Pelleted Sulla Forage (Hedysarum coronarium L.) as a Resource for Sheep Feeding Systems: In Vitro Nutritional Value and Sustainability Perspectives
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemical Composition
2.3. Determination of Condensed Tannins and Total Polyphenols
2.4. In Vitro Fermentation Test
2.5. Final Fermentation Products
2.6. Data Processing and Statistical Analysis
3. Results
3.1. Exp 1 Sulla Forages: Comparison of Different Preservation Systems
3.2. Exp 2 Comparison of Different Parts of the Sulla Plant
4. Discussion
4.1. Sulla Forages: Comparison of Different Preservation Systems
4.2. Nutritional Characteristics of Different Parts of the Sulla Plant
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | dry matter |
CP | crude protein |
EE | ether extract |
NDF | neutral detergent fiber |
ADF | acid detergent fiber |
ADL | acid detergent lignin |
NSC | non-structural carbohydrate |
ME | metabolizable energy |
dOM | organic matter degradability |
OMCV | organic matter cumulative volume |
Tmax | time at which maximum rate was reached |
Rmax | maximum fermentation rate |
MSE | mean square error |
VFAs | total volatile fatty acids |
Ace | acetate |
Pro | propionate |
Iso-but | iso-butyrate |
But | butyrate |
Iso-Val | iso-valerate |
Val | valerate |
BCFA | Branched-chain fatty acid |
A/P | acetate to propionate ratio |
CT | condensed tannins |
TP | total polyphenols |
PUFAs | polyunsaturated fatty acids |
NS | not significant |
S1C_F | sulla 1st cut fresh |
S2C_F | sulla 2nd cut fresh |
S1C_P | sulla 1st cut pelleted |
S2C_P | sulla 2nd cut pelleted |
S_H | sulla hay |
OM | organic matter |
A | asymptotic gas production |
B | time at which one-half of A is reached |
C | is the curve switch |
a | acetic |
p | propionic |
b | butyric |
GP | gas production obtained in vitro after 24 h of incubation |
References
- Ruisi, P.; Siragusa, M.; Di Giorgio, G.; Graziano, D.; Amato, G.; Carimi, F.; Giambalvo, D. Pheno-morphological, agronomic and genetic diversity among natural populations of sulla (Hedysarum coronarium L.) collected in Sicily, Italy. Genet. Resour. Crop. Evol. 2011, 58, 245–257. [Google Scholar] [CrossRef]
- Jeddi, F. Hedysarum coronarium L.: Variation Génétique, Création Varietale et Utilisation dans des Rotations Tunisiennes. Ph.D. Thesis, Université de Gent Belgique, Ghent, Belgium, 2005; 216p. [Google Scholar]
- ISTAT, The Italian National Institute of Statistics. IstatData. The Italian National Institute of Statistics Data Warehouse. 2023. Available online: https://esploradati.istat.it/ (accessed on 9 June 2025).
- Pires, T.C.S.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- El Yemlahi, A.; Abdelhay, A.; Laglaoui, A.; Ayadi, M.; Douaik, A.; Bakkali, M. Potential contribution of Sulla spinosissima subsp. capitata and Sulla pallida as a forage crop in arid Mediterranean regions. Arid Land Res. Manag. 2024, 38, 382–408. [Google Scholar]
- Foster, K. Sulla (Hedysarum coronarium); Bulletin 4690; Department of Agriculture and Food Western Australia: Perth, Australia, 2010. [Google Scholar]
- Burke, J.L.; Brookes, I.M.; McNabb, W.C.; Waghorn, G.C. The potential of sulla in pasture-based systems. Sci. Access 2004, 1, 25–28. [Google Scholar]
- Tava, A.; Biazzi, E.; Ronga, D.; Mella, M.; Doria, F.; D’Addabbo, T.; Candido, V.; Avato, P. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in southern Italy. Molecules 2021, 26, 4606. [Google Scholar] [CrossRef] [PubMed]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef]
- Kiatti, D.D.; Koura, B.I.; Vastolo, A.; Chiacchio, M.F.; Vitaglione, P.; Dossa, L.H.; Calabrò, S. Sustainable ruminant nutrition in West Africa by in vitro characterization of cashew apple by-products. Heliyon 2024, 10, e37737. [Google Scholar] [CrossRef]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014, 69, 32–48. [Google Scholar] [CrossRef]
- Vastolo, A.; Mora, B.; Kiatti, D.D.; Nocerino, M.; Haroutounian, S.; Baka, R.D.; Calabrò, S. Assessment of the effect of agro-industrial by-products rich in polyphenols on in vitro fermentation and methane reduction in sheep. Front. Vet. Sci. 2025, 12, 1530419. [Google Scholar] [CrossRef]
- Benyoussef, S.; Abidi, S.; Khalfallah, G.; Zehani, M.S.; Zoghlami-Khelil, A.; Salem, H.B. Nutritional and anti-nutritional characterization of six Tunisian local forage legumes species. CIHEAM Options Méditerranéennes Série A Séminaires Méditerranéens 2016, 114, 221–224. [Google Scholar]
- Amato, G.; Di Miceli, G.; Giambalvo, D.; Scarpello, C.; Stringi, L. Condensed Tannins Content in Sulla (Hedysarum coronarium L.) as Affected by Environment, Genotype and Growth Stage. In Bioactive Compounds in Pasture Species for Phytotherapy and Animal Welfare; CNR-ISPAAM: Sassari, Italy, 2005; pp. 41–54. [Google Scholar]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Waghorn, G.C. Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef]
- Ponte, M.; Maniaci, G.; Di Grigoli, A.; Gannuscio, R.; Ashkezary, M.R.; Addis, M.; Pipi, M.; Alabiso, M.; Todaro, M.; Bonanno, A. Feeding Dairy Ewes with Fresh or Dehydrated Sulla (Sulla coronarium L.) Forage. 2. Effects on Cheese Enrichment in Bioactive Molecules. Animals 2022, 12, 2462. [Google Scholar] [CrossRef]
- Gannuscio, R.; Ponte, M.; Di Grigoli, A.; Maniaci, G.; Di Trana, A.; Bacchi, M.; Todaro, M. Feeding dairy ewes with fresh or dehydrated sulla (Sulla coronarium L.) Forage. 1. Effects on feed utilization, milk production, and oxidative status. Animals 2022, 12, 2317. [Google Scholar] [CrossRef] [PubMed]
- Gladine, C.; Rock, E.; Morand, C.; Cauchart, D.; Durand, D. Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br. J. Nutr. 2007, 98, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Soldado, D.; Bessa, R.J.; Jerónimo, E. Condensed Tannins as Antioxidants in Ruminants Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals 2012, 11, 3243. [Google Scholar] [CrossRef]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Nitasha Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent updates on bioaccessibility of phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 22nd ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2023; p. 4. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstick, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyniadin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). Determination of Substances Characteristic of Green and Black Tea. Part 1: Content of Total Polyphenols in Tea. In Colorimetric Method Using Folin-Ciocalteu Reagent; International Organization for Standardization: Geneva, Switzerland, 2005; Volume 14502-1, p. 28. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Calabro, S.; Cutrignelli, M.I.; Bovera, F.; Piccolo, G.; Infascelli, F. In vitro fermentation kinetics of carbohydrate fractions of fresh forage, silage and hay of Avena sativa. J. Sci. Food Agric. 2005, 85, 1838–1844. [Google Scholar] [CrossRef]
- Musco, N.; Koura, I.B.; Tudisco, R.; Awadjihè, G.; Adjolohoun, S.; Cutrignelli, M.I.; Mollica, M.P.; Houinato, M.; Infascelli, F.; Calabrò, S. Nutritional characteristics of forage grown in south of Benin. Asian-Australas. J. Anim. Sci. 2016, 29, 51–61. [Google Scholar] [CrossRef]
- Groot, J.C.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Blümmel, M.; Aiple, K.P.; Steingaβ, H.; Becker, K. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 1999, 81, 157–167. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Bonanno, A.; Di Miceli, G.; Di Grigoli, A.; Frenda, A.S.; Tornambè, G.; Giambalvo, D.; Amato, G. Effects of feeding green forage of sulla (Hedysarum coronarium L.) on lamb growth and carcass and meat quality. Animal 2011, 5, 148–154. [Google Scholar] [CrossRef]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Borreani, G.; Tabacco, E.; Grignani, C. Quantificazione dell’azotofissazione nelle leguminose foraggere. Riv. Di Agron. 2003, 37, 21–31. [Google Scholar]
- Guglielmelli, A.; Calabro, S.; Primi, R.; Carone, F.; Cutrignelli, M.I.; Tudisco, R.; Danieli, P.P. In vitro fermentation patterns and methane production of sainfoin (Onobrychis viciifolia Scop.) hay with different condensed tannin contents. Grass Forage Sci. 2011, 66, 488–500. [Google Scholar] [CrossRef]
- Tibe, O.; Meagher, L.P.; Fraser, K.; Harding, D.R. Condensed tannins and flavonoids from the forage legume sulla (Hedysarum coronarium). J. Agric. Food Chem. 2011, 59, 9402–9409. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, G.C. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Niezen, J.H.; Waghorn, T.S.; Charleston, W.A.G.; Waghorn, G.C. Growth and gastrointestinal nematode parasitism in lambs grazing either lucerne (Medicago sativa) or sulla (Hedysarum coronarium) which contains condensed tannins. J. Agric. Sci. 1995, 125, 281–289. [Google Scholar] [CrossRef]
- Cabiddu, A.; Molle, G.; Decandia, M.; Spada, S.; Fiori, M.; Piredda, G.; Addis, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: Effects on milk fatty acid profile. Lives. Sci. 2009, 123, 230–240. [Google Scholar] [CrossRef]
- Pipi, M. Potential of Sulla Forage (Sulla coronaria (L.) Medik) as a Tannniferous Feding Resources for Dairy Ewes. Ph.D. Thesis, University of Palermo, Palermo, Italy, 2025; pp. 11–12. [Google Scholar]
- Doane, P.H.; Pell, A.N.; Schofield, P. The effect of preservation method on the neutral detergent soluble fraction of forages. J. Anim. Sci. 1997, 75, 1140–1148. [Google Scholar] [CrossRef]
- Dentinho, M.T.P.; Bessa, R.J.B.; Belo, C.A.C.; Ribeiro, J.M.R. Effect of preservation method on the nutritive value of sulla (Hedysarum coronarium). Grassl. Sci. Eur. 2011, 11, 252–254. [Google Scholar]
- De Koning, C.; Schutz, P.; Howie, J. Sulla (Hedysarum coronarium) production sown with cover crops. Food security from sustainable agriculture. In Proceedings of the 15th Australian Agronomy Conference, Lincoln, New Zealand, 15–18 November 2010. [Google Scholar]
- Woodward, S.L.; Waghorn, G.C.; Lassey, K.R.; Laboyre, P. Does feeding sulla (Hedysarum coronarium) reduce methane emissions from dairy cows? Proc. N. Z. Soc. Anim. Prod. 2002, 62, 227–230. [Google Scholar]
Sample | DM | CP | EE | Ash | NDF | ADF | ADL | NSC | ME |
---|---|---|---|---|---|---|---|---|---|
% | % DM | MJ/kg DM | |||||||
S1C_F | 16.0 | 15.7 | 2.40 | 10.6 | 40.1 | 35.7 | 6.03 | 31.1 | 10.3 |
S2C_F | 19.5 | 14.7 | 2.55 | 10.1 | 46.4 | 43.4 | 8.16 | 24.7 | 9.34 |
S1C_P | 86.6 | 15.1 | 2.32 | 14.4 | 39.5 | 32.0 | 5.31 | 28.7 | 9.64 |
S2C_P | 87.8 | 11.3 | 2.65 | 12.4 | 52.5 | 41.8 | 7.17 | 21.2 | 6.54 |
S_H | 90.2 | 11.8 | 1.39 | 11.5 | 54.8 | 42.9 | 7.88 | 20.5 | 6.91 |
Sample | dOM | OMCV | Tmax | Rmax |
---|---|---|---|---|
% | mL/g | h | mL/h | |
S1C_F | 62.7 a | 237 ab | 1.46 c | 9.84 a |
S2C_F | 48.9 c | 222 bc | 0.27 d | 10.0 a |
S1C_P | 55.7 b | 246 a | 1.48 c | 9.86 a |
S2C_P | 66.1 a | 250 a | 2.51 b | 8.44 a |
S_H | 52.0 bc | 218 c | 3.69 a | 6.18 b |
p value | 0.0002 | 0.0006 | 4.56 × 106 | 0.0001 |
SEM | 0.91 | 0.89 | 0.87 | 0.55 |
Sample | Ace | Prop | Iso-But | But | Iso-Val | Val | VFA | BCFA | A/P |
---|---|---|---|---|---|---|---|---|---|
mM/g | % | ||||||||
S1C_F | 45.8 c | 14.8 b | 1.33 b | 6.60 b | 2.38 bc | 2.09 | 73.0 b | 6.50 bc | 3.96 bc |
S2C_F | 40.4 d | 14.4 b | 1.31 b | 4.03 c | 2.37 c | 1.60 | 64.1 c | 7.44 b | 3.51 d |
S1C_P | 53.4 a | 16.3 b | 1.59 b | 9.17 a | 3.78 a | 2.32 | 87.3 a | 9.11 a | 4.32 |
S2C_P | 50.2 b | 19.7 a | 2.25 a | 7.31 b | 2.80 b | 1.92 | 83.6 a | 7.24 b | 3.51 d |
S_H | 53.2 a | 16.0 b | 1.45 b | 8.84 a | 2.68 bc | 2.90 | 85.1 a | 6.13 c | 4.20 ab |
p value | 1.88 × 108 | 4.31 × 105 | 5.14 × 106 | 4.85 × 108 | 4.70 × 106 | 2.62 × 108 | 1.07 × 105 | 1.27 × 107 | 7.97 × 105 |
SEM | 0.72 | 0.46 | 0.28 | 0.70 | 0.32 | 0.32 | 0.99 | 0.40 | 0.18 |
Sample | DM | CP | EE | Ash | NDF | ADF | ADL | NSC | ME |
---|---|---|---|---|---|---|---|---|---|
% | % DM | MJ/kg DM | |||||||
S1C_F | |||||||||
Whole plant | 16.0 | 15.7 | 2.40 | 10.8 | 40.1 | 35.7 | 6.03 | 32.1 | 10.3 |
Flowers | 18.0 | 19.7 | 2.90 | 7.85 | 32.9 | 27.2 | 5.25 | 36.6 | 14.5 |
Leaves | 18.9 | 26.3 | 4.15 | 13.0 | 20.1 | 19.4 | 3.36 | 36.4 | 23.6 |
Stems | 13.6 | 8.61 | 1.21 | 9.25 | 53.5 | 46.6 | 7.77 | 27.4 | 4.88 |
S2C_F | |||||||||
Whole plant | 19.5 | 14.7 | 2.55 | 10.1 | 46.4 | 43.4 | 8.16 | 24.7 | 9.34 |
Flowers | 21.8 | 20.6 | 3.37 | 8.20 | 36.9 | 32.3 | 5.58 | 30.9 | 15.6 |
Leaves | 17.9 | 27.3 | 4.46 | 14.6 | 18.2 | 17.8 | 4.00 | 35.4 | 25.2 |
Stems | 18.6 | 6.51 | 1.30 | 8.63 | 63.3 | 59.8 | 11.1 | 20.3 | 3.86 |
Sample | dOM | OMCV | CH4 | CH4 | VFA | CT | TP |
---|---|---|---|---|---|---|---|
% | mL/g | mL/g | % gas tot | mM/g | g/kg DM | GAE g/kg DM | |
S1C_F | |||||||
Whole plant | 54.65 a | 98.64 | 25.47 a | 25.83 a | 42.98 a | 15.92 b | 21.12 b |
Flowers | 43.02 b | 91.31 | 19.04 b | 20.90 b | 34.95 b | 27.49 a | 39.47 a |
Leaves | 57.31 a | 100.3 | 26.22 a | 26.14 a | 43.29 a | 26.60 a | 36.50 a |
Stems | 37.09 c | 87.83 | 24.75 a | 28.27 a | 41.99 a | 7.74 c | 9.37 c |
S2 C_F | |||||||
Whole plant | 38.91 b | 100.11 | 17.23 b | 17.22 b | 29.86 c | 14.53 b | 19.21 b |
Flowers | 53.32 a | 111.95 | 38.39 a | 33.65 a | 63.99 a | 27.98 a | 32.46 a |
Leaves | 47.61 ab | 90.20 | 32.97 a | 36.55 a | 53.89 ab | 26.94 a | 38.16 a |
Stems | 39.97 b | 90.17 | 26.23 ab | 29.07 ab | 43.42 b | 3.13 c | 5.64 c |
P significance | |||||||
Effect cut | 0.17362 | 0.3670 | 0.1080 | 0.0327 | 0.1582 | 0.0026 | 0.0227 |
Effect plant part | 0.00839 | 0.1690 | 0.2000 | 0.0003 | 0.2221 | 5.41 × 101 | 6.1 × 108 |
Effect interaction | 0.00778 | 0.1050 | 0.0370 | 0.0395 | 0.0716 | 0.0010 | 0.0727 |
SEM | 1.09 | 0.95 | 1.52 | 1.26 | 1.90 | 1.82 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccirillo, B.; Ponte, M.; Pipi, M.; Di Grigoli, A.; Bonanno, A.; Cutrignelli, M.I.; Vastolo, A.; Calabrò, S. Pelleted Sulla Forage (Hedysarum coronarium L.) as a Resource for Sheep Feeding Systems: In Vitro Nutritional Value and Sustainability Perspectives. Animals 2025, 15, 2322. https://doi.org/10.3390/ani15152322
Piccirillo B, Ponte M, Pipi M, Di Grigoli A, Bonanno A, Cutrignelli MI, Vastolo A, Calabrò S. Pelleted Sulla Forage (Hedysarum coronarium L.) as a Resource for Sheep Feeding Systems: In Vitro Nutritional Value and Sustainability Perspectives. Animals. 2025; 15(15):2322. https://doi.org/10.3390/ani15152322
Chicago/Turabian StylePiccirillo, Barbara, Marialetizia Ponte, Marianna Pipi, Antonino Di Grigoli, Adriana Bonanno, Monica I. Cutrignelli, Alessandro Vastolo, and Serena Calabrò. 2025. "Pelleted Sulla Forage (Hedysarum coronarium L.) as a Resource for Sheep Feeding Systems: In Vitro Nutritional Value and Sustainability Perspectives" Animals 15, no. 15: 2322. https://doi.org/10.3390/ani15152322
APA StylePiccirillo, B., Ponte, M., Pipi, M., Di Grigoli, A., Bonanno, A., Cutrignelli, M. I., Vastolo, A., & Calabrò, S. (2025). Pelleted Sulla Forage (Hedysarum coronarium L.) as a Resource for Sheep Feeding Systems: In Vitro Nutritional Value and Sustainability Perspectives. Animals, 15(15), 2322. https://doi.org/10.3390/ani15152322