Whittaker spline algorithm across the full spectral range, excluding the water resonance region, to effectively eliminate baseline distortions, drifts, and offsets. This approach ensures a flat and stable baseline, which is critical for accurate peak integration, reliable quantification, and robust comparison between samples.
- Reference spectra to TSP (0 ppm) for chemical shift calibration and imidazole for pH monitoring.
- 2.
- Binning and Exclusion:
- Use intelligent binning (0.04 ppm) across 0.50–12.00 ppm.
- Exclude regions:
- Water: 4.77–4.86 ppm;
- Imidazole: 7.29–7.33 ppm and 8.24–8.32 ppm.
- Export binned data as a non-negative integral table for multivariate analysis.
3.6. Multivariate Data Analysis
- Data Preprocessing:
- Mean-centre and Pareto-scale variables (divide by √standard deviation).
- 2.
- Unsupervised Analysis (PCA):
- Perform PCA to assess clustering trends and outliers.
- Identify outliers using Hotelling’s T2 (95% confidence interval).
- 3.
- Supervised Analysis (PLS-DA):
- Conduct PLS-DA to maximise class separation.
- Validate models via CV-ANOVA (p < 0.05 for significance).
- Prioritise bins with VIP scores > 1.0 and visualise using S-plots.
3.7. Metabolite Identification and Quantification
- Library Matching (Chenomx 9.0):
- Compare spectral peaks to the 600 MHz Human Metabolome Database (HMDB) library with pH adjustment for untargeted metabolite identification.
- Match chemical shift, multiplicity, and coupling constants based on guidelines provided by Chenomx. Fit metabolites by overlaying library spectra onto experimental data, iteratively subtracting matched peaks. Apply deconvolution to the experimental spectrum for overlapping peaks using the reference peak’s observed line shape.
- Validate fits via visual inspection of residual spectra.
- 2.
- Quantification:
- Calculate relative concentrations using peak areas normalised to TSP.
- Export results as tables for downstream analysis.
3.8. Statistical Analysis
- Univariate Analysis and Multiple Testing CorrectionFor studies involving group comparisons (e.g., control vs. treated), metabolites showing significant differences are first identified using a one-way ANOVA (p < 0.05). Post hoc pairwise comparisons are performed via Tukey’s honest significant difference (HSD) test to control family-wise error rates. The Benjamini–Hochberg procedure is applied to account for multiple hypothesis tests across metabolites, controlling the false discovery rate (FDR) at 10%. Metabolites with FDR-adjusted p-values < 0.05 are retained as statistically significant.
- Workflow Integration
- ANOVA identifies metabolites with significant intergroup variation.
- Tukey-HSD pinpoints specific group differences (e.g., Diet A vs. Diet B).
- FDR correction ranks metabolites by significance and adjusts p-values to reduce false positives.
3.9. Pathway Analysis
- Define a List of Features of Interest
- 2.
- Perform Pathway Analysis
- 3.
- Visualise and Interpret Results
4. Expected Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
ANOVA | Analysis of variance |
CPMG | Carr–Purcell–Meiboom–Gill |
DF | Degrees of freedom |
FDR | False discovery rate |
FID | Free induction decay |
HMDB | Human Metabolome Database |
HSD | Honest significant difference |
KEGG | Kyoto Encyclopedia of Genomes and Genes |
MVDA | Multivariate data analysis |
NCD | Non-communicable disease |
NMR | Nuclear magnetic resonance |
PCA | Principal component analysis |
PLS-DA | Partial least squares discriminant analysis |
PRESAT | Presaturation |
QC | Quality control |
SNR | Signal-to-noise ratio |
T2D | Type 2 diabetes |
TSP | Sodium 3-(trimethylsilyl) propionic-2,2,3,3-d4 |
VIP | Variable importance projection |
ZDF | Zucker diabetic fatty |
References
- Nagana Gowda, G.A.; Raftery, D. NMR-Based Metabolomics. Adv. Exp. Med. Biol. 2021, 1280, 19–37. [Google Scholar] [CrossRef]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef]
- Debik, J.; Sangermani, M.; Wang, F.; Madssen, T.S.; Giskeødegård, G.F. Multivariate analysis of NMR-based metabolomic data. NMR Biomed. 2022, 35, e4638. [Google Scholar] [CrossRef]
- Stavarache, C.; Nicolescu, A.; Duduianu, C.; Ailiesei, G.L.; Balan-Porcăraşu, M.; Cristea, M.; Macsim, A.M.; Popa, O.; Stavarache, C.; Hîrtopeanu, A.; et al. A Real-Life Reproducibility Assessment for NMR Metabolomics. Diagnostics 2022, 12, 559. [Google Scholar] [CrossRef]
- Ndlovu, I.S.; Tshilwane, S.I.; Vosloo, A.; Chaisi, M.; Mukaratirwa, S. Metabolomics of Type 2 Diabetes Mellitus in Sprague Dawley Rats-In Search of Potential Metabolic Biomarkers. Int. J. Mol. Sci. 2023, 24, 12467. [Google Scholar] [CrossRef]
- Chowdhury, C.R.; Kavitake, D.; Jaiswal, K.K.; Jaiswal, K.S.; Reddy, G.B.; Agarwal, V.; Shetty, P.H. NMR-based metabolomics as a significant tool for human nutritional research and health applications. Food Biosci. 2023, 53, 102538. [Google Scholar] [CrossRef]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gholipourmalekabadi, M.; Shafikhani, S.H. Animal models for type 1 and type 2 diabetes: Advantages and limitations. Front. Endocrinol. 2024, 15, 1359685. [Google Scholar] [CrossRef]
- Shiota, M.; Printz, R.L. Diabetes in Zucker diabetic fatty rat. Methods Mol. Biol. 2012, 933, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.J.; Curtis, A.M.; Jen, A.; Thomson, J.A.; Clegg, D.O.; Jiang, P.; Coon, J.J.; Overmyer, K.A.; Toh, H. Plasma metabolomics supports non-fasted sampling for metabolic profiling across a spectrum of glucose tolerance in the Nile rat model for type 2 diabetes. Lab. Animal 2023, 52, 269–277. [Google Scholar] [CrossRef]
- Wishart, D.S.; Cheng, L.L.; Copié, V.; Edison, A.S.; Eghbalnia, H.R.; Hoch, J.C.; Gouveia, G.J.; Pathmasiri, W.; Powers, R.; Schock, T.B.; et al. NMR and Metabolomics-A Roadmap for the Future. Metabolites 2022, 12, 678. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Society. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ensor, J.E. Biomarker validation: Common data analysis concerns. Oncologist 2014, 19, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, T.A.H.; Von Rekowski, C.P.; Araújo, R.; Oliveira, M.C.; Justino, G.C.; Bento, L.; Calado, C.R.C. Comparison of two metabolomics-platforms to discover biomarkers in critically ill patients from serum analysis. Comput. Biol. Med. 2025, 184, 109393. [Google Scholar] [CrossRef]
- Ratitch, B.; Rodriguez-Chavez, I.R.; Dabral, A.; Fontanari, A.; Vega, J.; Onorati, F.; Vandendriessche, B.; Morton, S.; Damestani, Y. Considerations for Analyzing and Interpreting Data from Biometric Monitoring Technologies in Clinical Trials. Digit. Biomark. 2022, 6, 83–97. [Google Scholar] [CrossRef]
- Weinisch, P.; Fiamoncini, J.; Schranner, D.; Raffler, J.; Skurk, T.; Rist, M.J.; Römisch-Margl, W.; Prehn, C.; Adamski, J.; Hauner, H.; et al. Dynamic patterns of postprandial metabolic responses to three dietary challenges. Front. Nutr. 2022, 9, 933526. [Google Scholar] [CrossRef]
- Tien, D.S.Y.; Hockey, M.; So, D.; Stanford, J.; Clarke, E.D.; Collins, C.E.; Staudacher, H.M. Recommendations for Designing, Conducting, and Reporting Feeding Trials in Nutrition Research. Adv. Nutr. 2024, 15, 100283. [Google Scholar] [CrossRef]
- Brennan, L.; Hu, F.B.; Sun, Q. Metabolomics Meets Nutritional Epidemiology: Harnessing the Potential in Metabolomics Data. Metabolites 2021, 11, 709. [Google Scholar] [CrossRef] [PubMed]
- Menyhart, O.; Weltz, B.; Győrffy, B. MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction. PLoS ONE 2021, 16, e0245824. [Google Scholar] [CrossRef]
- Otani, K.; Funada, H.; Teranishi, R.; Okada, M.; Yamawaki, H. Cardiovascular Characteristics of Zucker Fatty Diabetes Mellitus Rats, an Animal Model for Obesity and Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 4228. [Google Scholar] [CrossRef]
- Yokoi, N.; Hoshino, M.; Hidaka, S.; Yoshida, E.; Beppu, M.; Hoshikawa, R.; Sudo, K.; Kawada, A.; Takagi, S.; Seino, S. A Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat. J. Diabetes Res. 2013, 2013, 103731. [Google Scholar] [CrossRef]
- Jeong, E.; Baek, Y.; Kim, H.-J.; Lee, H.G. Comparison of the anti-diabetic effects of various grain and legume extracts in high-fat diet and streptozotocin-nicotinamide-induced diabetic rats. Heliyon 2024, 10, e25279. [Google Scholar] [CrossRef]
- Arifin, W.N.; Zahiruddin, W.M. Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays. J. Med. Sci. 2017, 24, 101–105. [Google Scholar] [CrossRef]
- Ghini, V.; Abuja, P.M.; Polasek, O.; Kozera, L.; Laiho, P.; Anton, G.; Zins, M.; Klovins, J.; Metspalu, A.; Wichmann, H.E.; et al. Impact of the pre-examination phase on multicenter metabolomic studies. New Biotechnol. 2022, 68, 37–47. [Google Scholar] [CrossRef]
- Pauzi, F.A.; Sahathevan, S.; Khor, B.H.; Narayanan, S.S.; Zakaria, N.F.; Abas, F.; Karupaiah, T.; Daud, Z.A.M. Exploring Metabolic Signature of Protein Energy Wasting in Hemodialysis Patients. Metabolites 2020, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Madrid-Gambin, F.; Oller, S.; Marco, S.; Pozo, Ó.J.; Andres-Lacueva, C.; Llorach, R. Quantitative plasma profiling by 1H NMR-based metabolomics: Impact of sample treatment. Front. Mol. Biosci. 2023, 10, 1125582. [Google Scholar] [CrossRef] [PubMed]
- Kacerova, T.; Pires, E.; Walsby-Tickle, J.; Probert, F.; McCullagh, J.S.O. Integrating NMR and multi-LC-MS-based untargeted metabolomics for comprehensive analysis of blood serum samples. Anal. Chim. Acta 2025, 1356, 343979. [Google Scholar] [CrossRef] [PubMed]
- Nagana Gowda, G.A.; Raftery, D. Recent Advances in NMR-Based Metabolomics. Anal. Chem. 2017, 89, 490–510. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.E.; Flott, T.L.; Schooff, C.R.; Smiley, Z.; Puskarich, M.A.; Myers, D.D.; Younger, J.G.; Jones, A.E.; Stringer, K.A. Rapid, Reproducible, Quantifiable NMR Metabolomics: Methanol and Methanol: Chloroform Precipitation for Removal of Macromolecules in Serum and Whole Blood. Metabolites 2018, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Barrilero, R.; Ramírez, N.; Vallvé, J.C.; Taverner, D.; Fuertes, R.; Amigó, N.; Correig, X. Unravelling and Quantifying the “NMR-Invisible” Metabolites Interacting with Human Serum Albumin by Binding Competition and T2 Relaxation-Based Decomposition Analysis. J. Proteome Res. 2017, 16, 1847–1856. [Google Scholar] [CrossRef]
- Barding, G.A., Jr.; Salditos, R.; Larive, C.K. Quantitative NMR for bioanalysis and metabolomics. Anal. Bioanal. Chem. 2012, 404, 1165–1179. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [PubMed]
- Simón-Manso, Y.; Lowenthal, M.S.; Kilpatrick, L.E.; Sampson, M.L.; Telu, K.H.; Rudnick, P.A.; Mallard, W.G.; Bearden, D.W.; Schock, T.B.; Tchekhovskoi, D.V.; et al. Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal. Chem. 2013, 85, 11725–11731. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. Quantitative NMR Methods in Metabolomics. In Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2023; Volume 277, pp. 143–164. [Google Scholar] [CrossRef]
- Saparuddin, F.; Mohd Nawi, M.N.; Ahmad Zamri, L.; Mansor, F.; Md Noh, M.F.; Omar, M.A.; Abdul Aziz, N.S.; Wahab, N.A.; Mediani, A.; Rajab, N.F.; et al. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024, 16, 3501. [Google Scholar] [CrossRef]
- Ruhland, E.; Bund, C.; Outilaft, H.; Piotto, M.; Namer, I.J. A metabolic database for biomedical studies of biopsy specimens by high-resolution magic angle spinning nuclear MR: A qualitative and quantitative tool. Magn. Reson. Med. 2019, 82, 62–83. [Google Scholar] [CrossRef]
- Kim, J.A.; Choi, H.J.; Kwon, Y.K.; Ryu, D.H.; Kwon, T.H.; Hwang, G.S. 1H NMR-based metabolite profiling of plasma in a rat model of chronic kidney disease. PLoS ONE 2014, 9, e85445. [Google Scholar] [CrossRef]
- Xu, C.; Rezeng, C.; Li, J.; Zhang, L.; Yan, Y.; Gao, J.; Wang, Y.; Li, Z.; Chen, J. 1H NMR-Based Metabolomics Study of the Toxicological Effects in Rats Induced by “Renqing Mangjue” Pill, a Traditional Tibetan Medicine. Front. Pharmacol. 2017, 8, 602. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.; Wu, D.; Wang, C.; Yang, Y.J.; Fan, S.J.; Xia, L.; Wei, Y.; Peng, X. (1)H-NMR metabolomics identifies significant changes in hypermetabolism after glutamine administration in burned rats. Am. J. Transl. Res. 2019, 11, 7286–7299. [Google Scholar]
- Jupin, M.; Michiels, P.J.; Girard, F.C.; Spraul, M.; Wijmenga, S.S. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin. J. Magn. Reson. 2014, 239, 34–43. [Google Scholar] [CrossRef]
- Laíns, I.; Duarte, D.; Barros, A.S.; Martins, A.S.; Gil, J.; Miller, J.B.; Marques, M.; Mesquita, T.; Kim, I.K.; Cachulo, M.d.L.; et al. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS ONE 2017, 12, e0177749. [Google Scholar] [CrossRef] [PubMed]
- Probert, F.; Ruiz-Rodado, V.; Vruchte, D.t.; Nicoli, E.-R.; Claridge, T.D.W.; Wassif, C.A.; Farhat, N.; Porter, F.D.; Platt, F.M.; Grootveld, M. NMR analysis reveals significant differences in the plasma metabolic profiles of Niemann Pick C1 patients, heterozygous carriers, and healthy controls. Sci. Rep. 2017, 7, 6320. [Google Scholar] [CrossRef] [PubMed]
- Hyberts, S.G.; Robson, S.A.; Wagner, G. Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra. J. Biomol. NMR 2013, 55, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Maldonado-Devincci, A.M.; Jiang, L. Evaluating line-broadening factors on a reference spectrum as a bucketing method for NMR based metabolomics. Anal. Biochem. 2020, 606, 113872. [Google Scholar] [CrossRef]
- Chenomx. Chenomx NMR Suite User Guide v9.02; Chenomx Inc.: Edmonton, AB, Canada, 2021. [Google Scholar]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef] [PubMed]
Metabolite | HMDB ID | Chemical Shift (Multiplicities) |
---|---|---|
1,6-Anhydro-β-D-glucose | HMDB00640 | 3.5 (m), 3.7 (m), 4.1 (m), 4.6 (d), 5.4 (d) |
2-Hydroxyvalerate | HMDB01863 | 0.9 (t), 1.3 (d), 1.4 (m), 1.6 (m), 1.7 (m), 4.0 (dd) |
2-Methylglutarate | HMDB00422 | 1.1 (d), 1.6 (m), 1.7 (m), 2.1 (m), 2.2 (m) |
2-Oxoglutarate | HMDB00208 | 2.4 (s), 3.0 (s) |
3-Aminoisobutyrate | HMDB03911 | 1.2 (dd), 2.6 (dd), 3.0 (s), 3.1 (s) |
3-Hydroxybutyrate | HMDB00357 | 1.2 (d), 2.3 (dd), 2.4 (m), 4.1 (d) |
Acetate | HMDB00042 | 1.9 (s) |
Agmatine | HMDB01432 | 1.7 (m), 3.0 (m), 3.2 (s), 7.2 (s) |
Alanine | HMDB00161 | 1.5 (d), 3.8 (q) |
Anserine | HMDB00194 | 2.6 (m), 2.7 (m), 3.0 (s), 3.2 (s), 3.8 (m), 4.5 (d), 7.1 (s), 8.2 (s), 8.3 (s) |
Cadaverine | HMDB02322 | 1.5 (t), 1.7 (m), 3.0 (t) |
Carnitine | HMDB00062 | 2.4 (t), 3.2 (s), 3.4 (s), 4.6 (d) |
Choline | HMDB00097 | 3.2 (s), 3.5 (t), 4.1 (m) |
Citrate | HMDB00094 | 2.5 (s), 2.7 (s) |
Creatine | HMDB00064 | 3.0 (s), 3.9 (s) |
Formate | HMDB00142 | 4.4 (s) |
Gluconate | HMDB00625 | 3.7 (m), 3.8 (m), 4.0 (m), 4.1 (m) |
Glucose | HMDB00122 | 3.2 (m), 3.4 (m), 3.5 (m), 3.7 (m), 3.8 (m), 3.9 (m), 4.6 (d), 5.2 (d) |
Glutamate | HMDB00148 | 2.0 (m), 2.1 (m), 2.3 (t), 2.4 (t), 3.7 (dd) |
Glutamine | HMDB00641 | 2.1 (t), 2.4 (m), 2.5 (dd), 3.8 (q), 6.9 (d), 7.6 (d) |
Glycine | HMDB00123 | 3.6 (s) |
Glyclyproline | HMDB00721 | 1.8 (m), 1.9 (m), 2.0 (m), 2.1 (m), 2.2 (m), 2.3 (m), 3.5 (m), 3.6 (m), 3.9 (m), 4.3 (m) |
Histidine | HMDB00177 | 3.1 (d), 3.2 (d), 4.0 (t), 7.1 (d), 7.9 (d) |
Homocysteine | HMDB00742 | 2.1 (m), 2.2 (m), 2.6 (dd), 2.7 (m), 3.9 (s) |
Hydroxyacetone | HMDB06961 | 2.1 (s), 4.4 (s) |
Isoleucine | HMDB00172 | 0.9 (d), 1.0 (d), 1.2 (t), 1.5 (m), 2.0 (m), 3.7 (m) |
Lactate | HMDB00190 | 1.3 (d), 4.1 (q) |
Leucine | HMDB00687 | 0.9 (d), 1.0 (d), 1.7 (m), 3.7 (m) |
Lysine | HMDB00182 | 1.4 (m), 1.5 (m), 1.7 (m), 1.9 (m), 3.0 (t), 3.7 (m) |
Methionine | HMDB00696 | 2.1 (m), 2.2 (m), 2.6 (t), 3.9 (s) |
N-Methylhydantoin | HMDB03646 | 2.9 (s), 4.1 (s) |
Ornithine | HMDB00214 | 1.7 (dd), 1.8 (m), 1.9 (t), 3.1 (q), 3.8 (dd) |
Proline | HMDB00162 | 2.0 (m), 2.1 (m), 2.3 (m), 3.3 (m), 3.4 (m), 4.1 (m) |
Putrescine | HMDB01414 | 1.8 (t), 3.0 (t) |
Pyruvate | HMDB00243 | 2.4 (s) |
Succinate | HMDB00254 | 2.4 (s) |
Taurine | HMDB00251 | 3.3 (t), 3.4 (t) |
Threonine | HMDB00167 | 1.3 (d), 3.6 (m), 4.3 (d) |
Trimethylamine N-oxide | HMDB00925 | 3.3 (s) |
Tyrosine | HMDB00158 | 3.0 (s), 3.2 (s), 3.9 (m), 6.9 (d), 7.2 (d) |
Valine | HMDB00883 | 1.0 (d), 2.3 (m), 3.6 (m) |
myo-Inositol | HMDB00211 | 3.3 (t), 3.5 (t), 3.6 (t), 4.1 (m) |
trans-4-Hydroxy-L-proline | HMDB00725 | 2.1 (m), 2.4 (m), 3.4 (m), 3.5 (m), 4.3 (d), 4.7 (d) |
π-Methylhistidine | HMDB00479 | 3.2 (s), 3.3 (s), 3.7 (m), 4.0 (t), 7.1 (d), 8.0 (d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawi, M.N.M.; Radzi, R.; Ali, A.; Lem, S.Z.C.; Zulkapli, A.; Lokman, E.F.; Fazliana, M.; Narayanan, S.S.; Chinna, K.; Noh, M.F.M.; et al. 1H Nuclear Magnetic Resonance (NMR) Metabolomics in Rodent Plasma: A Reproducible Framework for Preclinical Biomarker Discovery. Methods Protoc. 2025, 8, 92. https://doi.org/10.3390/mps8040092
Nawi MNM, Radzi R, Ali A, Lem SZC, Zulkapli A, Lokman EF, Fazliana M, Narayanan SS, Chinna K, Noh MFM, et al. 1H Nuclear Magnetic Resonance (NMR) Metabolomics in Rodent Plasma: A Reproducible Framework for Preclinical Biomarker Discovery. Methods and Protocols. 2025; 8(4):92. https://doi.org/10.3390/mps8040092
Chicago/Turabian StyleNawi, Mohd Naeem Mohd, Ranina Radzi, Azizan Ali, Siti Zubaidah Che Lem, Azlina Zulkapli, Ezarul Faradianna Lokman, Mansor Fazliana, Sreelakshmi Sankara Narayanan, Karuthan Chinna, Mohd Fairulnizal Md Noh, and et al. 2025. "1H Nuclear Magnetic Resonance (NMR) Metabolomics in Rodent Plasma: A Reproducible Framework for Preclinical Biomarker Discovery" Methods and Protocols 8, no. 4: 92. https://doi.org/10.3390/mps8040092
APA StyleNawi, M. N. M., Radzi, R., Ali, A., Lem, S. Z. C., Zulkapli, A., Lokman, E. F., Fazliana, M., Narayanan, S. S., Chinna, K., Noh, M. F. M., Mat Daud, Z. A., & Karupaiah, T. (2025). 1H Nuclear Magnetic Resonance (NMR) Metabolomics in Rodent Plasma: A Reproducible Framework for Preclinical Biomarker Discovery. Methods and Protocols, 8(4), 92. https://doi.org/10.3390/mps8040092