Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = Monilinia fructicola

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1884 KiB  
Article
The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study
by Catalina Ferreira, Valentina Silva, Evelyn Muñoz, Gissella Valle, Manuel Martínez-Lobos, Francisca Valdés, Katy Díaz, Iván Montenegro, Patricio Godoy, Nelson Caro and Alejandro Madrid
Agriculture 2025, 15(9), 983; https://doi.org/10.3390/agriculture15090983 - 1 May 2025
Viewed by 524
Abstract
Monilinia fructicola causes brown rot on a wide variety of stone fruits, causing several losses in the field and during storage of fruits. Due to the diverse biological activity of chalcones and their derivatives, they have emerged as a promising alternative for controlling [...] Read more.
Monilinia fructicola causes brown rot on a wide variety of stone fruits, causing several losses in the field and during storage of fruits. Due to the diverse biological activity of chalcones and their derivatives, they have emerged as a promising alternative for controlling phytopathogenic fungi. The aim of this study was to synthesize 3′,4′-methylenedioxychalcone derivatives and evaluate their in vitro inhibitory effect on mycelial growth and the conidial germination of M. fructicola. Additionally, a molecular docking study and the prediction of lipophilicity were carried out to investigate their chemical behavior. The results showed that compound F exhibited the most potent antifungal activity, with EC50 and MIC values of 20.61 µg/mL and <10 µg/mL for mycelial growth and conidial germination, respectively, presenting an adequate lipophilicity (Log p values = 2.79), which would allow proper diffusion through the fungal cell membrane. The in silico study revealed a great number of interactions between compound F and the different active sites of the succinate dehydrogenase enzyme, suggesting a favorable interaction with a binding energy score value of −6.9 kcal/mol, similar to CBE, the native ligand of this enzyme. These types of compounds could provide preventive protection in various stone and other crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

19 pages, 1996 KiB  
Article
Development of Antimicrobial Coatings from Ficus carica Latex for Improving the Quality of Dried Figs
by Yesuneh Gizaw, Rocío Casquete, María del Carmen Caballero, María de Guía Córdoba and María José Benito
Foods 2025, 14(9), 1562; https://doi.org/10.3390/foods14091562 - 29 Apr 2025
Viewed by 622
Abstract
To carry out this work, latex from Ficus carica was obtained for the production of coatings, the characteristics of the produced coatings were analyzed, and their application on dried figs was evaluated. Work was conducted to obtain latex and produce coatings, optimizing the [...] Read more.
To carry out this work, latex from Ficus carica was obtained for the production of coatings, the characteristics of the produced coatings were analyzed, and their application on dried figs was evaluated. Work was conducted to obtain latex and produce coatings, optimizing the mixture and determining its properties. Additionally, the shelf life of coated fruits was studied. The results showed that the coatings had a milky white color, a thickness between 0.04 mm and 0.09 mm, a moisture content close to 25%, and a water solubility ranging from 80% to 98.73%. The 10% latex coatings showed better elasticity and resistance, being selected for the shelf life study. The optimal formulations selected were 28, 29, and 31, all with 10% latex. These coatings exhibited interesting antimicrobial activities against bacteria Escherichia coli, Staphylococcus aureus, and Salmonella choleraesuis and antifungal activity against Botrytis cinerea, Penicillium expansum, Aspergillus flavus, and Monilinia fructicola. When applied to dried figs, it was observed that the appearance of the figs did not visibly change. Antioxidant activity was highest in batch 28, which also showed less microbiology and lower hardness at 60 days. Thus, coatings not only helped maintain the natural color of the fruits but also preserved their freshness and overall quality for a longer period. This makes them an effective and sustainable solution for the food industry. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 4136 KiB  
Article
Unlocking Nature’s Microbial Defenders: Genetic Mechanisms and Potential Against Monilinia spp. Pathogens
by Augustina Kolytaitė, Ingrida Mažeikienė, Monika Kurgonaitė, Saulė Raklevičiūtė, Gabija Paškevičiūtė and Birutė Frercks
Microorganisms 2025, 13(4), 818; https://doi.org/10.3390/microorganisms13040818 - 3 Apr 2025
Cited by 1 | Viewed by 544
Abstract
Monilinia spp., which causes brown rot, is one of the most damaging pathogens in stone fruits. Researchers are exploring epiphytic and endophytic microorganisms with the potential to suppress pathogens, control pathogenic microorganisms, and/or promote plant growth. In this study, microorganisms with antagonistic activity [...] Read more.
Monilinia spp., which causes brown rot, is one of the most damaging pathogens in stone fruits. Researchers are exploring epiphytic and endophytic microorganisms with the potential to suppress pathogens, control pathogenic microorganisms, and/or promote plant growth. In this study, microorganisms with antagonistic activity against three Monilinia species were isolated from plum orchard soil and plum fruits. Antagonism tests in vitro showed strong antagonistic properties of six strains of bacteria and two yeast-like fungi against M. fructigena, M. fructicola, and M. laxa, with growth inhibition from 45.5 to 84.6%. The antagonists were identified and characterized at the genetic level using whole genome sequencing (WGS). Genes involved in antibiotic resistance, virulence, secondary metabolite synthesis, and plant growth promotion were identified and characterized through genome mapping, gene prediction, and annotation. None of the microorganisms studied were predicted to be pathogenic to humans. The results of this study indicate that the bacteria Bacillus pumilus, B. velezensis, two strains of Lysinibacillus agricola, Pseudomonas chlororaphis isolated from stone fruit orchard soil, and the yeast-like fungus Aureobasidium pullulans, isolated from plums, are promising candidates for the biological control of Monilinia spp. Full article
Show Figures

Figure 1

21 pages, 4871 KiB  
Article
Validation of Monilinia fructicola Putative Effector Genes in Different Host Peach (Prunus persica) Cultivars and Defense Response Investigation
by Lucia Landi, Annamaria Lucrezia D’Ortenzio, Sarah Mojela Makau, Rita Milvia De Miccolis Angelini and Gianfranco Romanazzi
J. Fungi 2025, 11(1), 39; https://doi.org/10.3390/jof11010039 - 6 Jan 2025
Cited by 1 | Viewed by 1271
Abstract
Monilinia fructicola is the most common and destructive brown rot agent on peaches. Knowledge of gene expression mediating host–pathogen interaction is essential to manage fungal plant diseases. M. fructicola putative virulence factors have been predicted by genome investigations. The pathogen interaction with the [...] Read more.
Monilinia fructicola is the most common and destructive brown rot agent on peaches. Knowledge of gene expression mediating host–pathogen interaction is essential to manage fungal plant diseases. M. fructicola putative virulence factors have been predicted by genome investigations. The pathogen interaction with the host was validated. Five M. fructicola isolates were inoculated on two cultivars (cv.s) of peach (Prunus persica (L.) Batsch) ‘Royal Summer’ and ‘Messapia’ with intermediate and late ripening periods, respectively. The expression pattern of 17 candidate effector genes of M. fructicola with functions linked to host invasion and fungal life, and seven peach genes involved in the immune defense system were monitored at 0, 2, 6, 10, and 24 h-post inoculation (hpi). All fungal isolates induced similar brown rot lesions on both cv.s whereas the modulation of effector genes was regulated mainly at 2, 6, and 10 hpi, when disease symptoms appeared on the fruit surface, confirming the involvement of effector genes in the early infection stage. Although differences were observed among the fungal isolates, the principal component investigation identified the main differences linked to the host genotype. The salicylic acid and jasmonate/ethylene signaling pathways were differently modulated in the host independent from the fungal isolate used for inoculation. On plants susceptible to brown rot, the pathogen may have adapted to the host’s physiology by modulating its effectors as weapons. Full article
(This article belongs to the Special Issue New Perspectives on Brown Rot Fungi)
Show Figures

Figure 1

12 pages, 4515 KiB  
Article
Control of Peach Brown Rot Disease Produced by Monilinia fructicola and Monilinia laxa Using Benzylidene-Cycloalkanones
by Alejandro Madrid, Valentina Silva, Constanza Reyes, Enrique Werner, Ximena Besoain, Iván Montenegro, Evelyn Muñoz and Katy Díaz
J. Fungi 2024, 10(9), 609; https://doi.org/10.3390/jof10090609 - 27 Aug 2024
Cited by 1 | Viewed by 1428
Abstract
Fruit rots caused by filamentous fungi such as Monilinia fructicola and Monilinia laxa have a strong impact on crop yield and fruit commercialization, especially as they affect a wide variety of stone fruits. The antifungal efficacy of benzylidene-cycloalkanones has been previously described in [...] Read more.
Fruit rots caused by filamentous fungi such as Monilinia fructicola and Monilinia laxa have a strong impact on crop yield and fruit commercialization, especially as they affect a wide variety of stone fruits. The antifungal efficacy of benzylidene-cycloalkanones has been previously described in in vitro assays against M. fructicola; so, this study aims to evaluate the in vivo inhibitory potential of these hybrids on fruits that have been inoculated with M. fructicola, and use molecular docking to visualize the main interactions of these molecules in the active site of the enzyme succinate dehydrogenase (SDH). The results indicate that compound C achieves the highest inhibition of both Monilinia species (15.7–31.4 µg/mL), spore germination in vitro (<10 µg/mL), and has promising results in vivo, without causing phytotoxicity in fruits. The results from molecular docking suggest that hydroxyl groups play a crucial role in enhancing the binding of compound C to SDH and contribute to the formation of hydrogen bonds with amino acid residues on the enzyme active site. Full article
(This article belongs to the Special Issue New Perspectives on Brown Rot Fungi)
Show Figures

Figure 1

17 pages, 3828 KiB  
Article
Efficacy of Essential Oil Vapours in Reducing Postharvest Rots and Effect on the Fruit Mycobiome of Nectarines
by Giulia Remolif, Fabio Buonsenso, Giada Schiavon, Marco Garello and Davide Spadaro
J. Fungi 2024, 10(5), 341; https://doi.org/10.3390/jof10050341 - 8 May 2024
Cited by 7 | Viewed by 1838
Abstract
Nectarines can be affected by many diseases, resulting in significant production losses. Natural products, such as essential oils (EOs), are promising alternatives to pesticides to control storage rots. This work aimed to test the efficacy of biofumigation with EOs in the control of [...] Read more.
Nectarines can be affected by many diseases, resulting in significant production losses. Natural products, such as essential oils (EOs), are promising alternatives to pesticides to control storage rots. This work aimed to test the efficacy of biofumigation with EOs in the control of nectarine postharvest diseases while also evaluating the effect on the quality parameters (firmness, total soluble solids, and titratable acidity) and on the fruit fungal microbiome. Basil, fennel, lemon, oregano, and thyme EOs were first tested in vitro at 0.1, 0.5, and 1.0% concentrations to evaluate their inhibition activity against Monilinia fructicola. Subsequently, an in vivo screening trial was performed by treating nectarines inoculated with M. fructicola, with the five EOs at 2.0% concentration by biofumigation, performed using slow-release diffusers placed inside the storage cabinets. Fennel, lemon, and basil EOs were the most effective after storage and were selected to be tested in efficacy trials using naturally infected nectarines. After 28 days of storage, all treatments showed a significant rot reduction compared to the untreated control. Additionally, no evident phytotoxic effects were observed on the treated fruits. EO vapors did not affect the overall quality of the fruits but showed a positive effect in reducing firmness loss. Metabarcoding analysis showed a significant impact of tissue, treatment, and sampling time on the fruit microbiome composition. Treatments were able to reduce the abundance of Monilinia spp., but basil EO favored a significant increase in Penicillium spp. Moreover, the abundance of other fungal genera was found to be modified. Full article
(This article belongs to the Special Issue New Perspectives on Brown Rot Fungi)
Show Figures

Figure 1

17 pages, 5778 KiB  
Article
Insights into the Interaction between the Biocontrol Agent Bacillus amyloliquefaciens QST 713, the Pathogen Monilinia fructicola and Peach Fruit
by Polina C. Tsalgatidou, Anastasia Papageorgiou, Anastasia Boutsika, Michael Chatzidimopoulos, Costas Delis, Dimitrios I. Tsitsigiannis, Epaminondas Paplomatas and Antonios Zambounis
Agronomy 2024, 14(4), 771; https://doi.org/10.3390/agronomy14040771 - 9 Apr 2024
Cited by 4 | Viewed by 2129
Abstract
Brown rot disease caused by Monilinia fructicola is one of the most important peach fruit threats in the world. The use of biological control agents (BCAs), instead of synthetic fungicides, to successfully inhibit postharvest disease development is a challenge in sustainable and efficient [...] Read more.
Brown rot disease caused by Monilinia fructicola is one of the most important peach fruit threats in the world. The use of biological control agents (BCAs), instead of synthetic fungicides, to successfully inhibit postharvest disease development is a challenge in sustainable and efficient crop management. The commercially available BCA Bacillus amyloliquefaciens QST 713 (formerly Bacillus subtilis QST713) is able to inhibit a variety of fungal pathogens and suppress several plant diseases. Our results showed that this BCA inhibited mycelial growth in vitro, and was able to suppress the disease’s severity in peach fruits via delaying and reducing brown rot symptoms. A transcriptomic analysis of fruits during their pre-treatment with this biocontrol agent following M. fructicola challenge revealed a significant upregulation of specific differentially expressed genes (DEGs) at 48 h after inoculation (HAI). These genes are related to the activation of several transcriptional factors, such as members of the WRKY and NAC families, and receptors that are involved in pathogen recognition and signaling transduction (e.g., LRR-RLKs). Furthermore, the inhibition of M. fructicola by this biocontrol agent was confirmed by analyzing the expression profiles of specific fungal genes, which highlighted the direct antimicrobial impact of this bacterial strain against the fungus. Hence, these findings clearly suggest that B. amyloliquefaciens QST 713 is an efficient BCA against brown rot disease, which can directly inhibit M. fructicola and improve peach fruit tolerance. Full article
Show Figures

Figure 1

11 pages, 2718 KiB  
Article
One Step Forwards in Knowledge of Blossom Blight Brown Rot Disease: Monilinia spp. SSR Marker Database
by Raminta Antanynienė, Vidmantas Stanys and Birutė Frercks
Microorganisms 2024, 12(3), 605; https://doi.org/10.3390/microorganisms12030605 - 18 Mar 2024
Viewed by 1855
Abstract
A freely available Monilinia spp. marker database was created, containing microsatellite (SSR) data of the three most essential European fungal pathogens: M. fructigena, M. laxa, and M. fructicola. These pathogens cause brown rot blossom blight. Microsatellites were identified using the [...] Read more.
A freely available Monilinia spp. marker database was created, containing microsatellite (SSR) data of the three most essential European fungal pathogens: M. fructigena, M. laxa, and M. fructicola. These pathogens cause brown rot blossom blight. Microsatellites were identified using the bioinformatics tool Genome-wide Microsatellite Analyzing Toward Application (GMATA). The database provides information about SSR markers: forward and reverse sequences of the primers, fragment sizes, SSR motifs (and repeats), and the exact locations with the coordinates in the reference genome. This database currently contains information about 39,216 SSR motifs and 26,366 markers. In total, eight primers generated in silico were validated experimentally and they are marked in the database. All scientists can join this collaboration by adding their experimental data. This database is the initial start of organizing Monilinia spp. molecular data worldwide and, in the future, it could be extended by adding more molecular and genomic information. Full article
(This article belongs to the Special Issue Microbiome Research for Animal, Plant and Environmental Health)
Show Figures

Figure 1

26 pages, 10784 KiB  
Article
Global Transcriptome Analysis of the Peach (Prunus persica) in the Interaction System of Fruit–Chitosan–Monilinia fructicola
by Polina C. Tsalgatidou, Anastasia Boutsika, Anastasia G. Papageorgiou, Andreas Dalianis, Maria Michaliou, Michael Chatzidimopoulos, Costas Delis, Dimitrios I. Tsitsigiannis, Epaminondas Paplomatas and Antonios Zambounis
Plants 2024, 13(5), 567; https://doi.org/10.3390/plants13050567 - 20 Feb 2024
Cited by 10 | Viewed by 3110
Abstract
The peach (Prunus persica L.) is one of the most important stone-fruit crops worldwide. Nevertheless, successful peach fruit production is seriously reduced by losses due to Monilinia fructicola the causal agent of brown rot. Chitosan has a broad spectrum of antimicrobial properties [...] Read more.
The peach (Prunus persica L.) is one of the most important stone-fruit crops worldwide. Nevertheless, successful peach fruit production is seriously reduced by losses due to Monilinia fructicola the causal agent of brown rot. Chitosan has a broad spectrum of antimicrobial properties and may also act as an elicitor that activate defense responses in plants. As little is known about the elicitation potential of chitosan in peach fruits and its impact at their transcriptional-level profiles, the aim of this study was to uncover using RNA-seq the induced responses regulated by the action of chitosan in fruit–chitosan–M. fructicola interaction. Samples were obtained from fruits treated with chitosan or inoculated with M. fructicola, as well from fruits pre-treated with chitosan and thereafter inoculated with the fungus. Chitosan was found to delay the postharvest decay of fruits, and expression profiles showed that its defense-priming effects were mainly evident after the pathogen challenge, driven particularly by modulations of differentially expressed genes (DEGs) related to cell-wall modifications, pathogen perception, and signal transduction, preventing the spread of fungus. In contrast, as the compatible interaction of fruits with M. fructicola was challenged, a shift towards defense responses was triggered with a delay, which was insufficient to limit fungal expansion, whereas DEGs involved in particular processes have facilitated early pathogen colonization. Physiological indicators of peach fruits were also measured. Additionally, expression profiles of particular M. fructicola genes highlight the direct antimicrobial activity of chitosan against the fungus. Overall, the results clarify the possible mechanisms of chitosan-mediated tolerance to M. fructicola and set new foundations for the potential employment of chitosan in the control of brown rot in peaches. Full article
Show Figures

Figure 1

13 pages, 1224 KiB  
Article
In Vitro Evaluation of Chitosan Hydrochloride and COS (Chito-Oligosaccharides)-OGA (Oligo-Galacturonides) on Phytopathogenic Fungi and Escherichia coli
by Sarah Mojela Makau, Marwa Moumni, Lucia Landi, Domenico Pirozzi, Filomena Sannino and Gianfranco Romanazzi
Horticulturae 2023, 9(12), 1275; https://doi.org/10.3390/horticulturae9121275 - 28 Nov 2023
Cited by 6 | Viewed by 2266
Abstract
Use of novel alternative compounds in agriculture is being promoted to reduce synthetic pesticides. An in vitro study was conducted to evaluate antimicrobial and antioxidant activities of chitosan hydrochloride (CH) and COS (chito-oligosaccharides)-OGA (oligo-galacturonides) at concentrations of 1%, 0.5%, 0.25%, 0.1%, 0.05%, and [...] Read more.
Use of novel alternative compounds in agriculture is being promoted to reduce synthetic pesticides. An in vitro study was conducted to evaluate antimicrobial and antioxidant activities of chitosan hydrochloride (CH) and COS (chito-oligosaccharides)-OGA (oligo-galacturonides) at concentrations of 1%, 0.5%, 0.25%, 0.1%, 0.05%, and 0.025%. COS-OGA at 1% and 0.5% concentrations completely inhibited mycelial growth of Alternaria alternata, Alternaria brassicicola, Botrytis cinerea, Monilinia laxa, Monilinia fructigena, and Monilinia fructicola. Further, complete inhibition was observed with 0.25% COS-OGA for M. fructigena and M. laxa. Inhibition for B. cinerea, M. fructicola, A. alternata, and A. brassicicola at 0.25% COS-OGA was 86.75%, 76.31%, 69.73%, and 60.45%, respectively. M. laxa and M. fructigena were completely inhibited by CH concentrations of 1–0.25% and M. fructicola by concentrations of 1–0.5%. At CH 0.25%, inhibition for M. fructicola, A. brassicicola, A. alternata, and B. cinerea was 93.99%, 80.99%, 69.73%, and 57.23%, respectively. CH showed effective antibacterial activity against foodborne Escherichia coli. COS-OGA had higher antioxidant activity than CH when assessed by DPPH and hydroxyl radical scavenging assays. Our findings offer insights into the antimicrobial efficacy and mechanisms of action of these novel compounds, which have the potential to serve as alternatives to synthetic pesticides. In vivo investigations are required to validate the prospective application of these treatments for pre- and postharvest disease management. Full article
(This article belongs to the Special Issue Biological Control of Pre and Postharvest Diseases II)
Show Figures

Figure 1

13 pages, 2017 KiB  
Article
Control of Brown Rot Produced by Monilinia fructicola in Peaches Using a Full-Spectrum Extract of Zuccagnia punctata Cav.
by Melina G. Di Liberto, María Inés Stegmayer, Laura N. Fernández, Ariel D. Quiroga, Laura A. Svetaz and Marcos G. Derita
Horticulturae 2023, 9(10), 1141; https://doi.org/10.3390/horticulturae9101141 - 17 Oct 2023
Cited by 3 | Viewed by 3110
Abstract
Brown rot of stone fruit, caused by Monilinia spp., is one of the most important diseases worldwide, causing significant production losses. Currently, the standard practices for controlling this infection consist of repetitive use of synthetic fungicides. The global tendency encourages the demand for [...] Read more.
Brown rot of stone fruit, caused by Monilinia spp., is one of the most important diseases worldwide, causing significant production losses. Currently, the standard practices for controlling this infection consist of repetitive use of synthetic fungicides. The global tendency encourages the demand for high-quality food products harmless to health and the environment, leading to a reduction in the use of these types of substances. Zuccagnia punctata (Fabaceae) is a perennial shrub extensively used for the treatment of fungal and bacterial infections in Argentinean traditional medicine. In this study, we isolated and characterized (morphologically and molecularly) a pathogenic and virulent strain of Monilinia fructicola, which is the most hostile species of the genus. Consequently, we explored the in vitro antifungal activity of the ethanolic extract of Z. punctata against this phytopathogen. The chalcones 2′,4′-dihydroxy-3′-methoxychalcone and 2′,4′-dihydroxychalcone were isolated from the extract and evaluated against M. fructicola demonstrating that they were responsible for this activity. To promote full-spectrum extract rather than pure compounds, we performed ex-vivo assays using fresh peaches inoculated with the pathogen, and then treated by immersion in an extract solution of 250 µg/mL concentration. Treatment with Z. punctata extract did not show a statistically significant difference from commercial fungicides in the control of fruit rot. In addition, Huh7 cell cytotoxicity evaluation showed that Z. punctata extract was less cytotoxic than commercial fungicides at the assayed concentrations. Based on our research, this plant extract could potentially offer a safer alternative to commercial fungicides for treating peach brown rot. Full article
Show Figures

Figure 1

19 pages, 3166 KiB  
Article
Monilinia fructicola Response to White Light
by Juan Diego Astacio, Eduardo Antonio Espeso, Paloma Melgarejo and Antonieta De Cal
J. Fungi 2023, 9(10), 988; https://doi.org/10.3390/jof9100988 - 4 Oct 2023
Cited by 5 | Viewed by 2008
Abstract
Light represents a powerful signal for the regulation of virulence in many microbial pathogens. Monilinia fructicola is the most virulent species causing brown rot in stone fruit crops. To understand the influence of light on M. fructicola, we measured the effect of [...] Read more.
Light represents a powerful signal for the regulation of virulence in many microbial pathogens. Monilinia fructicola is the most virulent species causing brown rot in stone fruit crops. To understand the influence of light on M. fructicola, we measured the effect of white light and photoperiods on the colonial growth and sporulation of the model M. fructicola strain 38C on solid cultures. Searches in the M. fructicola 38C genome predicted a complete set of genes coding for photoreceptors possibly involved in the perception of all ranges of wavelengths. Since white light had an obvious negative effect on vegetative growth and the asexual development of M. fructicola 38C on potato dextrose agar, we studied how light influences photoresponse genes in M. fructicola during early peach infection and in liquid culture. The transcriptomes were analyzed in “Red Jim” nectarines infected by M. fructicola 38C and subjected to light pulses for 5 min and 14 h after 24 h of incubation in darkness. Specific light-induced genes were identified. Among these, we confirmed in samples from infected fruit or synthetic media that blue light photoreceptor vvd1 was among the highest expressed genes. An unknown gene, far1, coding for a small protein conserved in many families of Ascomycota phylum, was also highly induced by light. In contrast, a range of well-known photoreceptors displayed a low transcriptional response to light in M. fructicola from nectarines but not on the pathogen mycelium growing in liquid culture media for 6 days. Full article
(This article belongs to the Special Issue Advances on Fruit Brown Rot)
Show Figures

Figure 1

17 pages, 836 KiB  
Article
Hydroxypropyl Methylcellulose and Gum Arabic Composite Edible Coatings Amended with Geraniol to Control Postharvest Brown Rot and Maintain Quality of Cold-Stored Plums
by Zahra Sadat Asgarian, Lluís Palou, Ricardo Felipe Lima de Souza, Paloma G. Quintanilla, Verònica Taberner, Rouhollah Karimi and María Bernardita Pérez-Gago
Foods 2023, 12(15), 2978; https://doi.org/10.3390/foods12152978 - 7 Aug 2023
Cited by 12 | Viewed by 2246
Abstract
In this study, the effect of hydroxypropyl methylcellulose (HPMC) and gum Arabic (GA) edible coatings amended with 0.2% geraniol (GE) were evaluated for the control of brown rot, caused by Monilinia fructicola, on artificially inoculated plums (Prunus salicina Lindl., cv. Angeleno) [...] Read more.
In this study, the effect of hydroxypropyl methylcellulose (HPMC) and gum Arabic (GA) edible coatings amended with 0.2% geraniol (GE) were evaluated for the control of brown rot, caused by Monilinia fructicola, on artificially inoculated plums (Prunus salicina Lindl., cv. Angeleno) stored for 5 weeks at 1 °C. Brown rot is the most important pre- and postharvest fungal disease of stone fruits, causing severe economic losses worldwide. Geraniol is an important constituent of many essential oils that can be obtained as a byproduct from different industrial procedures, such as those of the juice industry. Fruit postharvest quality was also evaluated after 5 and 8 weeks of storage at 1 °C, followed by 3 days at 7 °C plus 5 days at 20 °C, simulating packinghouse, transport, and retail shelf-life conditions, respectively. HPMC coatings containing 0.2% GE reduced the incidence and severity of brown rot by 37.5 and 64.8%, respectively, compared to uncoated fruit after 5 weeks of storage at 1 °C. HPMC-coated plums, with and without GE, showed the highest level of firmness, the lowest change in external peel color parameters (L*, a*, b*, C*, hue), and the lowest flesh bleeding compared to uncoated control and GA-coated samples throughout the entire storage period, which correlated with a higher gas barrier of these coatings without negatively affecting sensory quality. Furthermore, the HPMC-0.2% GE coating provided the highest gloss to coated plums, showing the potential of this coating as a safe and environmentally friendly alternative to conventional fungicides and waxes for brown rot control and quality maintenance of cold-stored plums. Full article
Show Figures

Figure 1

16 pages, 3469 KiB  
Article
Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola
by Lucía Verde-Yáñez, Josep Usall, Neus Teixidó, Núria Vall-llaura and Rosario Torres
J. Fungi 2023, 9(6), 653; https://doi.org/10.3390/jof9060653 - 10 Jun 2023
Cited by 5 | Viewed by 2151
Abstract
Pathogenic fungi are influenced by many biotic and abiotic factors. Among them, light is a source of information for fungi and also a stress factor that triggers multiple biological responses, including the activation of secondary metabolites, such as the production of melanin pigments. [...] Read more.
Pathogenic fungi are influenced by many biotic and abiotic factors. Among them, light is a source of information for fungi and also a stress factor that triggers multiple biological responses, including the activation of secondary metabolites, such as the production of melanin pigments. In this study, we analyzed the melanin-like production in in vitro conditions, as well as the expression of all biosynthetic and regulatory genes of the DHN–melanin pathway in the three main Monilinia species upon exposure to light conditions (white, black, blue, red, and far-red wavelengths). On the other hand, we analyzed, for the first time, the metabolism related to ROS in M. fructicola, through the production of hydrogen peroxide (H2O2) and the expression of stress-related genes under different light conditions. In general, the results indicated a clear importance of black light on melanin production and expression in M. laxa and M. fructicola, but not in M. fructigena. Regarding ROS-related metabolism in M. fructicola, blue light highlighted by inhibiting the expression of many antioxidant genes. Overall, it represents a global description of the effect of light on the regulation of two important secondary mechanisms, essential for the adaptation of the fungus to the environment and its survival. Full article
(This article belongs to the Special Issue New Perspectives on Brown Rot Fungi)
Show Figures

Figure 1

14 pages, 2664 KiB  
Article
Morphological, Molecular and Genomic Identification and Characterisation of Monilinia fructicola in Prunus persica from Portugal
by Elsa Baltazar, Sara Rodrigues, Aitana Ares, Alexandra Camelo, Inês Brandão, Christophe Espirito Santo, João Trovão, Eva Garcia and Joana Costa
Agronomy 2023, 13(6), 1493; https://doi.org/10.3390/agronomy13061493 - 29 May 2023
Cited by 5 | Viewed by 4310
Abstract
In Portugal, the Cova da Beira region is well-known for the production of Prunus spp. and is considered the main peach production area in the country. In the spring of 2021 and 2022, field surveys in peach and nectarine orchards showed symptoms of [...] Read more.
In Portugal, the Cova da Beira region is well-known for the production of Prunus spp. and is considered the main peach production area in the country. In the spring of 2021 and 2022, field surveys in peach and nectarine orchards showed symptoms of decline such as cankers, gummosis, dry branches, abortion of flowers, mummified fruits and the partial or total death of some plants. Brown rot is caused by three species of the genus Monilinia, M. fructigena, M. laxa and M. fructicola, the last is an OEPP/EPPO A2 quarantine organism on peach trees. Brown rot disease had previously been described in the Cova da Beira region, however, the recent high mortality and severity of symptoms raised doubts as to the species involved. Symptomatic plant material was collected from thirteen orchards and used for fungal isolation and molecular detection according to the OEPP/EPPO standard. M. fructicola was confirmed morphologically and molecularly in two orchards, and molecularly (duplex real-time PCR) detected in two others. Whole genome sequencing using Oxford Nanopore MinION was also carried out to confirm the identification. Pathogenicity tests were performed on peach, nectarine and sweet cherry fruit according to Koch’s postulates. Based on all the results obtained, we report the first detection of M. fructicola in P. persica in Portugal. Full article
(This article belongs to the Special Issue Monilinia on Stone Fruit Species)
Show Figures

Figure 1

Back to TopTop