Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (458)

Search Parameters:
Keywords = Methyl Orange degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 222
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 275
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 344
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

14 pages, 4332 KiB  
Article
Powerful Tribocatalytic Degradation of Methyl Orange Solutions with Concentrations as High as 100 mg/L by BaTiO3 Nanoparticles
by Mingzhang Zhu, Zeren Zhou, Yanhong Gu, Lina Bing, Yuqin Xie, Zhenjiang Shen and Wanping Chen
Nanomaterials 2025, 15(14), 1135; https://doi.org/10.3390/nano15141135 - 21 Jul 2025
Viewed by 296
Abstract
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high [...] Read more.
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high concentrations through magnetic stirring. With BTO nanoparticles and home-made PTFE magnetic rotary disks in 50 mg/L MO solutions, 10 h of magnetic stirring resulted in 91.4% and 98.1% degradations in an as-received glass beaker and in a beaker with a PTFE disk coated on its bottom, respectively. Even for 100 mg/L MO solutions, nearly complete degradation was achieved by magnetic-stirring-stimulated BTO nanoparticles in beakers with the following four kinds of bottom: 97.3% degradation in 30 h for a glass bottom, 97.4% degradation in 20 h for a PTFE coating, 97.9% degradation in 42 h for a Ti coating, and 97.4% degradation in 74 h for an Al2O3 coating. Electron paramagnetic resonance (EPR) analyses revealed that the generation of reactive oxygen species (ROS) by magnetic-stirring-stimulated BTO nanoparticles is dramatically affected by the bottom material of beakers. These findings suggest an appealing prospect for BTO nanoparticles to utilize mechanical energy for sustainable water remediation. Full article
Show Figures

Graphical abstract

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 297
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

23 pages, 7174 KiB  
Article
Enhancing Wastewater Treatment Through Python ANN-Guided Optimization of Photocatalysis with Boron-Doped ZnO Synthesized via Mechanochemical Route
by Vladan Nedelkovski, Milan Radovanović, Dragana Medić, Sonja Stanković, Iosif Hulka, Dejan Tanikić and Milan Antonijević
Processes 2025, 13(7), 2240; https://doi.org/10.3390/pr13072240 - 14 Jul 2025
Viewed by 384
Abstract
This study explores the enhanced photocatalytic performance of boron-doped zinc oxide (ZnO) nanoparticles synthesized via a scalable mechanochemical route. Utilizing X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), the structural and morphological properties of these nanoparticles were assessed. Specifically, nanoparticles [...] Read more.
This study explores the enhanced photocatalytic performance of boron-doped zinc oxide (ZnO) nanoparticles synthesized via a scalable mechanochemical route. Utilizing X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), the structural and morphological properties of these nanoparticles were assessed. Specifically, nanoparticles with 1 wt%, 2.5 wt%, and 5 wt% boron doping were analyzed after calcination at temperatures of 500 °C, 600 °C, and 700 °C. The obtained results indicate that 1 wt% B-ZnO nanoparticles calcined at 700 °C show superior photocatalytic efficiency of 99.94% methyl orange degradation under UVA light—a significant improvement over undoped ZnO. Furthermore, the study introduces a predictive model using the artificial neural network (ANN) technique, developed in Python, which effectively forecasts photocatalytic performance based on experimental conditions with R2 = 0.9810. This could further enhance wastewater treatment processes, such as heterogeneous photocatalysis, through ANN-guided optimization. Full article
(This article belongs to the Special Issue Metal Oxides and Their Composites for Photocatalytic Degradation)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 376
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 287
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

6 pages, 2223 KiB  
Proceeding Paper
Photocatalytic Degradation of Dyes Using TpPa-COF-Cl2 Membrane
by Mayu Kawaguchi, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 1; https://doi.org/10.3390/chemproc2025017001 - 4 Jul 2025
Viewed by 350
Abstract
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing [...] Read more.
Covalent organic frameworks (COFs) are photocatalysts composed of covalent bonds of light elements and free of toxic metals. COFs are highly active against dyes. Furthermore, we aimed to improve the utility of COFs by making them into membranes. In this study, by utilizing the cross-linked structure of calcium alginate, we succeeded in forming the photocatalyst TpPa-COF-Cl2 into a membrane without destroying its structure. This was confirmed by characterization such as FT-IR. In addition, methyl orange was decolorized at 450 nm, confirming the photocatalytic activity of the membrane. Full article
Show Figures

Figure 1

13 pages, 2631 KiB  
Article
TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction
by Yangyang Zhang, Yuanyuan Li and Xuejun Yu
Gels 2025, 11(7), 512; https://doi.org/10.3390/gels11070512 - 1 Jul 2025
Viewed by 310
Abstract
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and [...] Read more.
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and open pore morphology were completely retained. This modification strategy significantly enhanced the loading capacity of the hydrogels with copper nanoparticles (Cu NPs). The experimental results show that the LiBr aqueous solution can efficiently dissolve cellulose, and the TEMPO oxidation introduces carboxyl groups without destroying the stability of the hydrogels. Cu NPs are uniformly dispersed and highly loaded on the surface of the hydrogel because of the anchoring effect of the carboxyl groups. Cu NP-loaded hydrogels exhibit excellent catalytic activity in the NaBH4 reduction of 4-nitrophenol (4-NP). Cu NP-loaded hydrogels maintain their complete structure and good catalytic performance after five consecutive cycles. Moreover, Cu NP-loaded hydrogels demonstrate high efficiency in degrading organic dyes such as methyl orange and Congo red. This study successfully developed efficient, low-cost, and environmentally friendly Cu NP-loaded hydrogel catalysts through the synergistic effect of LiBr green solvent and TEMPO oxidation modification, providing a feasible alternative to noble metal catalysts. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Figure 1

14 pages, 7989 KiB  
Article
Polyacrylonitrile/Silver Nanoparticles Composite for Catalytic Dye Reduction and Real-Time Monitoring
by Christian Narváez-Muñoz, Sebastián Ponce, Carlos Durán, Cristina Aguayo, Cesar Portero, Joseph Guamán, Alexis Debut, Magaly Granda, Frank Alexis, Ezequiel Zamora-Ledezma and Camilo Zamora-Ledezma
Polymers 2025, 17(13), 1762; https://doi.org/10.3390/polym17131762 - 26 Jun 2025
Viewed by 367
Abstract
This study presents a one-step electrospinning method to fabricate polyacrylonitrile (PAN) nanofibers embedded with green-synthesized silver nanoparticles (AgNPs) for efficient catalytic dye reduction and real-time monitoring. Utilizing avocado seed extract for AgNP synthesis, the resulting composite nanofibers exhibit uniform nanoparticle dispersion and enhanced [...] Read more.
This study presents a one-step electrospinning method to fabricate polyacrylonitrile (PAN) nanofibers embedded with green-synthesized silver nanoparticles (AgNPs) for efficient catalytic dye reduction and real-time monitoring. Utilizing avocado seed extract for AgNP synthesis, the resulting composite nanofibers exhibit uniform nanoparticle dispersion and enhanced surface area, significantly improving adsorption and catalytic properties. The membranes demonstrated outstanding catalytic activity, achieving over 95% degradation of methyl orange within 45 min when paired with sodium borohydride, and maintained structural integrity and performance over ten reuse cycles. The integration of a novel 3D-printed support enabled scalability, allowing a 60-fold increase in treatment volume without compromising efficiency. Additionally, the composite’s electrical conductivity changes enabled the real-time monitoring of the dye reduction process, highlighting its dual functionality as both catalyst and sensor. These results encourage the potential of PAN/AgNPs supported on a 3D-printed structure nanofiber membranes for scalable, sustainable wastewater treatment and in situ reaction monitoring. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

22 pages, 8453 KiB  
Article
Harnessing BiOI/V2O5 Nanocomposites: Advanced Bifunctional Catalysts for Visible-Light Driven Environmental Remediation and Antibacterial Activity
by Anil Pandey, Narayan Gyawali, Devendra Shrestha, Insup Lee, Santu Shrestha, Subas Acharya, Pujan Nepal, Binod Gaire, Vince Fualo, Sabita Devi Sharma and Jae Ryang Hahn
Molecules 2025, 30(12), 2500; https://doi.org/10.3390/molecules30122500 - 6 Jun 2025
Viewed by 1814
Abstract
Efficient photocatalysts based on composite materials are essential for addressing environmental pollution and enhancing water purification. This study presents a novel BiOI/V2O5 nanocomposite (BVNC) with a flower-like layered structure, synthesized via a low-temperature solvothermal process followed by high-pressure annealing for [...] Read more.
Efficient photocatalysts based on composite materials are essential for addressing environmental pollution and enhancing water purification. This study presents a novel BiOI/V2O5 nanocomposite (BVNC) with a flower-like layered structure, synthesized via a low-temperature solvothermal process followed by high-pressure annealing for visible light (VL)-driven dye degradation and antibacterial activities. Compared to individual BiOI nanoparticles (BOINP) and V2O5 nanoparticles (VONP), under VL, the BVNC demonstrated significantly enhanced photocatalytic and antibacterial activity. The best-performing BVNC achieved a remarkable methylene blue degradation efficiency of 95.7% within 140 min, with a rate constant value 439% and 430% of those of BOINP and VONP, respectively. Additionally, BVNC exhibited high photocatalytic efficiencies for rhodamine 6G (94.0%), methyl orange (90.4%), and bisphenol A (69.5%) over 160 min, highlighting the superior performance of the composite materials for cationic and anionic dyes. Furthermore, BVNC established outstanding antibacterial capability against Staphylococcus aureus and Escherichia coli, demonstrating zones of inhibition of 12.24 and 11.62 mm, respectively. The improved catalytic and antibacterial capability is ascribed to the presence of a robust p-n heterojunction between BOINP and VONP, which broadens the photo-absorption range, reduces bandgap energy, and facilitates the significant separation of excitons and faster release of reactive oxygen species. Full article
(This article belongs to the Special Issue Advances in Composite Photocatalysts)
Show Figures

Graphical abstract

13 pages, 3473 KiB  
Article
CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal
by Nujud Maslamani
Polymers 2025, 17(11), 1577; https://doi.org/10.3390/polym17111577 - 5 Jun 2025
Viewed by 423
Abstract
In this work, Guar gum and copper oxide-nickel oxide (GG-CuO-NiO) hydrogel were produced with the help of formaldehyde solution to display an efficient catalytic performance toward the catalytic degradation of selected dyes (Methylene Blue (MB), Methyl Orange (MO), and Eosin Yellow (EY)) in [...] Read more.
In this work, Guar gum and copper oxide-nickel oxide (GG-CuO-NiO) hydrogel were produced with the help of formaldehyde solution to display an efficient catalytic performance toward the catalytic degradation of selected dyes (Methylene Blue (MB), Methyl Orange (MO), and Eosin Yellow (EY)) in the presence of NaBH4. The morphological and structural properties of the prepared hydrogel were thoroughly analyzed using SEM, EDX, XRD, and FT-IR techniques. According to the results, the GG-CuO-NiO hydrogel was able to reduce MB by 95% in one minute, 90.0% in four minutes, and 80.0% in 10 min for MO and EY, respectively. The catalytic efficiency of the hydrogel for MB was studied by adjusting its concentrations, varying reducing agent concentrations, and altering the amount of gel used. Using the recyclability method, which involved testing the GG-CuO-NiO hydrogel multiple times for the reduction of MB, the stability, reusability, and loss of catalytic activity of the hydrogel were examined. As a result, the designed GG-CuO-NiO hydrogel was stable for up to four times toward the reduction of MB. Lastly, the efficiency of the GG-CuO-NiO hydrogel was evaluated for MB removal in real samples and displayed exceptional reduction capabilities. Full article
(This article belongs to the Special Issue Advances in Natural Fiber-Polymer Composites)
Show Figures

Figure 1

12 pages, 1878 KiB  
Article
Photocatalytic Properties of ZnO/WO3 Coatings Formed by Plasma Electrolytic Oxidation of a Zinc Substrate in a Tungsten-Containing Electrolyte
by Stevan Stojadinović, Dejan Pjević and Nenad Radić
Coatings 2025, 15(6), 657; https://doi.org/10.3390/coatings15060657 - 29 May 2025
Viewed by 490
Abstract
ZnO/WO3 coatings were synthesized by the plasma electrolytic oxidation of zinc in an alkaline phosphate electrolyte (supporting electrolyte, SE) with the addition of WO3 particles or tungstosilicic acid (WSiA, H4SiW12O40) at concentrations of up to [...] Read more.
ZnO/WO3 coatings were synthesized by the plasma electrolytic oxidation of zinc in an alkaline phosphate electrolyte (supporting electrolyte, SE) with the addition of WO3 particles or tungstosilicic acid (WSiA, H4SiW12O40) at concentrations of up to 1.0 g/L. These coatings were intended for the decomposition of methyl orange (MO) through photocatalysis. The morphology, chemical composition, crystal structure and absorption properties of the coatings were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength-dispersive X-ray spectroscopy, X-ray diffraction, photoelectron spectroscopy and diffuse reflectance spectroscopy. Under artificial sunlight, the PA of the coatings was investigated using MO decomposition. The photocatalytic activity (PA) of the ZnO/WO3 coatings was higher than that of the ZnO obtained in SE. The decrease in the recombination rate of photo-generated electron/hole pairs due to the coupling of ZnO and WO3 is related to the increased PA. The PA for ZnO and the most photocatalytically active ZnO/WO3 was around 72% and 96%, respectively, after 8 h of irradiation. A mechanism for MO photo-degradation by the ZnO/WO3 photocatalyst was also proposed. Full article
Show Figures

Figure 1

14 pages, 3167 KiB  
Article
Visible Light-Driven Z-Scheme CNQDs/Ag3PO4 Octopod-Shaped Nanostructures with Exposed {110} Facets for Enhanced Photocatalytic Degradation
by Xiaoze Yin, Yuxin Xiao, Chaoyue Wu and Jinnan Wang
Water 2025, 17(11), 1594; https://doi.org/10.3390/w17111594 - 25 May 2025
Viewed by 520
Abstract
Although Ag3PO4 possessed high quantum yield (approximately 90%) and strong oxidation potential, its practical application was limited due to serious photocorrosion and inadequate stability. To improve the anti-photocorrsion ability, carbon nitride quantum dots (CNQDs) were loaded on octopod-like Ag3 [...] Read more.
Although Ag3PO4 possessed high quantum yield (approximately 90%) and strong oxidation potential, its practical application was limited due to serious photocorrosion and inadequate stability. To improve the anti-photocorrsion ability, carbon nitride quantum dots (CNQDs) were loaded on octopod-like Ag3PO4 with {110}-faceted rhombic dodecahedrons. The CNQDs stabilized the high-energy {110} facets via carboxylate-mediated interactions, facilitating oriented assembly into 3D octopod configurations. More importantly, a Z-scheme heterojunction was constructed between CNQDs and Ag3PO4 for electrons transfer from Ag3PO4 to CNQDs, which could not only maintain strong redox potentials but also suppress carrier recombination. The 12.5%CNQDs/Ag3PO4 composite achieved a more than 90% removal of methyl orange within 13 min. Radical trapping and EPR analyses indicated that holes of Ag3PO4 played a dominant role in organics degradation. In addition, •O2, which was generated from the O2 reduction by photogenerated electrons of CNQDs, also participated in the degradation of organics. This work provides a facet-controlled heterojunction design strategy, leveraging quantum-confined CNQDs to enhance charge kinetics and molecular oxygen activation. Full article
Show Figures

Figure 1

Back to TopTop