In Vitro Evaluation of Chitosan Hydrochloride and COS (Chito-Oligosaccharides)-OGA (Oligo-Galacturonides) on Phytopathogenic Fungi and Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Pathogens
2.2. In Vitro Antifungal Activities on Mycelial Growth
2.3. Fungicidal and Fungistatic Activities of CH and COS-OGA
2.4. Antibacterial Activity of CH
2.5. In Vitro Antioxidant Activity by DPPH Radical Scavenging Ability Assay
2.6. In Vitro Antioxidant Activity by Hydroxyl Radical Scavenging Ability Assay
2.7. Statistical Analysis
3. Results
3.1. In Vitro Inhibition of Fungal Growth
3.2. Fungicidal and Fungistatic Activity of CH and COS-OGA
3.3. Antibacterial Activity of Chitosan Hydrochloride
3.4. In Vitro Antioxidant Activity Assessed by DPPH and Hydroxyl Radical Scavenging Ability Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.E.; Speight, R.E.; Blinco, J.L.; O’Hara, I.M. Biorefining within food loss and waste frameworks: A review. Renew. Sustain. Energy Rev. 2022, 154, 111781. [Google Scholar] [CrossRef]
- FAO. Fruit and Vegetables—Your Dietary Essentials. Available online: https://doi.org/10.4060/cb2395en (accessed on 23 October 2023).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy, and Environmentally Friendly Food System. Available online: https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 19 January 2022).
- Chèze, B.; David, M.; Martinet, V. Understanding farmers’ reluctance to reduce pesticide use: A choice experiment. Ecol. Econ. 2020, 167, 106349. [Google Scholar] [CrossRef]
- Prusky, D.; Romanazzi, G. Induced resistance in fruit and vegetables: A host physiological response limiting postharvest disease development. Annu. Rev. Phytopathol. 2023, 61, 279–300. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mardiyya, A.Y. Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res. 2019, 13, 10192–10200. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; De Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef]
- Petrasch, S.; Knapp, S.J.; Van Kan, J.A.; Blanco-Ulate, B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; van Kan, J.A. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Abate, D.; Pastore, C.; Gerin, D.; De Miccolis Angelini, R.M.; Rotolo, C.; Pollastro, S.; Faretra, F. Characterization of Monilinia spp. populations on stone fruit in South Italy. Plant Dis. 2018, 102, 1708–1717. [Google Scholar] [CrossRef]
- Mustafa, M.H.; Bassi, D.; Corre, M.N.; Lino, L.O.; Signoret, V.; Quilot-Turion, B.; Cirilli, M. Phenotyping brown rot susceptibility in stone fruit: A literature review with emphasis on peach. Horticulturae 2021, 7, 115. [Google Scholar] [CrossRef]
- Lichou, J.; Mandrin, J.F.; Breniaux, D.; Mercier, V.; Giauque, P.; Desbrus, D.; Blanc, P.; Belluau, E. Une nouvelle moniliose: Monilia fructicolas’ attaque aux arbres fruitiers à noyaux. Phytoma 2002, 547, 22–25. [Google Scholar]
- Villarino, M.; Egüen, B.; Melgarejo, P.; Lamarca, N.; Segarra, J.; Usall, J.; Melgarejo, P.; de Cal, A. Occurrence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in Spain. Eur. J. Plant Pathol. 2013, 137, 835–845. [Google Scholar] [CrossRef]
- Luna-Guevara, J.J.; Arenas-Hernandez, M.M.; Martínez de la Peña, C.; Silva, J.L.; Luna-Guevara, M.L. The role of pathogenic E. coli in fresh vegetables: Behavior, contamination factors, and preventive measures. Int. J. Microbiol. 2019, 2019, 2894328. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Pavanello, E.P.; Brackmann, A.; Simão, D.G.; de Oliveira, J.M.S.; Both, V.; Wendt, L.M.; Sorrenti, G.; de Paula, B.V.; Toselli, M.; Brunetto, G. Effect of foliar-applied silicon sources on brown rot (Monilinia fructicola). Crop Prot. 2022, 156, 105928. [Google Scholar] [CrossRef]
- Massi, F.; Torriani, S.F.; Borghi, L.; Toffolatti, S.L. Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 2021, 9, 119. [Google Scholar] [CrossRef]
- George, A.S.; Brandl, M.T. Plant bioactive compounds as an intrinsic and sustainable tool to enhance the microbial safety of crops. Microorganisms 2021, 9, 2485. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Mann, A.; Nehra, K.; Rana, J.S.; Dahiya, T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Curr. Res. Microb. Sci. 2021, 2, 100030. [Google Scholar] [CrossRef]
- Thakur, M.; Sohal, B.S. Role of elicitors in inducing resistance in plants against pathogen infection: A Review. Int. Sch. Res. Not. 2013, 2013, 762412. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Feliziani, E.; Sivakumar, D. Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Front. Microbiol. 2018, 9, 2745. [Google Scholar] [CrossRef] [PubMed]
- Betchem, G.; Johnson, N.A.N.; Wang, Y. The application of chitosan in the control of post-harvest diseases: A review. J. Plant Dis. Prot. 2019, 126, 495–507. [Google Scholar] [CrossRef]
- Tian, B.; Cheng, J.; Zhang, T.; Liu, Y.; Chen, D. Multifunctional chitosan-based film loaded with hops β-acids: Preparation, characterization, controlled release, and antibacterial mechanism. Food Hydrocoll. 2021, 124, 107337. [Google Scholar] [CrossRef]
- Žabka, M.; Pavela, R. The dominance of chitosan hydrochloride over modern natural agents or basic substances in efficacy against Phytophthora infestans, and its safety for the non-target model species Eisenia fetida. Horticulturae 2021, 7, 366. [Google Scholar] [CrossRef]
- Romanazzi, G.; Mancini, V.; Foglia, R.; Marcolini, D.; Kavari, M.; Piancatelli, S. Use of chitosan and other natural compounds alone or in different strategies with copper hydroxide for control of grapevine downy mildew. Plant Dis. 2021, 105, 3261–3268. [Google Scholar] [CrossRef] [PubMed]
- Román-Doval, R.; Torres-Arellanes, S.P.; Tenorio-Barajas, A.Y.; Gómez-Sánchez, A.; Valencia-Lazcano, A.A. Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers 2023, 15, 2867. [Google Scholar] [CrossRef]
- Rajestary, R.; Landi, L.; Romanazzi, G. Chitosan and postharvest decay of fresh fruit: Meta-analysis of disease control and antimicrobial and eliciting activities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 563–582. [Google Scholar] [CrossRef]
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32014R0563 (accessed on 23 October 2023).
- Cabrera, J.C.; Boland, A.; Cambier, P.; Frettinger, P.; Van Cutsem, P. Chitosan oligosaccharides modulate the supramolecular conformation and the biological activity of oligogalacturonides in Arabidopsis. Glycobiology 2010, 20, 775–786. [Google Scholar] [CrossRef]
- van Aubel, G.; Buonatesta, R.; Van Cutsem, P. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Prot. 2014, 65, 129–137. [Google Scholar] [CrossRef]
- van Aubel, G.; Cambier, P.; Dieu, M.; Van Cutsem, P. Plant immunity induced by the COS-OGA elicitor is a cumulative process that involves salicylic acid. Plant Sci. 2016, 247, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Moreau, S.; van Aubel, G.; Janky, R.S.; Van Cutsem, P. Chloroplast electron chain, ROS production, and redox homeostasis are modulated by COS-OGA elicitation in tomato (Solanum lycopersicum) leaves. Front. Plant Sci. 2020, 11, 1920. [Google Scholar] [CrossRef] [PubMed]
- Clinckemaillie, A.; Decroës, A.; van Aubel, G.; Carrola dos Santos, S.; Renard, M.E.; Van Cutsem, P.; Legrève, A. The novel elicitor COS-OGA enhances potato resistance to late blight. Plant Pathol. 2017, 66, 818–825. [Google Scholar] [CrossRef]
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R0543 (accessed on 19 December 2021).
- European Commission. EGTOP Final Report on Plant Protection (III). Available online: https://www.organic-farming.europa.eu (accessed on 20 December 2021).
- Moumni, M.; Romanazzi, G.; Najar, B.; Pistelli, L.; Ben Amara, H.; Mezrioui, K.; Karous, O.; Chaieb, I.; Allagui, M.B. Antifungal activity and chemical composition of seven essential oils to control the main seedborne fungi of cucurbits. Antibiotics 2021, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jiang, H.; Qiu, M.; Geng, X.; Yang, R.; Li, J.; Zhang, C. Antibacterial activity evaluation of quaternary chitin against Escherichia coli and Staphylococcus aureus. Int. J. Biol. Macromol. 2013, 52, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, J.; Yu, C.; Li, Q.; Dong, F.; Wang, G.; Guo, Z. Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. Int. J. Biol. Macromol. 2014, 70, 44–49. [Google Scholar] [CrossRef]
- Alessandri, S.; Mancino, O.; Grimaldi, A.; Melillo, M.; Fanelli, A.; Cavazza, F.; Bellingeri, G.; Pasqualini, E. COS-OGA: Experiences on powdery mildew control on table grape, wine grape and strawberry. In Proceedings of the Atti, Giornate Fitopatologiche, Chianciano Terme, SI, Italy, 6–9 March 2018; Volume 2, pp. 403–410. [Google Scholar]
- Sui, Y.; Ma, Z.; Meng, X. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea. J. Sci. Food Agric. 2019, 99, 2622–2628. [Google Scholar] [CrossRef]
- Song, Y.S.; Seo, D.J.; Jung, W.J. Characterization and antifungal activity of chitosanase produced by Pedobacter sp. PR-M6. Microb. Pathog. 2019, 129, 277–283. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Molina-Hernandez, J.B.; Landi, L.; Laika De Fraviis, R.; Romanazzi, G.; Chaves-López, C. Understanding the mechanisms of action of atmospheric cold plasma towards the mitigation of the stress induced in molds: The case of Aspergillus chevalieri. Innov. Food Sci. Emerg. Technol. 2023, 90, 103492. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Landi, L.; Raguseo, C.; Pollastro, S.; Faretra, F.; Romanazzi, G. Tracking of diversity and evolution in the brown rot fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front. Microbiol. 2022, 13, 854852. [Google Scholar] [CrossRef] [PubMed]
- Villarino, M.; Melgarejo, P.; De Cal, A. Growth and aggressiveness factors affecting Monilinia spp. survival peaches. Int. J. Food Microbiol. 2016, 227, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Y.; Zhang, J.L.; Bassett, C.L.; Meng, X.H. Difference between chitosan and oligochitosan in the growth of Monilinia fructicola and control of brown rot in peach fruit. LWT—Food Sci. Technol. 2012, 46, 254–259. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, L.; Yan, H.; Kennedy, J.F.; Meng, X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr. Polym. 2013, 94, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya. Int. J. Food Sci. Technol. 2010, 45, 2134–2140. [Google Scholar] [CrossRef]
- Cely-Veloza, W.; Yamaguchi, L.; Quiroga, D.; Kato, M.J.; Coy-Barrera, E. Antifungal activity against Fusarium oxysporum of quinolizidines isolated from three controlled-growth Genisteae plants: Structure-activity relationship implications. Nat. Prod. Bioprospect. 2023, 13, 9. [Google Scholar] [CrossRef]
- Tikhonov, V.E.; Stepnova, E.A.; Babak, V.G.; Yamskov, I.A.; Palma-Guerrero, J.; Jansson, H.B.; Lopez-Llorca, L.V.; Salinas, J.; Gerasimenko, D.V.; Avdienko, I.D.; et al. Bactericidal and antifungal activities of low molecular weight chitosan and its N-/2 (3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr. Polym. 2006, 64, 66–72. [Google Scholar] [CrossRef]
- Tsai, G.J.; Su, W.H. Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot. 1999, 62, 239–243. [Google Scholar] [CrossRef]
- Mirbagheri, V.S.; Alishahi, A.; Ahmadian, G.; Petroudi, S.H.H.; Ojagh, S.M.; Romanazzi, G. Toward understanding the antibacterial mechanism of chitosan: Experimental approach and in silico analysis. Food Hydrocoll. 2024, 147, 109382. [Google Scholar] [CrossRef]
- European Commission. EU Pesticides Database (v.2.2) Active Substance. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/index.cfm?event=as.details&as_id=1193 (accessed on 21 December 2021).
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance COS-OGA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/3868 (accessed on 20 December 2021).
- Wan, A.; Xu, Q.; Sun, Y.; Li, H. Antioxidant activity of high molecular weight chitosan and N, O-quaternized chitosans. J. Agric. Food Chem. 2013, 61, 6921–6928. [Google Scholar] [CrossRef]
- Du, D.X.; Vuong, B.X. Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv. Mater. Sci. Eng. 2019, 2019, 8781013. [Google Scholar] [CrossRef]
- Prabu, K.; Natarajan, E. In vitro antimicrobial and antioxidant activity of chitosan isolated from Podophthalmus vigil. J. Appl. Pharm. Sci. 2012, 2, 75. [Google Scholar] [CrossRef]
- Romanazzi, G.; Moumni, M. Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Curr. Opin. Biotechnol. 2022, 78, 102834. [Google Scholar] [CrossRef] [PubMed]
Fungal Species | Source/Host Species | Location | Isolate | GenBank Accession |
---|---|---|---|---|
Alternaria alternata | Seed/Cucurbita moschata | Italy | IA3 | MK497776 |
Alternaria brassicicola | Seed/Brassica oleracea | - | - | - |
Botrytis cinerea | - a | Germany | B05.10 | PRJNA15632 |
Monilinia laxa | Fruit/Prunus persica | Italy | 79 | - |
Monilinia fructigena | Fruit/Prunus persica | Italy | 4 | - |
Monilinia fructicola | Fruit/Prunus persica | Italy | 18 | - |
Treatments a | Mycelia Growth (cm) | |||||
---|---|---|---|---|---|---|
A. alternata | A. brassicicola | B. cinerea | M. laxa | M. fructigena | M. fructicola | |
CH 1% | 2.08 ± 0.11 d | 1.20 ± 0.12 g | 2.76 ± 0.26 e | 0.00 g | 0.00 f | 0.00 h |
CH 0.5% | 2.15 ± 0.14 d | 1.36 ± 0.08 g | 3.23 ± 0.27 d | 0.00 g | 0.00 f | 0.00 h |
CH 0.25% | 2.50 ± 0.07 d | 1.37 ± 0.18 g | 3.55 ± 0.06 d | 0.00 g | 0.00 f | 0.49 ± 0.67 g |
CH 0.1% | 6.51 ± 0.63 bc | 3.37 ± 0.14 f | 4.94 ± 0.28 b | 1.72 ± 0.39 f | 2.54 ± 0.04 e | 2.15 ± 0.42 f |
CH 0.05% | 8.22 ± 0.18 a | 6.64 ± 0.16 c | 8.16 ± 0.31 a | 7.65 ± 0.21 b | 8.24 ± 0.09 a | 7.74 ± 0.28 b |
CH 0.025% | 8.07 ± 0.38 a | 7.32 ± 0.25 b | 8.30 ± 0.00 a | 7.57 ± 0.15 b | 7.66 ± 0.57 ab | 7.89 ± 0.31 ab |
COS-OGA 1% | 0.00 e | 0.00 h | 0.00 g | 0.00 g | 0.00 f | 0.00 h |
COS-OGA 0.5% | 0.00 e | 0.00 h | 0.00 g | 0.00 g | 0.00 f | 0.00 h |
COS-OGA 0.25% | 2.50 ± 0.15 d | 3.70 ± 0.38 f | 1.10 ± 0.66 f | 0.00 g | 0.00 f | 1.94 ± 0.07 f |
COS-OGA 0.1% | 6.00 ± 1.16 c | 5.07 ± 1.19 e | 3.96 ± 0.21 c | 3.53 ± 0.13 e | 5.01 ± 1.28 d | 3.85 ± 0.36 e |
COS-OGA 0.05% | 6.68 ± 1.22 b | 5.16 ± 0.64 e | 5.13 ± 0.28 b | 4.79 ± 0.32 d | 7.08 ± 1.27 bc | 6.11 ± 0.35 c |
COS-OGA 0.025% | 6.07 ± 0.36 bc | 5.81 ± 0.34 d | 5.27 ± 0.48 b | 5.33 ± 0.43 c | 6.90 ± 0.76 c | 5.41 ± 0.65 d |
Untreated control | 8.26 ± 0.04 a | 8.27 ± 0.07 a | 8.30 ± 0.00 a | 8.14 ± 0.11 a | 7.89 ± 0.52 a | 8.19 ± 0.12 a |
Treatments a | ||||||
---|---|---|---|---|---|---|
Fungus | CH 1% | CH 0.5% | CH 0.25% | COS-OGA 1% | COS-OGA 0.5% | COS-OGA 0.25% |
Alternaria alternata | - | - | - | + | + | - |
Alternaria brassicicola | - | - | - | + | + | - |
Botrytis cinerea | - | - | - | + | + | - |
Monilinia laxa | * | * | - | + | + | + |
Monilinia fructigena | * | * | * | + | + | + |
Monilinia fructicola | * | * | - | + | * | - |
Condition | Log CFU/Ml In the Absence of Chitosan | Log CFU/mL In the Presence of Chitosan |
---|---|---|
In the dark | 6.0 ± 0.4 | 4.9 ± 0.5 |
Exposed to sunlight | 6.1 ± 0.5 | 5.0 ± 0.5 |
Active Ingredient | Concentration (mg/mL) | Antioxidant Activity (%) |
---|---|---|
CH a | 20 | 5.3 ± 0.7 |
COS-OGA | 20 | 22.1 ± 1.7 |
COS-OGA | 30 | 29.9 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makau, S.M.; Moumni, M.; Landi, L.; Pirozzi, D.; Sannino, F.; Romanazzi, G. In Vitro Evaluation of Chitosan Hydrochloride and COS (Chito-Oligosaccharides)-OGA (Oligo-Galacturonides) on Phytopathogenic Fungi and Escherichia coli. Horticulturae 2023, 9, 1275. https://doi.org/10.3390/horticulturae9121275
Makau SM, Moumni M, Landi L, Pirozzi D, Sannino F, Romanazzi G. In Vitro Evaluation of Chitosan Hydrochloride and COS (Chito-Oligosaccharides)-OGA (Oligo-Galacturonides) on Phytopathogenic Fungi and Escherichia coli. Horticulturae. 2023; 9(12):1275. https://doi.org/10.3390/horticulturae9121275
Chicago/Turabian StyleMakau, Sarah Mojela, Marwa Moumni, Lucia Landi, Domenico Pirozzi, Filomena Sannino, and Gianfranco Romanazzi. 2023. "In Vitro Evaluation of Chitosan Hydrochloride and COS (Chito-Oligosaccharides)-OGA (Oligo-Galacturonides) on Phytopathogenic Fungi and Escherichia coli" Horticulturae 9, no. 12: 1275. https://doi.org/10.3390/horticulturae9121275
APA StyleMakau, S. M., Moumni, M., Landi, L., Pirozzi, D., Sannino, F., & Romanazzi, G. (2023). In Vitro Evaluation of Chitosan Hydrochloride and COS (Chito-Oligosaccharides)-OGA (Oligo-Galacturonides) on Phytopathogenic Fungi and Escherichia coli. Horticulturae, 9(12), 1275. https://doi.org/10.3390/horticulturae9121275