Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,418)

Search Parameters:
Keywords = Molecular dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4009 KiB  
Article
Investigation of the Impact of miRNA-7151 and a Mutation in Its Target Gene lncRNA KCNQ1OT1 on the Pathogenesis of Preeclampsia
by Wuqian Wang, Xiaojia Wu, Jianmei Gu, Luan Chen, Weihua Zhang, Xiaofang Sun, Shengying Qin and Ping Tang
Biomedicines 2025, 13(8), 1813; https://doi.org/10.3390/biomedicines13081813 (registering DOI) - 24 Jul 2025
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between [...] Read more.
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between miR-7151-5p and the lncRNA KCNQ1OT1 and their functional contributions to PE pathogenesis. Methods: An integrative approach combining RNAhybrid-based bioinformatics, dual-luciferase reporter assays, qRT-PCR, Transwell migration and invasion assays, and RNA sequencing was employed to characterize the binding between miR-7151-5p and KCNQ1OT1 and assess their influence on trophoblast cell function and gene expression. Results: A bioinformatic analysis predicted a stable binding site between miR-7151-5p and KCNQ1OT1 (minimum free energy: –37.3 kcal/mol). The dual-luciferase reporter assay demonstrated that miR-7151-5p directly targets KCNQ1OT1, leading to suppressed transcriptional activity. In HTR8/SVneo cells, miR-7151-5p overexpression significantly downregulated both KCNQ1OT1 and Notch1 mRNA, whereas its inhibition showed no significant changes, suggesting additional regulatory mechanisms of Notch1 expression. Transwell assays indicated that miR-7151-5p overexpression suppressed trophoblast cell migration and invasion, whereas its inhibition enhanced these cellular behaviors. RNA-seq analysis further revealed that miR-7151-5p overexpression altered key signaling pathways, notably the TGF-β pathway, and significantly modulates PE-associated genes, including PLAC1, ANGPTL6, HIRA, GLA, HSF1, and BAG6. Conclusions: The regulatory effect of miR-7151-5p on KCNQ1OT1, along with its influence on trophoblast cell dynamics via Notch1 and TGF-β signaling pathways, highlights its role in PE pathogenesis and supports its potential as a biomarker in early PE screening. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 (registering DOI) - 24 Jul 2025
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

19 pages, 7670 KiB  
Article
Atomic-Scale Mechanisms of Stacking Fault Tetrahedra Formation, Growth, and Transformation in Aluminum via Vacancy Aggregation
by Xiang-Shan Kong, Zi-Yang Cao, Zhi-Yong Zhang and Tian-Li Su
Metals 2025, 15(8), 829; https://doi.org/10.3390/met15080829 (registering DOI) - 24 Jul 2025
Abstract
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized [...] Read more.
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized by their structure, formation energy, and binding energy across a range of vacancy cluster sizes. Formation energies of perfect and truncated SFTs follow a scaling relation; beyond a critical size, truncated SFTs become thermodynamically favored, indicating a size-dependent transformation pathway. Binding energy and structure evolution exhibit quasi-periodic behavior, where vacancies initially adsorb at the vertices or the midpoints of the edges of a perfect SFT, then aggregate along one facet, triggering fault nucleation and a binding energy jump as the system reconstructs into a new perfect SFT. Molecular dynamics simulations further confirm the SFT nucleation and growth via vacancy aggregation, consistent with thermodynamic predictions. SFTs exhibit notable thermal mobility, enabling coalescence and evolution into vacancy-type dislocation loops. BCC-like V5 clusters are identified as potential nucleation precursors. These findings explain the nanoscale, low-temperature nature of SFTs in aluminum and offer new insights into defect evolution and control in FCC metals. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Graphical abstract

16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

39 pages, 1137 KiB  
Review
Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction
by Aolong Ma, Lingyan Xiang, Jingping Yuan, Qianwen Wang, Lina Zhao and Honglin Yan
Biomolecules 2025, 15(8), 1067; https://doi.org/10.3390/biom15081067 - 24 Jul 2025
Abstract
Background: Breast cancer, the most prevalent malignancy among women worldwide, exhibits significant heterogeneity, particularly in the tumor microenvironment (TME), which poses challenges for treatment. Spatial transcriptomics (ST) has emerged as a transformative technology, enabling gene expression analysis while preserving tissue spatial architecture. This [...] Read more.
Background: Breast cancer, the most prevalent malignancy among women worldwide, exhibits significant heterogeneity, particularly in the tumor microenvironment (TME), which poses challenges for treatment. Spatial transcriptomics (ST) has emerged as a transformative technology, enabling gene expression analysis while preserving tissue spatial architecture. This provides unprecedented insights into tumor heterogeneity, cellular interactions, and disease mechanisms, offering a powerful tool for advancing breast cancer research and therapy. This review aims to synthesize the applications of ST in breast cancer research, focusing on its role in decoding tumor heterogeneity, characterizing the TME, elucidating progression and metastasis dynamics, and predicting therapeutic responses. We also explore how ST can bridge molecular profiling with clinical translation to enhance precision therapy. The key scientific concepts of review included the following: We summarize the technological advancements in ST, including imaging-based and sequencing-based methods, and their applications in breast cancer. Key findings highlight how ST resolves spatial heterogeneity across molecular subtypes and histological variants. ST reveals the dynamic interplay between tumor cells, immune cells, and stromal components, uncovering mechanisms of immune evasion, metabolic reprogramming, and therapeutic resistance. Additionally, ST identifies spatial prognostic markers and predicts responses to chemotherapy, targeted therapy, and immunotherapy. We propose that ST serves as a hub for integrating multi-omics data, offering a roadmap for precision oncology and personalized treatment strategies in breast cancer. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Breast Cancer)
Show Figures

Figure 1

14 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

16 pages, 7562 KiB  
Article
Unnatural Amino Acid Photo-Crosslinking Sheds Light on Gating of the Mechanosensitive Ion Channel OSCA1.2
by Scarleth Duran-Morales, Rachel Reyes-Lizana, German Fernández, Macarena Loncon-Pavez, Yorley Duarte, Valeria Marquez-Miranda and Ignacio Diaz-Franulic
Int. J. Mol. Sci. 2025, 26(15), 7121; https://doi.org/10.3390/ijms26157121 - 23 Jul 2025
Abstract
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to [...] Read more.
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to OSCA gating remain unresolved. Here, we combined the genetic encoding of the photoactivatable crosslinker p-benzoyl-L-phenylalanine (BzF) with functional Ca2+ imaging and molecular dynamics simulations to dissect the roles of specific residues in OSCA1.2 gating. Targeted UV-induced crosslinking at positions F22, H236, and R343 locked the channel in a non-conducting state, indicating their functional relevance. Structural analysis revealed that these residues are strategically positioned: F22 interacts with lipids near the activation gate, H236 lines the lipid-filled cavity, and R343 forms cross-subunit contacts. Together, these results support a model in which mechanical gating involves a distributed network of residues across multiple channel regions, allosterically converging on the activation gate. This study expands our understanding of mechanotransduction by revealing how distant structural elements contribute to force sensing in OSCA channels. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

22 pages, 1294 KiB  
Review
Research Progress on Adhesion Mechanism and Testing Methods of Emulsified Asphalt–Aggregate Interface
by Hao-Yue Huang, Xiao Han, Sen Han, Xiao Ma, Jia Guo and Yao Huang
Buildings 2025, 15(15), 2611; https://doi.org/10.3390/buildings15152611 - 23 Jul 2025
Abstract
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt [...] Read more.
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt and aggregates, as a core factor affecting the performance of cold-mixed mixtures and the lifespan of the pavement, has attracted much attention in terms of its mechanism of action and evaluation methods. However, at present, there are still many issues that need to be addressed in terms of the stability control of adhesion between emulsified asphalt and aggregates, the explanation of the microscopic mechanism, and the standardization of testing methods in complex environments. These problems restrict the further promotion and application of the cold construction technology. Based on this, this paper systematically analyzes the current development status, application scenarios, and future trends of the theory and testing methods of the adhesion between emulsified asphalt and aggregates by reviewing a large number of relevant studies. The research aims to provide theoretical support and practical references for the improvement of adhesion in the cold construction asphalt pavement technology. Research shows that in terms of the adhesion mechanism, the existing results have deeply analyzed the infiltration and demulsification adhesion process of emulsified asphalt on the surface of aggregates and clarified the key links of physical and chemical interactions, but the understanding of the microscopic interface behavior and molecular-scale mechanism is still insufficient. In terms of testing methods, although objective and subjective evaluation methods such as mechanical tensile tests, surface energy evaluation, and adhesion fatigue tests have been developed, the standardization of testing, data comparability, and practical engineering applicability still need to be optimized. Comprehensive analysis shows that the research on the adhesion between emulsified asphalt and aggregates is showing a trend from macroscopic to microscopic, from static to dynamic. There are challenges in predicting and controlling the adhesion performance under complex environments, as well as important opportunities for developing advanced characterization techniques and multiscale simulation methods. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

19 pages, 2677 KiB  
Article
Role of StAR Gene in Sex Steroid Hormone Regulation and Gonadal Development in Ark Shell Scapharca broughtonii
by Wenjing Wang, Zhihong Liu, Huaying Zhang, Zheying Gao, Sudong Xia, Xiujun Sun, Liqing Zhou, Zhuanzhuan Li, Peizhen Ma and Biao Wu
Biology 2025, 14(8), 925; https://doi.org/10.3390/biology14080925 - 23 Jul 2025
Abstract
This study elucidates the role of the steroidogenic acute regulatory protein (StAR) in sex steroid hormone dynamics and the gonadal development of the commercially important marine bivalve ark shell Scapharca broughtonii. The sequence of the StAR gene was obtained and [...] Read more.
This study elucidates the role of the steroidogenic acute regulatory protein (StAR) in sex steroid hormone dynamics and the gonadal development of the commercially important marine bivalve ark shell Scapharca broughtonii. The sequence of the StAR gene was obtained and verified from the transcriptome of ark shell, then the tissue localization and expression pattern during the gonad development of the StAR gene were detected by in situ hybridization and quantitative real-time PCR, respectively. Additionally, the concentrations of three critical sex steroid hormones (progesterone, testosterone, and estradiol) were measured throughout gonadal development using enzyme-linked immunosorbent assay (ELISA). The results showed that the length of the coding region of StAR was 1446 bp, encoding 481 amino acids. The results of qRT-PCR showed that the expression of the StAR gene varied with gonadal development, increased from the early active stage to the development stage, and decreased from the mature stage to the spent stage. Notably, the expression level in ovaries was higher than that in testes, suggesting the potential involvement of StAR in sex differentiation and gonadal development. Additionally, the results indicated that progesterone, testosterone, and estradiol accounted for 80%, 10%, and 10% of the total hormone content in the gonads, respectively. Correlation analysis revealed a highly significant strong positive correlation between progesterone/estradiol levels and StAR gene expression, demonstrating that StAR serves as a key regulator in sex steroid hormone biosynthesis. These findings provide crucial molecular evidence for StAR-mediated steroidogenesis in bivalve reproduction, offering fundamental insights into invertebrate endocrinology. Full article
Show Figures

Figure 1

25 pages, 1889 KiB  
Review
Biosynthesis Strategies and Application Progress of Mandelic Acid Based on Biomechanical Properties
by Jingxin Yin, Yi An and Haijun Gao
Microorganisms 2025, 13(8), 1722; https://doi.org/10.3390/microorganisms13081722 - 23 Jul 2025
Abstract
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development [...] Read more.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity. Significant progress has been made in enzyme engineering modifications, metabolic pathway design, and process optimization. Importantly, biomechanical research provides a transformative perspective for this field. By analyzing the mechanical response characteristics of microbial cells in bioreactors, biomechanics facilitates the regulation of relevant environmental factors during the fermentation process, thereby improving synthesis efficiency. Molecular dynamics simulations are also employed to uncover stability differences in enzyme–substrate complexes, providing a structural mechanics basis for the rational design of highly catalytically active enzyme variants. These biomechanic-driven approaches lay the foundation for the future development of intelligent, responsive biosynthesis systems. The deep integration of biomechanics and synthetic biology is reshaping the process paradigm of green MA manufacturing. This review will provide a comprehensive summary of the applications of MA and recent advances in its biosynthesis, with a particular focus on the pivotal role of biomechanical characteristics. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Figure 1

21 pages, 3237 KiB  
Article
Temporal miRNA Biomarkers for Pupal Age Estimation in Sarcophaga peregrina (Diptera: Sarcophagidae)
by Yang Xia, Hai Wu, Sile Chen, Yuanxing Wang, Jiasheng Sun, Yi Li, Yadong Guo and Yanjie Shang
Insects 2025, 16(8), 754; https://doi.org/10.3390/insects16080754 - 23 Jul 2025
Abstract
The pupal stage in necrophagous flies represents the longest and least morphologically distinct phase of development, posing a persistent challenge for accurately estimating postmortem intervals (PMI) in forensic investigations. Here, we present a novel molecular approach to pupal age estimation in Sarcophaga peregrina [...] Read more.
The pupal stage in necrophagous flies represents the longest and least morphologically distinct phase of development, posing a persistent challenge for accurately estimating postmortem intervals (PMI) in forensic investigations. Here, we present a novel molecular approach to pupal age estimation in Sarcophaga peregrina, a forensically important species, by profiling microRNA (miRNA) expression dynamics. High-throughput sequencing across early, mid, and late pupal stages identified 191 known miRNAs, of which nine exhibited distinct monotonic temporal trends. Six miRNAs (miR-210-3p, miR-285, miR-927-5p, miR-956-3p, miR-92b, and miR-275-5p) were validated by qRT-PCR and demonstrated consistent time-dependent expression patterns. Polynomial regression models revealed a strong correlation between miRNA abundance and developmental age (R2 = 0.88–0.99). Functional enrichment analyses of predicted miRNA targets highlighted their roles in key regulatory pathways, including ecdysteroid signaling, hypoxia response, autophagy, and energy metabolism. This study establishes, for the first time, a robust miRNA-based framework for estimating pupal age in forensic entomology, underscoring the potential of miRNAs as temporally precise biomarkers for PMI estimation. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

17 pages, 1633 KiB  
Article
Iodinated Salicylhydrazone Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Enzymatic Activity, Molecular Modeling, and ADMET Profiling
by Seema K. Bhagwat, Fabiola Hernandez-Rosas, Abraham Vidal-Limon, J. Oscar C. Jimenez-Halla, Balasaheb K. Ghotekar, Vivek D. Bobade, Enrique Delgado-Alvarado, Sachin V. Patil and Tushar Janardan Pawar
Chemistry 2025, 7(4), 117; https://doi.org/10.3390/chemistry7040117 - 23 Jul 2025
Abstract
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g [...] Read more.
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g, 4i, and 4j exhibited potent enzyme inhibition, with IC50 values ranging from 14.86 to 18.05 µM—substantially better than acarbose (IC50 = 45.78 µM). Molecular docking and 500 ns molecular dynamics simulations revealed stable enzyme–ligand complexes driven by π–π stacking, halogen bonding, and hydrophobic interactions. Density Functional Theory (DFT) calculations and molecular electrostatic potential (MEP) maps highlighted key electronic factors, while ADMET analysis confirmed favorable drug-like properties and reduced nephrotoxicity. Structure–activity relationship (SAR) analysis emphasized the importance of halogenation and aromaticity in enhancing bioactivity. Full article
Show Figures

Graphical abstract

17 pages, 4597 KiB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

Back to TopTop