Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = NIO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4077 KiB  
Article
The Impact of Sm Promoter on the Catalytic Performance of Ni/Al2O3-SiO2 in Methane Partial Oxidation for Enhanced H2 Production
by Salwa B. Alreshaidan, Rasha S. A. Alanazi, Omalsad H. Odhah, Ahmed A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Naif Alarifi, Khaled M. Banabdwin, Sivalingam Ramesh and Ahmed S. Al-Fatesh
Catalysts 2025, 15(8), 721; https://doi.org/10.3390/catal15080721 (registering DOI) - 29 Jul 2025
Viewed by 182
Abstract
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% [...] Read more.
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% Ni-based catalysts supported on silica–alumina was used to test the POM at 600 °C. Sm additions ranged from 0 to 2 wt.%. Impregnation was used to create these catalysts, which were then calcined at 500 °C and examined using BET, H2-TPR, XRD, FTIR, TEM, Raman spectroscopy, and TGA methods. Methane conversion (57.85%) and hydrogen yield (56.89%) were greatly increased with an ideal Sm loading of 1 wt.%, indicating increased catalytic activity and stability. According to catalytic tests, 1 wt.% Sm produced high CH4 conversion and H2 production, as well as enhanced stability and resistance to carbon deposition. Nitrogen physisorption demonstrated a progressive decrease in pore volume and surface area with the addition of Sm, while maintaining mesoporosity. At moderate Sm loadings, H2-TPR and XRD analyses showed changes in crystallinity and increased NiO reducibility. Sm incorporation into the support and its impact on the ordering of carbon species were indicated by FTIR and Raman spectra. The optimal conditions to maximize H2 yield were successfully identified through optimization of the best catalyst, and there was good agreement between the theoretical predictions (87.563%) and actual results (88.39%). This displays how successfully the optimization approach achieves the intended outcome. Overall, this study demonstrates that the performance and durability of Ni-based catalysts for generating syngas through POM are greatly enhanced by the addition of a moderate amount of Sm, particularly 1 wt.%. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

11 pages, 4704 KiB  
Article
The Effect of Low-ΣCSL Grain Boundary Proportion on Molten Salt-Induced Hot Corrosion Behavior in Nickel-Based Alloy Welds
by Tingxi Chai, Youjun Yu, Hongtong Xu, Jing Han and Liqin Yan
Coatings 2025, 15(8), 882; https://doi.org/10.3390/coatings15080882 - 28 Jul 2025
Viewed by 193
Abstract
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy [...] Read more.
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy (OIM). A constant-temperature corrosion test at 900 °C was conducted to evaluate the impact of GBCD on the corrosion resistance of the welds. Results demonstrated that after processing with 6% tensile deformation, and annealing at 950 °C for 30 min, the fraction of low-ΣCSL grain boundaries increased from 1.2% in the as-welded condition to 57.3%, and large grain clusters exhibiting Σ3n orientation relationships were formed. During the heat treatment, an increased number of recrystallization nucleation sites led to a reduction in average grain size from 323.35 μm to 171.38 μm. When exposed to a high-temperature environment of 75% Na2SO4-25% NaCl mixed molten salt, the corrosion behavior was characterized by intergranular attack, with oxidation and sulfidation reactions resulting in the formation of NiO and Ni3S2. The corrosion resistance of Grain boundary engineering (GBE)-treated samples was significantly superior to that of Non-GBE samples, with respective corrosion rates of 0.3397 mg/cm2·h and 0.8484 mg/cm2·h. These findings indicate that grain boundary engineering can effectively modulate the grain boundary character distribution in Ni200 alloy welds, thereby enhancing their resistance to molten salt corrosion. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

18 pages, 2518 KiB  
Article
NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution
by Ana Andrea Méndez-Medrano, Xiaojiao Yuan, Diana Dragoe, Christophe Colbeau-Justin, José Luis Rodríguez López and Hynd Remita
Materials 2025, 18(15), 3513; https://doi.org/10.3390/ma18153513 - 26 Jul 2025
Viewed by 351
Abstract
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 [...] Read more.
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 with a p-type semiconductor, such as nickel oxide (NiO), forming a p-n heterojunction, decreases the recombination of charge carriers and increases photocatalytic activity. In this work, the surface of TiO2 modified with NiO nanoparticles (NPs) induced by radiolysis for photocatalytic hydrogen production was studied. The photocatalytic activity of NiO/TiO2 was evaluated using methanol as a hole scavenger under UV–visible light. All modified samples presented superior photocatalytic activity compared to bare TiO2. The dynamics of the charge carriers, a key electronic phenomenon in photocatalysis, was investigated by time-resolved microwave conductivity (TRMC). The results highlight the crucial role of Ni-based NPs modification in enhancing the separation of the charge carrier and activity under UV–visible irradiation. Furthermore, the results revealed that under visible irradiation, NiO-NPs inject electrons into the conduction band of titanium dioxide. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Nanoscale Nickel Oxide: Synthesis, Characterization, and Impact on Antibacterial Activity Against Representative Microorganisms
by Daniela Istrate, Mihai Oproescu, Ecaterina Magdalena Modan, Sorin Georgian Moga, Denis Aurelian Negrea and Adriana-Gabriela Schiopu
ChemEngineering 2025, 9(4), 77; https://doi.org/10.3390/chemengineering9040077 - 25 Jul 2025
Viewed by 185
Abstract
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an [...] Read more.
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an active field of research. This study aims to investigate the structural, morphological, and antibacterial properties of NiO nanoparticles synthesized via hydrolytic methods and thermally treated at different temperatures. XRD data indicate the presence of the hexagonal crystallographic phase of NiO (space group 166: R-3m), a structural variant less commonly reported in the literature, stabilized under mild hydrolytic synthesis conditions. The average crystallite size increases significantly from 4.97 nm at 300 °C to values of ~17.8 nm at 500–700 °C, confirming the development of the crystal lattice. The ATR-FTIR analysis confirms the presence of the characteristic Ni–O band for all samples, positioned between 367 and 383 cm−1, with a reference value of 355 cm−1 for commercial NiO. The displacements and variations in intensity reflect a thermal evolution of the crystalline structure, but also an important influence of the size of the crystallites and the agglomeration state. The results reveal a systematic evolution in particle morphology from porous, flake-like nanostructures at 300 °C to dense, well-faceted polyhedral crystals at 900 °C. With an increasing temperature, particle size increases. EDS spectra confirm the high purity of the NiO phase across all samples. Additionally, the NiO nanoparticles exhibit calcination-temperature-dependent antibacterial activity, with the complete inhibition of Escherichia coli and Enterococcus faecalis observed after 24 h for the sample calcined at 300 °C and over 90% CFU reduction within 4 h. A significant reduction in E. faecalis viability across all samples indicates time- and strain-specific bactericidal effects. Due to its remarkable multifunctionality, NiO has emerged as a strategic nanomaterial in fields ranging from energy storage and catalysis to antimicrobial technologies, where precise control over its structural phase and particle size is essential for optimizing performance. Full article
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 305
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

21 pages, 7922 KiB  
Article
Wnt/β-Catenin Signaling Regulates Hepatitis B Virus cccDNA Levels
by Atsuya Ishida, Sadahiro Iwabuchi, Ying-Yi Li, Kazuhisa Murai, Takayoshi Shirasaki, Kazuyuki Kuroki, Tetsuro Shimakami, Koki Nio, Kazunori Kawaguchi, Tadashi Imafuku, Satoru Ito, Taro Yamashita, Shuichi Kaneko, Hiroshi Yanagawa, Kouji Matsushima, Masao Honda and Shinichi Hashimoto
Int. J. Mol. Sci. 2025, 26(14), 6942; https://doi.org/10.3390/ijms26146942 - 19 Jul 2025
Viewed by 268
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes and has a complex life cycle owing to the stabilization and pooling of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. We previously reported that the suppression of dedicator of cytokinesis 11 (DOCK11) [...] Read more.
Hepatitis B virus (HBV) specifically infects hepatocytes and has a complex life cycle owing to the stabilization and pooling of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. We previously reported that the suppression of dedicator of cytokinesis 11 (DOCK11) decreases cccDNA and HBV-DNA levels and identified it as a new HBV therapeutic target. The DOCK11-associated gene, Wnt/β-catenin signaling regulator tankyrase (TNKS), was identified using in vitro methods; however, its function in the HBV life cycle remains unknown. Here, we used various inhibitors, antagonists, and short-hairpin RNA treatments related to TNKS signaling in HBV-infected hepatocytes. The role of TNKS-related Wnt/β-catenin signaling in the HBV life cycle was evaluated using immunoprecipitation assays with DOCK11 and bulk RNA sequencing methods. TNKS and Wnt/β-catenin signaling inhibitors significantly repressed cccDNA and HBV-DNA levels. Conversely, certain Wnt/β-catenin signaling agonists enhanced the HBV life cycle. DOCK11 directly binds to β-catenin to regulate HBV using its nuclear transport system. SKL2001, normally used as a Wnt/β-catenin signaling agonist, strongly reduced cccDNA in HBV-infected hepatocytes and in combination with entecavir predominantly eradicated HBV without cytotoxicity. Therefore, DOCK11 and other Wnt/β-catenin signaling molecules may be therapeutic targets to prevent persistent HBV infection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 1652 KiB  
Article
Evaluation of Binderless Briquettes as Potential Feed for the Electric Arc Furnaces at Barro Alto, Brazil
by Johnny Obakeng Mogalanyane, Natasia Naudé and Andrie Mariana Garbers-Craig
Minerals 2025, 15(7), 756; https://doi.org/10.3390/min15070756 - 19 Jul 2025
Viewed by 230
Abstract
Barro Alto processes nickel laterite ore using rotary kilns and six-in-line rectangular electric arc furnaces. This study evaluated the briquetting of ferronickel ore to reduce kiln fines, improve furnace charge permeability, and enhance process safety. Binderless briquettes were produced from screened ore at [...] Read more.
Barro Alto processes nickel laterite ore using rotary kilns and six-in-line rectangular electric arc furnaces. This study evaluated the briquetting of ferronickel ore to reduce kiln fines, improve furnace charge permeability, and enhance process safety. Binderless briquettes were produced from screened ore at two size fractions (−6.3 mm and −12.5 mm), with moisture contents of 16% and 24%, cured under closed and open conditions. The physical and metallurgical properties of the briquettes were assessed using ISO standard tests. The results confirmed successful agglomeration of the ore into binderless briquettes. Screening the run-of-mine (ROM) ore improved the feed quality, increasing the NiO grade from 2.0% to 2.2% in the −6.3 mm fraction. The briquettes from the −6.3 mm ore at 16% moisture exhibited the highest green strength (559 N). Higher moisture content reduced the briquette strength and increased both the reduction disintegration and decrepitation indices. The decrepitation index increased from 0.33% to 0.61% for the −6.3 mm briquettes when the moisture increased from 16% to 24%. The reduction levels were 33.4% and 39.2% for −6.3 mm and −12.5 mm briquettes with 16% moisture, respectively. This study concludes that optimal performance was achieved using −6.3 mm ore, 16% moisture, and open curing, thereby balancing reduction efficiency and mechanical stability. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 533 KiB  
Article
Comparative Analysis of Deep Learning Models for Intrusion Detection in IoT Networks
by Abdullah Waqas, Sultan Daud Khan, Zaib Ullah, Mohib Ullah and Habib Ullah
Computers 2025, 14(7), 283; https://doi.org/10.3390/computers14070283 - 17 Jul 2025
Viewed by 276
Abstract
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of [...] Read more.
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of detecting intrusions in IoT environments by evaluating the performance of deep learning (DL) models under different data and algorithmic conditions. We conducted a comparative analysis of three widely used DL models—Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Bidirectional LSTM (biLSTM)—across four benchmark IoT intrusion detection datasets: BoTIoT, CiCIoT, ToNIoT, and WUSTL-IIoT-2021. Each model was assessed under balanced and imbalanced dataset configurations and evaluated using three loss functions (cross-entropy, focal loss, and dual focal loss). By analyzing model efficacy across these datasets, we highlight the importance of generalizability and adaptability to varied data characteristics that are essential for real-world applications. The results demonstrate that the CNN trained using the cross-entropy loss function consistently outperforms the other models, particularly on balanced datasets. On the other hand, LSTM and biLSTM show strong potential in temporal modeling, but their performance is highly dependent on the characteristics of the dataset. By analyzing the performance of multiple DL models under diverse datasets, this research provides actionable insights for developing secure, interpretable IoT systems that can meet the challenges of designing a secure IoT system. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

21 pages, 9529 KiB  
Article
Development of a Highly Reliable PbS QDs-Based SWIR Photodetector Based on Metal Oxide Electron/Hole Extraction Layer Formation Conditions
by JinBeom Kwon, Yuntae Ha, Suji Choi and Donggeon Jung
Nanomaterials 2025, 15(14), 1107; https://doi.org/10.3390/nano15141107 - 16 Jul 2025
Viewed by 272
Abstract
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they [...] Read more.
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they have low safety because they use the near-infrared (NIR) region that can damage the retina. Therefore, they are difficult to apply to automation technologies such as automobiles and factories where humans can be constantly exposed. In contrast, short-wavelength infrared photodetectors based on PbS QDs are actively being developed because they can absorb infrared rays in the eye-safe region by controlling the particle size of QDs and can be easily and inexpensively manufactured through a solution process. However, PbS QDs-based SWIR photodetectors have low chemical stability due to the electron/hole extraction layer processed by the solution process, making it difficult to manufacture them in the form of patterning and arrays. In this study, bulk NiO and ZnO were deposited by sputtering to achieve uniformity and patterning of thin films, and the performance of PbS QDs-based photodetectors was improved by optimizing the thickness and annealing conditions of the thin films. The fabricated photodetector achieved a high response characteristic of 114.3% through optimized band gap and improved transmittance characteristics. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Figure 1

29 pages, 3791 KiB  
Article
Production of Sustainable Synthetic Natural Gas from Carbon Dioxide and Renewable Energy Catalyzed by Carbon-Nanotube-Supported Ni and ZrO2 Nanoparticles
by João Pedro Bueno de Oliveira, Mariana Tiemi Iwasaki, Henrique Carvalhais Milanezi, João Lucas Marques Barros, Arnaldo Agostinho Simionato, Bruno da Silva Marques, Carlos Alberto Franchini, Ernesto Antonio Urquieta-González, Ricardo José Chimentão, José Maria Corrêa Bueno, Adriana Maria da Silva and João Batista Oliveira dos Santos
Catalysts 2025, 15(7), 675; https://doi.org/10.3390/catal15070675 - 11 Jul 2025
Viewed by 469
Abstract
The production of synthetic natural gas in the context of power-to-gas is a promising technology for the utilization of CO2. Ni-based catalysts supported on carbon nanotubes (CNTs) were prepared through incipient wetness impregnation and characterized using N2 adsorption, X-ray diffraction [...] Read more.
The production of synthetic natural gas in the context of power-to-gas is a promising technology for the utilization of CO2. Ni-based catalysts supported on carbon nanotubes (CNTs) were prepared through incipient wetness impregnation and characterized using N2 adsorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and temperature-programmed reduction (TPR). The catalysts were tested for CO2 methanation in the 200–400 °C temperature range and at atmospheric pressure. The results demonstrated that the catalytic activity increased with the addition of the CNTs and Ni loading. The selectivity towards CH4 was close to 100% for the Ni/ZrO2/CNT catalysts. Reduction of the calcined catalyst at 500 °C using H2 modified the surface chemistry of the catalyst, leading to an increase in the Ni particles. The CO2 conversion was dependent on the Ni loading and the temperature reduction in the NiO species. The 10Ni/ZrO2/CNT catalyst was highly stable in CO2 methanation at 350 °C for 24 h. Thus, CNTs combined with Ni and ZrO2 were considered promising for use as catalysts in CO2 methanation at low temperatures. Full article
Show Figures

Graphical abstract

17 pages, 5900 KiB  
Article
Thermally Induced Phase Transformation of Ni-Exchanged LTA Zeolite as an Alternative Route of Obtaining Stable Ni-Spinel Pigment
by Miomir Krsmanović, Aleksandar Popović, Smilja Marković, Bojana Milićević, Dušan Bučevac, Marjetka Savić and Mia Omerašević
Materials 2025, 18(14), 3225; https://doi.org/10.3390/ma18143225 - 8 Jul 2025
Viewed by 299
Abstract
This study investigates the thermally induced phase transformation of Ni-exchanged LTA zeolite as a dual-purpose method for nickel immobilization and the synthesis of stable ceramic pigments. The process describes a cost-effective and sustainable alternative to conventional pigment production, aligning with circular economy principles. [...] Read more.
This study investigates the thermally induced phase transformation of Ni-exchanged LTA zeolite as a dual-purpose method for nickel immobilization and the synthesis of stable ceramic pigments. The process describes a cost-effective and sustainable alternative to conventional pigment production, aligning with circular economy principles. Upon thermal treatment at temperatures ranging between 900 °C and 1300 °C, Ni-exchanged LTA zeolite undergoes a transformation to NiAl2O4 spinel, confirmed by XRPD, FTIR, and thermal analysis. Initially, NiO is formed, but as the temperature increases, it dissolves and transforms into NiAl2O4. Colorimetric studies revealed intensified blue pigmentation with increasing temperature, correlating with crystallite growth and structural evolution. SEM analysis showed morphological changes from cubic particles to sintered agglomerates, enhancing pigment stability and hardness. The Ni-LTA sample calcined at 1300 °C showed the highest hue angle, which was consistent with the formation of over 99 wt.% of the nickel aluminate crystalline phase at this temperature. The results demonstrate that Ni-LTA zeolite can be effectively transformed into durable greenish-blue pigments suitable for application in porcelain. This transformation is especially evident at 1300 °C, where a spinel phase (NiAlSi2O4) forms, with colorimetric values: L = 58.94, a* = –16.08, and b* = –15.90. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

24 pages, 4363 KiB  
Article
Ni Supported on Pr-Doped Ceria as Catalysts for Dry Reforming of Methane
by Antonella R. Ponseggi, Amanda de C. P. Guimarães, Renata O. da Fonseca, Raimundo C. Rabelo-Neto, Yutao Xing, Andressa A. A. Silva, Fábio B. Noronha and Lisiane V. Mattos
Processes 2025, 13(7), 2119; https://doi.org/10.3390/pr13072119 - 3 Jul 2025
Viewed by 426
Abstract
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with [...] Read more.
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with varying Pr contents (0–80 mol%) were synthesized, calcined at 1200 °C, and tested for dry reforming of methane (DRM), aiming at their application as catalytic layers in SOFC anodes. Physicochemical characterization (XRD, TPR, TEM) showed that increasing Pr loading enhances catalyst reducibility and promotes the formation of the Pr2NiO4 phase, which contributes to the generation of smaller Ni0 particles after reduction. Catalytic tests revealed that all samples exhibited low-carbon deposition, attributed to the large Ni crystallites. The catalyst with 80 mol% Pr showed the best performance, achieving the highest CH4 conversion (72%), a H2/CO molar ratio of 0.89, and improved stability. These findings suggest that Ni/Ce0.2Pr0.8 could be a promising candidate for use as a catalyst layer of anodes in DIR-SOFC anodes. Although electrochemical data are not yet available, future work will evaluate the catalyst’s performance and durability under SOFC-relevant conditions. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

20 pages, 4689 KiB  
Article
Novel Core–Shell Metal Oxide Nanofibers with Advanced Optical and Magnetic Properties Deposited by Co-Axial Electrospinning
by Roman Viter, Viktor Zabolotnii, Martin Sahul, Mária Čaplovičová, Iryna Tepliakova, Viesturs Sints and Ambra Fioravanti
Nanomaterials 2025, 15(13), 1026; https://doi.org/10.3390/nano15131026 - 2 Jul 2025
Viewed by 390
Abstract
Co-axial electrospinning is one of the facile methods for the fabrication of core–shell metal oxides for environmental applications. Indeed, core–shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and [...] Read more.
Co-axial electrospinning is one of the facile methods for the fabrication of core–shell metal oxides for environmental applications. Indeed, core–shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and pollutant removal via magnetic separation. This study focuses on the fabrication of novel Fe3O4-Fe2NiO4/NiO core–shell nanofibers with enhanced optical and magnetic properties using co-axial electrospinning. The aim is to optimize the fabrication parameters, particularly the amount of metal precursor in the starting solutions, to achieve well-defined core and shell structures (rather than single-phase spinels), and to investigate phase transitions, structural characteristics, as well as the optical and magnetic properties of the resulting nanofibers. Raman, XRD, and XPS results show several phases and high defect concentration in the NiO shell. The Fe3O4-Fe2NiO4/NiO core–shell nanofibers exhibit strong visible-light absorption and significant magnetization. These advanced properties highlight their potential in photocatalytic applications. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

14 pages, 3484 KiB  
Article
Al2O3@SiO2 Supported NiMo Catalyst with Hierarchical Meso-Macroporous Structure for Hydrodemetallization
by Weichu Li, Jun Bao, Shuangqin Zeng, Jinbao Zheng, Weiping Fang, Xiaodong Yi, Qinghe Yang and Weikun Lai
Catalysts 2025, 15(7), 646; https://doi.org/10.3390/catal15070646 - 1 Jul 2025
Viewed by 374
Abstract
The pore structure of a hydrotreating catalyst plays a pivotal role in hydrodemetallization (HDM) reactions. To effectively construct a meso-macroporous catalyst, we employed a CTAB-guided in situ TEOS hydrolysis approach to prepare silica-coated γ-Al2O3@SiO2 composite supports. The silica [...] Read more.
The pore structure of a hydrotreating catalyst plays a pivotal role in hydrodemetallization (HDM) reactions. To effectively construct a meso-macroporous catalyst, we employed a CTAB-guided in situ TEOS hydrolysis approach to prepare silica-coated γ-Al2O3@SiO2 composite supports. The silica shell incorporation significantly enhances specific surface area and reduces the metal–support interactions, thereby improving the dispersion of NiMo active components and boosting the deposition of metal impurity. Hence, the NiMo/Al2O3@SiO2 catalyst (2.8 wt.% NiO, 4.3 wt.% MoO3) exhibits much higher HDM activity than that of NiMo/Al2O3. This is evidenced by markedly higher demetallization rate constant (1.38 h−1) and turnover frequency (0.56 h−1) of the NiMo/Al2O3@SiO2. The NiMo/Al2O3@SiO2 catalyst further demonstrates excellent recyclability during sequential HDM reactions. This superior catalytic behavior stems from the hierarchical meso-macroporous structure, which simultaneously facilitates the deposition of metal impurities and mitigates deactivation by pore blockage. Full article
Show Figures

Graphical abstract

20 pages, 3790 KiB  
Article
Fabrication of CF–NiO Electrodes and Performance Evaluation of Microbial Fuel Cells in the Treatment of Potato Starch Wastewater
by Tianyi Yang, Song Xue, Liming Jiang, Jiuming Lei, Wenjing Li, Yiwei Han, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 760; https://doi.org/10.3390/coatings15070760 - 27 Jun 2025
Viewed by 508
Abstract
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its [...] Read more.
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its electrode performance, thereby enhancing the electricity generation capacity of MFCs during the degradation of treated wastewater. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy diffusion spectrometer (EDS) analyses confirmed the successful deposition of NiO on the CF surface. The modification enhanced both the conductivity and capacitance of the electrode and increased the number of microbial attachment sites on the carbon fiber filaments. The prepared CF–NiO electrode was employed as the anode in an MFC, and its electrochemical and energy storage performance were evaluated. The maximum power density of the MFC with the CF–NiO anode reached 0.22 W/m2, compared to 0.08 W/m2 for the unmodified CF anode. Under the C1000-D1000 condition, the charge storage capacity and total charge output of the CF–NiO anode were 1290.03 C/m2 and 14,150.03 C/m2, respectively, which are significantly higher than the 452.9 C/m2 and 6742.67 C/m2 observed for the CF anode. These results indicate notable improvements in both power generation and energy storage performance. High-throughput gene sequencing of the anodic biofilm following MFC acclimation revealed that the CF–NiO anode surface hosted a higher proportion of electroactive bacteria. This suggests that the NiO modification enhances the biodegradation of organic matter and improves electricity generation efficiency. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

Back to TopTop