Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (829)

Search Parameters:
Keywords = Mn removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4751 KiB  
Article
Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device
by Haozhen Liu, Mingxin Liu, Xiqiang Zhao, Ping Zhou, Zhanlong Song, Wenlong Wang, Jing Sun and Yanpeng Mao
Catalysts 2025, 15(8), 749; https://doi.org/10.3390/catal15080749 (registering DOI) - 5 Aug 2025
Abstract
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, [...] Read more.
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and Raman spectroscopy. The catalytic oxidation activity of catalytic Cu-MnOx/GF electrodes toward toluene was evaluated in an all-solid-state electrocatalytic device under mild operating conditions. The evaluation results demonstrated that the microwave-modified catalytic electrode exhibited high electrocatalytic activity toward toluene oxidation, with Cu-MnOx/700W-GF exhibiting significantly higher catalytic activity, indicating that an increase in catalyst loading capacity can promote the removal of toluene. Only CO2 and CO were detected, with no other intermediates observed in the reaction process. Moreover, the catalytic effect was significantly affected by the relative humidity. The catalytic oxidation of toluene can be fully realized under a certain humidity, indicating that the conversion of H2O to strongly oxidizing ·OH on the catalytic electrode is a key step in this reaction. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

19 pages, 1681 KiB  
Article
Decolorization of Corn Fiber Arabinoxylan Extract with (MN102) Resin: Adsorption Performance and Film-Forming Capacity
by Verónica Weng, Diana Gago, Carla Brazinha, Vítor D. Alves and Isabel M. Coelhoso
Polymers 2025, 17(15), 2128; https://doi.org/10.3390/polym17152128 - 1 Aug 2025
Viewed by 183
Abstract
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of [...] Read more.
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of colored compounds present in an arabinoxylan extract using resin MN102. The resin successfully adsorbed the colored compounds from the arabinoxylan extract. After four consecutive adsorption/desorption cycles, the efficiency of the resin was similar, only decreasing from 63.3% to 52.9%. Langmuir and Freundlich models were fitted to the results of adsorption isotherm experiments, with the Freundlich model demonstrating the best fit to the experimental results. A fixed-bed column loaded with the resin was used for the removal of the colored compounds from the arabinoxylan extract, and the effect of the volumetric flow rate was investigated. The Yan and log-Gompertz models showed the best fit to the experimental breakthrough curves. This study systematically evaluated the adsorption conditions, providing a comprehensive analysis of the performance of the resin in the removal of the colored compounds. Additionally, the ability of the extract to maintain its film-forming properties after decolorization was evaluated, and some of the film’s key characteristics were evaluated, namely its color, solubility in water and mechanical properties. Full article
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 345
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

28 pages, 1243 KiB  
Review
Research Progress on the Preparation of Iron-Manganese Modified Biochar and Its Application in Environmental Remediation
by Chang Liu, Xiaowei Xu, Anfei He, Yuanzheng Zhang, Ruijie Che, Lu Yang, Jing Wei, Fenghe Wang, Jing Hua and Jiaqi Shi
Toxics 2025, 13(8), 618; https://doi.org/10.3390/toxics13080618 - 25 Jul 2025
Viewed by 197
Abstract
Biochar, a porous carbonaceous material derived from the pyrolysis of biomass under oxygen-limited conditions, offers several advantages for environmental remediation, including a high specific surface area, ease of preparation, and abundant raw material sources. However, the application of pristine biochar is limited by [...] Read more.
Biochar, a porous carbonaceous material derived from the pyrolysis of biomass under oxygen-limited conditions, offers several advantages for environmental remediation, including a high specific surface area, ease of preparation, and abundant raw material sources. However, the application of pristine biochar is limited by its inherent physicochemical shortcomings, such as a lack of active functional groups and limited elemental compositions. To overcome these limitations, metal-modified biochars have garnered increasing attention. In particular, iron-manganese (Fe-Mn) modification significantly enhances the adsorption capacity, redox potential, and microbial activity of biochar, owing to the synergistic interactions between Fe and Mn. Iron-manganese-modified biochar (FM-BC) has demonstrated effective removal of heavy metals, organic matter, phosphate, and nitrate through mechanisms including mesoporous adsorption, redox reactions, complexation, electrostatic interactions, and precipitation. Moreover, FM-BC can improve soil physicochemical properties and support plant growth, highlighting its promising potential for broader environmental application. This review summarizes the preparation methods, environmental remediation mechanisms, and practical applications of FM-BC and discusses future directions in mechanism elucidation, biomass selection, and engineering implementation. Overall, FM-BC, with its tunable properties and multifunctional capabilities, emerges as a promising and efficient material for addressing complex environmental pollution challenges. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

19 pages, 6502 KiB  
Article
Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals
by Mohamed R. Elamin, Nuha Y. Elamin, Tarig G. Ibrahim, Mutaz Salih, Abuzar Albadri, Rasha Ramadan and Babiker Y. Abdulkhair
Processes 2025, 13(8), 2357; https://doi.org/10.3390/pr13082357 - 24 Jul 2025
Viewed by 312
Abstract
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3 [...] Read more.
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3N4, 10%MnTe@β, and 20%MnTe@β showed surface areas of 85.86, 97.40, and 109.54 m2 g−1, respectively. Using ciprofloxacin (CIP) as a pollutant example, 10%MnTe@β and 20%MnTe@β attained equilibrium at 60 and 45 min with qt values of 48.88 and 77.41 mg g−1, respectively, and both performed better at pH = 6.0. The kinetic studies revealed a better agreement with the pseudo-second-order model for CIP sorption on 10%MnTe@β and 20%MnTe@β, indicating that the sorption was controlled by a liquid film mechanism, which suggests a high affinity of CIP toward 10%MnTe@β and 20%MnTe@β. The sorption equilibria outputs indicated better alignment with the Freundlich and Langmuir models for CIP removal by 10%MnTe@β and 20%MnTe@β, respectively. The thermodynamic analysis revealed that CIP removal by 10%MnTe@β and 20%MnTe@β was exothermic, which turned more spontaneous as the temperature decreased. Applying 20%MnTe@β as the best sorbent to groundwater and seawater spiked with CIP resulted in average efficiencies of 94.8% and 91.08%, respectively. The 20%MnTe@β regeneration–reusability average efficiency was 95.14% within four cycles, which might nominate 20%MnTe@β as an efficient and economically viable sorbent for remediating CIP-contaminated water. Full article
Show Figures

Figure 1

20 pages, 2143 KiB  
Article
Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm
by Liz Marzano-Vasquez, Giselle Torres-López, Máximo Baca-Neglia, Wilmer Chávez-Sánchez, Roberto Solís-Farfán, José Curay-Tribeño, César Rodríguez-Aburto, Alex Vallejos-Zuta, Jesús Vara-Sanchez, César Madueño-Sulca, Cecilia Rios-Varillas de Oscanoa and Alex Pilco-Nuñez
Water 2025, 17(14), 2152; https://doi.org/10.3390/w17142152 - 19 Jul 2025
Viewed by 456
Abstract
Chemically demethoxylated and Ca-cross-linked orange-peel waste was engineered as a biosorbent for Mn(II) removal from water. A three-factor Box–Behnken design (biosorbent dose 3–10 g L−1, initial Mn2+ 100–300 mg L−1, contact time 3–8 h; pH 5.5 ± 0.1, [...] Read more.
Chemically demethoxylated and Ca-cross-linked orange-peel waste was engineered as a biosorbent for Mn(II) removal from water. A three-factor Box–Behnken design (biosorbent dose 3–10 g L−1, initial Mn2+ 100–300 mg L−1, contact time 3–8 h; pH 5.5 ± 0.1, 25 °C) required only 16 runs to locate the optimum (10 g L−1, 100 mg L−1, 8 h), at which the material removed 94.8% ± 0.3% manganese removal under the optimized conditions (10 g L−1, 100 mg L−1, 8 h, pH 5.5) of dissolved manganese and reached a Langmuir capacity of 29.7 mg g−1. Equilibrium data fitted the Freundlich (R2 = 0.968) and Sips (R2 = 0.969) models best, indicating a heterogeneous surface, whereas kinetic screening confirmed equilibrium within 6 h. FTIR and SEM–EDX verified abundant surface –COO/–OH groups and showed Mn deposits that partially replaced residual Ca, supporting an ion-exchange component in the uptake mechanism. A preliminary cost analysis (<USD 10 kg−1) and > 90% regeneration efficiency over three cycles highlight the economic and environmental promise of this modified agro-waste for polishing Mn-laden effluents. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

30 pages, 2521 KiB  
Article
From Batch to Pilot: Scaling Up Arsenic Removal with an Fe-Mn-Based Nanocomposite
by Jasmina Nikić, Jovana Jokić Govedarica, Malcolm Watson, Đorđe Pejin, Aleksandra Tubić and Jasmina Agbaba
Nanomaterials 2025, 15(14), 1104; https://doi.org/10.3390/nano15141104 - 16 Jul 2025
Viewed by 287
Abstract
Arsenic contamination in groundwater is a significant public health concern, with As(III) posing a greater and more challenging risk than As(V) due to its higher toxicity, mobility, and weaker adsorption affinity. Fe-Mn-based adsorbents offer a promising solution, simultaneously oxidizing As(III) to As(V), enhancing [...] Read more.
Arsenic contamination in groundwater is a significant public health concern, with As(III) posing a greater and more challenging risk than As(V) due to its higher toxicity, mobility, and weaker adsorption affinity. Fe-Mn-based adsorbents offer a promising solution, simultaneously oxidizing As(III) to As(V), enhancing its adsorption. This study evaluates an Fe-Mn nanocomposite across typical batch (20 mg of adsorbent), fixed-bed column (28 g), and pilot-scale (2.5 kg) studies, bridging the gap between laboratory and real-world applications. Batch experiments yielded maximum adsorption capacities of 6.25 mg/g and 4.71 mg/g in a synthetic matrix and real groundwater, respectively, demonstrating the impact of the water matrix on adsorption. Operational constraints and competing anions led to a lower capacity in the pilot (0.551 mg/g). Good agreement was observed between the breakthrough curves in the pilot (breakthrough at 475 bed volumes) and the fixed-bed column studies (365–587 bed volumes) under similar empty bed contact times (EBCTs). The Thomas, Adams–Bohart, and Yoon–Nelson models demonstrated that lower flow rates and extended EBCTs significantly enhance arsenic removal efficiency, prolonging the operational lifespan. Our findings demonstrate the necessity of continuous-flow experiments using real contaminated water sources and the importance of optimizing flow conditions, EBCTs, and pre-treatment in order to successfully scale up Fe-Mn-based adsorbents for sustainable arsenic removal. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 438
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

18 pages, 5852 KiB  
Article
Spatial Distribution of Heavy Metals in the Water of Tequesquitengo Lake, Morelos, Mexico, and Their Biosorption by Pectin
by S. Viridiana Vargas-Solano, Y. Yelitza Lizcano-Delgado, Francisco Rodríguez-González, Julio A. Saldivar-Calvo, Rita Martínez-Velarde, Alex Osorio-Ruiz, María Luisa Corona Rangel and Sandra S. Morales-García
Water 2025, 17(14), 2050; https://doi.org/10.3390/w17142050 - 8 Jul 2025
Viewed by 322
Abstract
In this study, the presence of heavy metals (HMs) is determined to assess surface water contamination; biosorbent materials are also used to remove them and thus improve their quality. The objective of this work was to study the spatial distribution of HMs in [...] Read more.
In this study, the presence of heavy metals (HMs) is determined to assess surface water contamination; biosorbent materials are also used to remove them and thus improve their quality. The objective of this work was to study the spatial distribution of HMs in water samples from Tequesquitengo Lake, Morelos, Mexico; pectin was also used for HM biosorption. For this, fifteen water samples were collected from the central and peripheral zones of the lake; HMs such as Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg were identified and quantified by atomic absorption spectroscopy (AAS). The metal evaluation index (HEI) was calculated, as well as the percentage of HM removal with pectin. The water samples presented high concentrations of Pb, Cr, and Mn in contrast to the other HMs studied. Furthermore, these showed high concentrations (161.2, 85.2, and 65.6 µg/L, respectively) in the peripheral zone. Therefore, these values exceed the permissible limit for human consumption, except for Mn. The HEI value indicated that the lake water exhibits low contamination. After the adsorption of HMs with pectin, Cr (100%), Ni (83%) and Cd (37%) were removed, reducing the total concentration of HMs in the water in all samples. Full article
Show Figures

Figure 1

15 pages, 3979 KiB  
Article
Properties of Selected Additive Materials Used to Increase the Lifetime of Tools for Crushing Unwanted Growths Using Hardfacing by Welding Technology
by Miroslava Ťavodová, Monika Vargová, Dana Stančeková, Anna Rudawska and Arkadiusz Gola
Materials 2025, 18(13), 3188; https://doi.org/10.3390/ma18133188 - 5 Jul 2025
Viewed by 318
Abstract
This article focuses on the possibilities of increasing the service life of tools for crushing unwanted growths. One way to increase their service life is to increase the hardness and resistance to abrasive wear of exposed surfaces of the tool, which are their [...] Read more.
This article focuses on the possibilities of increasing the service life of tools for crushing unwanted growths. One way to increase their service life is to increase the hardness and resistance to abrasive wear of exposed surfaces of the tool, which are their face and back. At the same time, however, care must be taken to ensure that the shape and weight of the tool is not altered after the additive has been hardfaced on. Thus, the tool was first modified by removing the material by milling from the face and back. Subsequently, two surfacing materials, namely UTP 690 and OK WearTrode 55, were chosen and hardfaced by welding onto the pre-prepared surfaces. After hardfacing by welding, the tools were ground to their original shape and their weight was measured. Subsequently, the tool was sawn, and specimens were created for Rockwell hardness evaluation, material microstructure and for abrasive wear resistance testing as per ASTM G133-95. The OK WearTrode 55 electrode is a hardfacing electrode that produces weld metal with a high-volume fraction of fine carbides in a martensitic matrix. Better results were achieved by the UTP 690 hardfacing material. The hardness was 3.1 times higher compared to the base tool material 16MnCr5 and 1.2 times higher than the OK WearTrode 55 material. The abrasive wear resistance was 2.76 times higher compared to 16MnCr5, and 1.14 times higher compared to the OK WearTrode 55 material. The choice of a suitable pre-treatment for the tool and the selection and application of such additional material, which with its complex properties better resists the effects of the working environment, is a prerequisite for increasing the service life of tools working in forestry. Full article
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 276
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

29 pages, 2767 KiB  
Article
Closed-Loop Valorization of Annatto Seed Waste into Biochar: A Sustainable Platform for Phosphorus Adsorption and Safe Nutrient Recycling in Agro-Industries
by Diana Guaya, Camilo Piedra and Inmaculada Carmona
Molecules 2025, 30(13), 2842; https://doi.org/10.3390/molecules30132842 - 2 Jul 2025
Viewed by 449
Abstract
Valorizing agro-industrial waste into functional materials for environmental remediation and resource recovery is essential for advancing circular economy models. This study presents a novel closed-loop strategy to convert annatto (Bixa orellana) seed residues into biochar for phosphate recovery from aqueous solutions [...] Read more.
Valorizing agro-industrial waste into functional materials for environmental remediation and resource recovery is essential for advancing circular economy models. This study presents a novel closed-loop strategy to convert annatto (Bixa orellana) seed residues into biochar for phosphate recovery from aqueous solutions and real agro-industrial wastewater. A novel ternary modification with Fe, Zn, and Mn metals was applied to enhance the phosphate adsorption performance of the biochar. Materials were synthesized via pyrolysis at 600 °C and 700 °C, with ABC-M700 exhibiting the highest performance. Comprehensive characterization (FTIR, SEM–EDS, and XRF) confirmed the successful incorporation of metal (oxy)hydroxide functional groups, which facilitated phosphate binding. Adsorption studies revealed that ABC-M700 achieved a maximum phosphate removal capacity of 6.19 mg·g−1, representing a 955% increase compared to unmodified ABC-N700 (0.59 mg·g−1), and a 31% increase relative to ABC-M600 (4.73 mg·g−1). Physicochemical characterization indicated increased surface area, well-developed mesoporosity, and the formation of metal (oxy)hydroxide functionalities. ABC-M700 achieved a maximum adsorption capacity of 73.22 mg·g−1 and rapid kinetics, removing 95% of phosphate within 10 min and reaching equilibrium at 30 min. The material exhibited notable pH flexibility, with optimal performance in the range of pH 6–7. Performance evaluations using real wastewater from the same agro-industry confirmed its high selectivity, achieving 80% phosphate removal efficiency despite the presence of competing ions and organic matter. Phosphate fractionation revealed that 78% of adsorbed phosphate was retained in stable, metal-associated fractions. Although the material showed limited reusability, it holds potential for integration into nutrient recycling strategies as a slow-release fertilizer. These findings demonstrate a low-cost, waste-derived adsorbent with strong implications for circular economy applications and sustainable agro-industrial wastewater treatment. This study establishes a scalable model for agro-industries that not only reduces environmental impact but also addresses phosphorus scarcity and promotes resource-efficient waste management. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Figure 1

15 pages, 3411 KiB  
Article
Investigation of Surface Oxidation of Cast Austenitic 304 Stainless Steel at High Temperatures
by Tatiana Ivanova, Michal Kořenek, Miroslav Mashlan and Martin Fryšák
Metals 2025, 15(7), 748; https://doi.org/10.3390/met15070748 - 2 Jul 2025
Viewed by 312
Abstract
The microstructure and surface behavior of iron-based 304 stainless steel after temperature exposure was studied by Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy dispersive analysis and positron annihilation. The tested specimens were in the form of cylinders produced by the casting [...] Read more.
The microstructure and surface behavior of iron-based 304 stainless steel after temperature exposure was studied by Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy dispersive analysis and positron annihilation. The tested specimens were in the form of cylinders produced by the casting process. The samples were annealed in air in the 600–1000 °C temperature range for 36 h. Under the influence of temperature, cast 304 stainless steel underwent austenitic–ferritic transformation and tended to form an oxide layer on the surface. The oxides were mainly found in the thin surface layer (0.3 μm) and consisted of Fe oxides and oxides of alloying elements (Cr and Mn) in the form of corundum, while, in the bulk region (10 μm), the phase transformation of austenite to ferrite occurred. Surface phase inhomogeneity was studied by Mössbauer spectroscopy. The method of positron annihilation was used to study defects and the effect of annealing on the formation and removal of a defect structure. Full article
Show Figures

Figure 1

16 pages, 11512 KiB  
Article
Itinerant and Correlated Nature of Altermagnetic MnTe Single Crystal Studied by Photoemission and Inverse-Photoemission Spectroscopies
by Kazi Golam Martuza, Yogendra Kumar, Hiroshi Yamaguchi, Shiv Kumar, Masashi Arita, Hitoshi Sato, Shin-ichiro Ideta and Kenya Shimada
Materials 2025, 18(13), 3103; https://doi.org/10.3390/ma18133103 - 1 Jul 2025
Viewed by 382
Abstract
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the [...] Read more.
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the Γ¯ point, which was consistent with the reported ARPES results and our density functional theory (DFT) calculations with the on-site Coulomb interaction U. The observed Mn 3d↑-derived peak at −3.5 eV, however, significantly deviated from the DFT + U calculations. Meanwhile, the Mn 3d↓-derived peak at +3.0 eV observed by inverse-photoemission spectroscopy agreed well with the DFT + U results. Based on simulations of the spectral function employing an w-dependent model self-energy, we found significant relaxation effects in the electron-removal process, while such effects were negligible in the electron-addition process. Our study provides a comprehensive picture of electronic states, forming a solid foundation for understanding the magnetic and transport properties of MnTe. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

11 pages, 2045 KiB  
Article
Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption
by Yu-Lin Hu, Yi-Lin Zhu, Shi-Ying Gu, Jia-Qing Xu, Zhi-Xing Gan and Chuan-Guo Shi
Nanomaterials 2025, 15(13), 1002; https://doi.org/10.3390/nano15131002 - 28 Jun 2025
Viewed by 313
Abstract
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, [...] Read more.
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, we reveal that the afterglow of Cs2Na0.2Ag0.8InCl6:y%Mn can be significantly modulated by Mn2+ concentration. We propose that replacing Ag+ with Mn2+ leads to the appearance of interstitial Ag+, which temporally store the photogenerated electrons (Ag++eAg). After the removal of excitation, the gradual recombination between residual holes and stored electrons [h++Ag++ehν+Ag+] explains the afterglow. However, excessive Mn2+ doping at interstitial sites does not bring about more interstitial Ag+ but instead introduces nonradiative traps. Therefore, as the Mn2+ concentration increases, the afterglow time increases from 350 s to 530 s and then decreases to 230 s, reaching a maximum at y = 40. Thus, a dynamic optical information storage and encryption application is demonstrated based on the modulated afterglow time. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructure, Second Edition)
Show Figures

Figure 1

Back to TopTop