Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Elicitation Treatment
2.2. Glucosinolate Extraction and Analysis
2.3. Bioinformatic Analysis of Target Sequences
2.4. Transcriptional Profiling of Glucosinolate Candidate Genes
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GSL | glucosinolate |
AG | Aliphatic glucosinolate |
TF | Transcription factor |
dimeric 4-MBGSL | dimeric 4-mercaptobutyl glucosinolate |
GRA | glucoraphanin |
GER | glucoerucin |
NMR | nuclear magnetic resonance |
BCAT4 | Branched-Chain Aminotransferase4 |
MAM1 | Methylthioalkylmalate Synthase 1 |
SUR1 | Superroot1 |
CYP83A1 | CytochromeP450 83A1 monooxygenase |
References
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate Structural Diversity, Identification, Chemical Synthesis and Metabolism in Plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef]
- Montaut, S.; De Nicola, G.R.; Agnaniet, H.; Issembe, Y.; Rollin, P.; Menut, C. Probing for the Presence of Glucosinolates in Three Drypetes spp. (Drypetes euryodes (Hiern) Hutch., Drypetes gossweileri S. Moore, Drypetes laciniata Hutch.) and Two Rinorea spp. (Rinorea subintegrifolia O. Ktze and Rinorea woermanniana (Büttner) Engl.) from Gabon. Nat. Prod. Res. 2017, 31, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Chhajed, S.; Mostafa, I.; He, Y.; Abou-Hashem, M.; El-Domiaty, M.; Chen, S. Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. Agronomy 2020, 10, 1786. [Google Scholar] [CrossRef]
- Leite, P.M.; Castilho, R.O. Chemosystematics of Brassicales. Biochem. Syst. Ecol. 2017, 71, 205–211. [Google Scholar] [CrossRef]
- Clay, N.K.; Adio, A.M.; Denoux, C.; Jander, G.; Ausubel, F.M. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response. Science 2009, 323, 95–101. [Google Scholar] [CrossRef]
- Luo, F.; Tang, G.; Hong, S.; Gong, T.; Xin, X.-F.; Wang, C. Promotion of Arabidopsis Immune Responses by a Rhizosphere Fungus via Supply of Pipecolic Acid to Plants and Selective Augment of Phytoalexins. Sci. China Life Sci. 2023, 66, 1119–1133. [Google Scholar] [CrossRef]
- Rao, S.-Q.; Chen, X.-Q.; Wang, K.-H.; Zhu, Z.-J.; Yang, J.; Zhu, B. Effect of Short-Term High Temperature on the Accumulation of Glucosinolates in Brassica rapa. Plant Physiol. Biochem. 2021, 161, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ballesta, M.; Moreno-Fernández, D.A.; Castejón, D.; Ochando, C.; Morandini, P.A.; Carvajal, M. The Impact of the Absence of Aliphatic Glucosinolates on Water Transport under Salt Stress in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 524. [Google Scholar] [CrossRef]
- Del Carmen Martínez-Ballesta, M.; Moreno, D.A.; Carvajal, M. The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. Int. J. Mol. Sci. 2013, 14, 11607–11625. [Google Scholar] [CrossRef]
- Unger, K.; Raza, S.A.K.; Mayer, T.; Reichelt, M.; Stuttmann, J.; Hielscher, A.; Wittstock, U.; Gershenzon, J.; Agler, M.T. Glucosinolate Structural Diversity Shapes Recruitment of a Metabolic Network of Leaf-Associated Bacteria. Nat. Commun. 2024, 15, 8496. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, R.; Li, R.; Kuwahara, A.; Nakabayashi, R.; Sotta, N.; Mori, T.; Ito, T.; Ohkama-Ohtsu, N.; Fujiwara, T.; Saito, K.; et al. Retrograde Sulfur Flow from Glucosinolates to Cysteine in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2021, 118, e2017890118. [Google Scholar] [CrossRef]
- Qin, H.; King, G.J.; Borpatragohain, P.; Zou, J. Developing Multifunctional Crops by Engineering Brassicaceae Glucosinolate Pathways. Plant Commun. 2023, 4, 100565. [Google Scholar] [CrossRef]
- Mitreiter, S.; Gigolashvili, T. Regulation of Glucosinolate Biosynthesis. J. Exp. Bot. 2021, 72, 70–91. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, Q.; Zhang, J.; Li, C.; Bai, X.; Sun, F.; Kliebenstein, D.J.; Li, B. Large-Scale Identification of Novel Transcriptional Regulators of the Aliphatic Glucosinolate Pathway in Arabidopsis. J. Exp. Bot. 2024, 75, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Hirai, M.Y.; Sugiyama, K.; Sawada, Y.; Tohge, T.; Obayashi, T.; Suzuki, A.; Araki, R.; Sakurai, N.; Suzuki, H.; Aoki, K.; et al. Omics-Based Identification of Arabidopsis Myb Transcription Factors Regulating Aliphatic Glucosinolate Biosynthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 6478–6483. [Google Scholar] [CrossRef]
- Sønderby, I.E.; Hansen, B.G.; Bjarnholt, N.; Ticconi, C.; Halkier, B.A.; Kliebenstein, D.J. A Systems Biology Approach Identifies a R2R3 MYB Gene Subfamily with Distinct and Overlapping Functions in Regulation of Aliphatic Glucosinolates. PLoS ONE 2007, 2, e1322. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, F.; Fernández-Calvo, P.; Zander, M.; Diez-Diaz, M.; Fonseca, S.; Glauser, G.; Lewsey, M.G.; Ecker, J.R.; Solano, R.; Reymond, P. Arabidopsis Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior. Plant Cell 2013, 25, 3117–3132. [Google Scholar] [CrossRef]
- Cheng, B.; Ran, R.; Qu, Y.; Verkerk, R.; Henry, R.; Dekker, M.; He, H. Advancements in Balancing Glucosinolate Production in Plants to Deliver Effective Defense and Promote Human Health. Agric. Commun. 2024, 2, 100040. [Google Scholar] [CrossRef]
- Zasada, I.A.; Ferris, H. Nematode Suppression with Brassicaceous Amendments: Application Based upon Glucosinolate Profiles. Soil Biol. Biochem. 2004, 36, 1017–1024. [Google Scholar] [CrossRef]
- Ríos, P.; Obregón, S.; González, M.; de Haro, A.; Sánchez, M.E. Screening Brassicaceous Plants as Biofumigants for Management of Phytophthora cinnamomi Oak Disease. For. Pathol. 2016, 46, 652–659. [Google Scholar] [CrossRef]
- Giannini, V.; Melito, S.; Matteo, R.; Lazzeri, L.; Pagnotta, E.; Chahine, S.; Paolo, P. Testing Eruca sativa Defatted Seed Meal as a Potential Bioherbicide on Selected Weeds and Crops. Ind. Crops Prod. 2021, 171, 113834. [Google Scholar] [CrossRef]
- Ugolini, L.; Cilia, G.; Pagnotta, E.; Malaguti, L.; Capano, V.; Guerra, I.; Zavatta, L.; Albertazzi, S.; Matteo, R.; Lazzeri, L.; et al. Glucosinolate Bioactivation by Apis Mellifera Workers and Its Impact on Nosema Ceranae Infection at the Colony Level. Biomolecules 2021, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pérez, A.; Núñez-Gómez, V.; Baenas, N.; Di Pede, G.; Achour, M.; Manach, C.; Mena, P.; Del Rio, D.; García-Viguera, C.; Moreno, D.A.; et al. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023, 15, 1424. [Google Scholar] [CrossRef]
- Connolly, E.L.; Liu, A.H.; Radavelli-Bagatini, S.; Shafaei, A.; Boyce, M.C.; Wood, L.G.; McCahon, L.; Koch, H.; Sim, M.; Hill, C.R.; et al. Cruciferous Vegetables Lower Blood Pressure in Adults with Mildly Elevated Blood Pressure in a Randomized, Controlled, Crossover Trial: The VEgetableS for vaScular hEaLth (VESSEL) Study. BMC Med. 2024, 22, 353. [Google Scholar] [CrossRef]
- Humbal, A.; Pathak, B. Influence of Exogenous Elicitors on the Production of Secondary Metabolite in Plants: A Review (“VSI: Secondary Metabolites”). Plant Stress 2023, 8, 100166. [Google Scholar] [CrossRef]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A Biotechnological Tool for Enhanced Production of Secondary Metabolites in Hairy Root Cultures. Eng. Life Sci. 2019, 19, 880–895. [Google Scholar] [CrossRef]
- Ruffoni, B.; Savona, M.; Pistelli, L.; Bassolino, L.; Marchioni, I.; Pistelli, L. Produzione In Vitro Di Metaboliti Secondari. In Le Piante Officinali. Produzione e Prima Trasformazione; Edagricole—Edizioni Agricole di New Business Media srl: Milano, Italy, 2022; Volume 1, ISBN 978-88-506-5619-6. [Google Scholar]
- Sangwan, N.S.; Jha, S.; Mitra, A. Unlocking Nature’s Treasure Trove: Biosynthesis and Elicitation of Secondary Metabolites from Plants. Plant Growth Regul. 2024, 104, 1–4. [Google Scholar] [CrossRef]
- Miao, H.; Zeng, W.; Wang, J.; Zhang, F.; Sun, B.; Wang, Q. Improvement of Glucosinolates by Metabolic Engineering in Brassica Crops. aBIOTECH 2021, 2, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Balibrea, S.; Moreno, D.A.; García-Viguera, C. Improving the Phytochemical Composition of Broccoli Sprouts by Elicitation. Food Chem. 2011, 129, 35–44. [Google Scholar] [CrossRef]
- Aghajanzadeh, T.A.; Reich, M.; Kopriva, S.; De Kok, L.J. Impact of Chloride (NaCl, KCl) and Sulphate (Na2SO4, K2SO4) Salinity on Glucosinolate Metabolism in Brassica rapa. J. Agron. Crop Sci. 2018, 204, 137–146. [Google Scholar] [CrossRef]
- Ilahy, R.; Tlili, I.; Pék, Z.; Montefusco, A.; Siddiqui, M.W.; Homa, F.; Hdider, C.; R’Him, T.; Lajos, H.; Lenucci, M.S. Pre- and Post-Harvest Factors Affecting Glucosinolate Content in Broccoli. Front. Nutr. 2020, 7, 147. [Google Scholar] [CrossRef]
- Pagnotta, E.; Ugolini, L.; Matteo, R.; Righetti, L. Bioactive Compounds from Eruca sativa Seeds. Encyclopedia 2022, 2, 1866–1879. [Google Scholar] [CrossRef]
- Bell, L.; Chadwick, M.; Puranik, M.; Tudor, R.; Methven, L.; Kennedy, S.; Wagstaff, C. The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest. Front. Plant Sci. 2020, 11, 525102. [Google Scholar] [CrossRef]
- Hall, M.; Jobling, J.; Rogers, G. Some Perspectives on Rocket as a Vegetable Crop: A Review. Veg. Crops Res. Bull. 2012, 76, 21–41. [Google Scholar] [CrossRef]
- Corti, E.; Falsini, S.; Gonnelli, C.; Pieraccini, G.; Nako, B.; Papini, A. Salt-Affected Rocket Plants as a Possible Source of Glucosinolates. Int. J. Mol. Sci. 2023, 24, 5510. [Google Scholar] [CrossRef]
- Katsarou, D.; Omirou, M.; Liadaki, K.; Tsikou, D.; Delis, C.; Garagounis, C.; Krokida, A.; Zambounis, A.; Papadopoulou, K.K. Glucosinolate Biosynthesis in Eruca sativa. Plant Physiol. Biochem. 2016, 109, 452–466. [Google Scholar] [CrossRef]
- Naur, P.; Petersen, B.L.; Mikkelsen, M.D.; Bak, S.; Rasmussen, H.; Olsen, C.E.; Halkier, B.A. CYP83A1 and CYP83B1, Two Nonredundant Cytochrome P450 Enzymes Metabolizing Oximes in the Biosynthesis of Glucosinolates in Arabidopsis. Plant Physiol. 2003, 133, 63–72. [Google Scholar] [CrossRef]
- Weis, C.; Hildebrandt, U.; Hoffmann, T.; Hemetsberger, C.; Pfeilmeier, S.; König, C.; Schwab, W.; Eichmann, R.; Hückelhoven, R. CYP83A1 Is Required for Metabolic Compatibility of Arabidopsis with the Adapted Powdery Mildew Fungus Erysiphe cruciferarum. New Phytol. 2014, 202, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- ISO 9167:2019; Rapeseed and Rapeseed Meals—Determination of Glucosinolates Content—Method Using High-Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2024.
- Pagnotta, E.; Agerbirk, N.; Olsen, C.E.; Ugolini, L.; Cinti, S.; Lazzeri, L. Hydroxyl and Methoxyl Derivatives of Benzylglucosinolate in Lepidium Densiflorum with Hydrolysis to Isothiocyanates and Non-Isothiocyanate Products: Substitution Governs Product Type and Mass Spectral Fragmentation. J. Agric. Food Chem. 2017, 65, 3167–3178. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; Spinozzi, S.; Pagnotta, E.; Lazzeri, L.; Ugolini, L.; Camborata, C.; Roda, A. Development of a Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry Method for the Simultaneous Analysis of Intact Glucosinolates and Isothiocyanates in Brassicaceae Seeds and Functional Foods. J. Chromatogr. A 2016, 1428, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research, R Package Version 1.3-6; R Core Team: Vienna, Austria, 2023.
- Wei, T.; Simko, V.; Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix, Version 0.95; R Core Team: Vienna, Austria, 2024.
- Ullah, M.; Batool, M.; El-Badri, A.M.; Ikram, M.; Zheng, L.; Khalid, B.; El Khalek Abd El Mola Mohamed, I.A.; Chang, L.; Wang, B.; Kuai, J.; et al. A Comprehensive Report on Glucosinolate Involvement in Abiotic Stress Responses in Brassicaceae Family. Hortic. Plant J. 2025, in press. [Google Scholar] [CrossRef]
- López-Berenguer, C.; Martínez-Ballesta, M.D.C.; Moreno, D.A.; Carvajal, M.; García-Viguera, C. Growing Hardier Crops for Better Health: Salinity Tolerance and the Nutritional Value of Broccoli. J. Agric. Food Chem. 2009, 57, 572–578. [Google Scholar] [CrossRef]
- Pang, Q.; Guo, J.; Chen, S.; Chen, Y.; Zhang, L.; Fei, M.; Jin, S.; Li, M.; Wang, Y.; Yan, X. Effect of Salt Treatment on the Glucosinolate-Myrosinase System in Thellungiella Salsuginea. Plant Soil. 2012, 355, 363–374. [Google Scholar] [CrossRef]
- Petretto, G.L.; Urgeghe, P.P.; Massa, D.; Melito, S. Effect of Salinity (NaCl) on Plant Growth, Nutrient Content, and Glucosinolate Hydrolysis Products Trends in Rocket Genotypes. Plant Physiol. Biochem. 2019, 141, 30–39. [Google Scholar] [CrossRef]
- Nour-Eldin, H.H.; Andersen, T.G.; Burow, M.; Madsen, S.R.; Jørgensen, M.E.; Olsen, C.E.; Dreyer, I.; Hedrich, R.; Geiger, D.; Halkier, B.A. NRT/PTR Transporters Are Essential for Translocation of Glucosinolate Defence Compounds to Seeds. Nature 2012, 488, 531–534. [Google Scholar] [CrossRef]
- Dernovics, M.; Molnár, A.; Szalai, G. UV-B-Radiation Induced Di- and Polysulfide Derivatives of 4-Mercaptobutyl Glucosinolate from Eruca sativa. J. Food Compos. Anal. 2023, 122, 105485. [Google Scholar] [CrossRef]
- Bennett, R.N.; Mellon, F.A.; Botting, N.P.; Eagles, J.; Rosa, E.A.S.; Williamson, G. Identification of the Major Glucosinolate (4-Mercaptobutyl Glucosinolate) in Leaves of Eruca sativa L. (Salad Rocket). Phytochemistry 2002, 61, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Jin, S.; Ishii, G. Isolation and Structural Elucidation of 4-(β-D-Glucopyranosyldisulfanyl)Butyl Glucosinolate from Leaves of Rocket Salad (Eruca sativa L.) and Its Antioxidative Activity. Biosci. Biotechnol. Biochem. 2004, 68, 2444–2450. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnotta, E.; Righetti, L.; Micheletti, G.; Boga, C.; Massafra, A.; Ugolini, L.; Malaguti, L.; Matteo, R.; Nicoletti, F.; Colombo, R.; et al. Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage. Appl. Sci. 2025, 15, 8757. https://doi.org/10.3390/app15158757
Pagnotta E, Righetti L, Micheletti G, Boga C, Massafra A, Ugolini L, Malaguti L, Matteo R, Nicoletti F, Colombo R, et al. Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage. Applied Sciences. 2025; 15(15):8757. https://doi.org/10.3390/app15158757
Chicago/Turabian StylePagnotta, Eleonora, Laura Righetti, Gabriele Micheletti, Carla Boga, Annamaria Massafra, Luisa Ugolini, Lorena Malaguti, Roberto Matteo, Federica Nicoletti, Roberto Colombo, and et al. 2025. "Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage" Applied Sciences 15, no. 15: 8757. https://doi.org/10.3390/app15158757
APA StylePagnotta, E., Righetti, L., Micheletti, G., Boga, C., Massafra, A., Ugolini, L., Malaguti, L., Matteo, R., Nicoletti, F., Colombo, R., Fricano, A., & Bassolino, L. (2025). Effect of Sodium Sulfate Treatment on the Modulation of Aliphatic Glucosinolates in Eruca sativa Mill Organs at Flowering Stage. Applied Sciences, 15(15), 8757. https://doi.org/10.3390/app15158757