CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal
Abstract
1. Introduction
2. Experimental
2.1. Material
2.2. Synthesis of CuO-NiO
2.3. Synthesis of GG-CuO-NiO Hydrogel
2.4. Instrumental Analysis
2.5. Catalytic Reduction
3. Result and Discussion
3.1. Characterization
3.1.1. Field Emission Scanning Electron Microscope (FE-SEM)
3.1.2. X-Ray Diffraction XRD
3.1.3. Fourier-Transform InfraRed (FT-IR) Spectroscopy
3.2. Catalytic Reduction Study
Discoloring Study of Dyes
3.3. Catalytic Stability
3.4. Catalytic Efficiency of GG-CuO-NiO Hydrogel in Real Samples
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekki, A.; Mokhtar, A.; Hachemaoui, M.; Beldjilali, M.; fethia Meliani, M.; Zahmani, H.H.; Hacini, S.; Boukoussa, B. Fe and Ni Nanoparticles-Loaded Zeolites as Effective Catalysts for Catalytic Reduction of Organic Pollutants. Microporous Mesoporous Mater. 2021, 310, 110597. [Google Scholar] [CrossRef]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.-H.; Rai, B.N.; Singh, R.S. Recent Advancements in Bioremediation of Dye: Current Status and Challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Haji, A.; Naebe, M. Cleaner Dyeing of Textiles Using Plasma Treatment and Natural Dyes: A Review. J. Clean. Prod. 2020, 265, 121866. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, A.M.; Seo, J.; Khan, S.B. Pollution, Toxicity and Carcinogenicity of Organic Dyes and Their Catalytic Bio-Remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef]
- Kamenická, B.; Weidlich, T. A Comparison of Different Reagents Applicable for Destroying Halogenated Anionic Textile Dye Mordant Blue 9 in Polluted Aqueous Streams. Catalysts 2023, 13, 460. [Google Scholar] [CrossRef]
- Maslamani, N.; Khan, S.B.; Bakhsh, E.M.; Akhtar, K. Design of Recyclable Adsorbent for Water Pollutants Based on Chitosan-Coated Carboxymethyl Cellulose-Calcium Alginate Wrapped Iron Oxide-Copper Oxide Composite Beads. J. Nat. Fibers 2024, 21, 2408631. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Kang, M.-S.; Choi, J.; Lee, H.-Y. Smart and Responsive Nano Copper Oxide–PDMS Composite for “Three-in-One” Synergistic Adsorptive–Oxidative/Reductive Degradation of the Persistence of Organic Pollutants, Elimination of Nanoparticles and Heavy Metal Ion. J. Clean. Prod. 2024, 469, 143150. [Google Scholar] [CrossRef]
- Swain, S.; Shenoy, B.M.; Bhol, P.; Yadav, S.; Jena, S.R.; Hegde, G.; Altaee, A.; Saxena, M.; Samal, A.K. Facet Dependent Catalytic Activity of Pd Nanocrystals for the Remedy of Organic Pollutant: A Mechanistic Study. Appl. Surf. Sci. 2021, 570, 150775. [Google Scholar] [CrossRef]
- Swain, S.; Kandathil, V.; Karim, G.M.; Maiti, U.N.; Patil, S.A.; Samal, A.K. Computational and Experimental Design of the Octahedral PdFe Alloy Nanocatalyst for Hiyama Cross-Coupling and Environmental Pollutant Degradation. ACS Appl. Nano Mater. 2023, 6, 3254–3267. [Google Scholar] [CrossRef]
- Lv, H.; Sun, H. Electrospun Foamlike NiO/CuO Nanocomposites with Superior Catalytic Activity toward the Reduction of 4-Nitrophenol. ACS Omega 2020, 5, 11324–11332. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Hemamalini, R.; Saravanan, R.; Ravichandran, K.; Gracia, F.; Agarwal, S.; Gupta, V.K. Synthesis and Characterization of Metal Oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) Nanoparticles as Photo Catalysts for Degradation of Textile Dyes. J. Photochem. Photobiol. B 2017, 173, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sree, G.S.; Botsa, S.M.; Reddy, B.J.M.; Ranjitha, K.V.B. Enhanced UV–Visible Triggered Photocatalytic Degradation of Brilliant Green by Reduced Graphene Oxide Based NiO and CuO Ternary Nanocomposite and Their Antimicrobial Activity. Arab. J. Chem. 2020, 13, 5137–5150. [Google Scholar] [CrossRef]
- Dharmalingam, K.; Bojarajan, A.K.; Gopal, R.; Thangavel, E.; Burhan Al Omari, S.A.; Sangaraju, S. Direct Z-Scheme Heterojunction Impregnated MoS2–NiO–CuO Nanohybrid for Efficient Photocatalyst and Dye-Sensitized Solar Cell. Sci. Rep. 2024, 14, 14518. [Google Scholar] [CrossRef] [PubMed]
- Al-Yunus, A.; Al-Arjan, W.; Traboulsi, H.; Hessien, M. The Effect of Composition on the Properties and Application of CuO-NiO Nanocomposites Synthesized Using a Saponin-Green/Microwave-Assisted Hydrothermal Method. Int. J. Mol. Sci. 2024, 25, 4119. [Google Scholar] [CrossRef]
- Zaheer, F.; Munir, R.; Younas, F.; Sardar, M.F.; Farah, M.A.; Elsadek, M.F.; Muneer, A.; Sana, M.; Noreen, S. Synergistic Removal of Toxic Anionic Reactive Red Dye Me4BL (RRME4BL) from Aqueous Media Using Chemically Synthesised Nano-Adsorbents (ZnO, CuO, NiO and CoO); Equilibrium, Kinetics and Thermodynamic Studies. Chem. Ecol. 2024, 40, 596–626. [Google Scholar] [CrossRef]
- Maslamani, N.; Khan, S.B.; Danish, E.Y.; Bakhsh, E.M.; Zakeeruddin, S.M.; Asiri, A.M. Carboxymethyl Cellulose Nanocomposite Beads as Super-Efficient Catalyst for the Reduction of Organic and Inorganic Pollutants. Int. J. Biol. Macromol. 2021, 167, 101–116. [Google Scholar] [CrossRef]
- Arulkumar, E.; Thanikaikarasan, S.; Siddhardhan, E.V. Synthesis and Characterization of CuO@NiO/g-C3N4 Nanocomposite for Photocatalytic and Electrochemical Application. Results Chem. 2024, 7, 101439. [Google Scholar] [CrossRef]
- Gajurel, S.; Dam, B.; Bhushan, M.; Singh, L.R.; Pal, A.K. CuO–NiO Bimetallic Nanoparticles Supported on Graphitic Carbon Nitride with Enhanced Catalytic Performance for the Synthesis of 1, 2, 3-triazoles, Bis-1, 2, 3-triazoles, and Tetrazoles in Parts per Million Level. Appl. Organomet. Chem. 2022, 36, e6524. [Google Scholar] [CrossRef]
- Emregul, E.; Kocabay, O.; Derkus, B.; Yumak, T.; Emregul, K.C.; Sınag, A.; Polat, K. A Novel Carboxymethylcellulose–Gelatin–Titanium Dioxide–Superoxide Dismutase Biosensor; Electrochemical Properties of Carboxymethylcellulose–Gelatin–Titanium Dioxide–Superoxide Dismutase. Bioelectrochemistry 2013, 90, 8–17. [Google Scholar] [CrossRef]
- Zafar, A.; Khosa, M.K.; Noor, A.; Qayyum, S.; Saif, M.J. Carboxymethyl Cellulose/Gelatin Hydrogel Films Loaded with Zinc Oxide Nanoparticles for Sustainable Food Packaging Applications. Polymers 2022, 14, 5201. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. X-Ray Diffraction, IR Spectroscopy and Thermal Characterization of Partially Hydrolyzed Guar Gum. Int. J. Biol. Macromol. 2012, 50, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yoo, B. Changes in Structural and Rheological Properties of Guar Gum Particles in Fluidized-Bed Agglomeration: Effect of Sucrose Binder Concentration. Foods 2021, 11, 73. [Google Scholar] [CrossRef]
- Sultana, R.; Kumari, A.S.; Ayodhya, D.; Maragoni, V. Monowave Synthesis of Silver Nanoparticles Using Guar Gum: Characterization, Anticancer, Antimicrobial, Antioxidant and Catalytic Activities. Results Chem. 2023, 6, 101082. [Google Scholar] [CrossRef]
- Sethi, S.; Thakur, S. Synthesis and Characterization of Nanocomposite Chitosan-Gelatin Hydrogel Loaded with ZnO and Its Application in Photocatalytic Dye Degradation. Mater. Today Proc. 2023, 78, 815–824. [Google Scholar] [CrossRef]
- Kamal, T.; Khan, S.B.; Asiri, A.M. Nickel Nanoparticles-Chitosan Composite Coated Cellulose Filter Paper: An Efficient and Easily Recoverable Dip-Catalyst for Pollutants Degradation. Environ. Pollut. 2016, 218, 625–633. [Google Scholar] [CrossRef]
- Ali, A.; Khan, S.; Garg, U.; Luqman, M.; Bhagwath, S.S.; Azim, Y. Chitosan-Based Hydrogel System for Efficient Removal of Cu [II] and Sustainable Utilization of Spent Adsorbent as a Catalyst for Environmental Applications. Int. J. Biol. Macromol. 2023, 247, 125805. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, X.; Qin, Z.; Zhang, L.; Ye, Y.; Cao, M.; Gao, L.; Jiao, T. Preparation of PdNPs Doped Chitosan-Based Composite Hydrogels as Highly Efficient Catalysts for Reduction of 4-Nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125889. [Google Scholar] [CrossRef]
- Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An Efficient, Reusable, and Biodegradable Catalyst for Green Synthesis of Heterocycles. Ind. Eng. Chem. Res. 2014, 53, 2085–2091. [Google Scholar] [CrossRef]
- Sehaqui, H.; Brahmi, Y.; Ju, W. Facile and Universal Method for the Synthesis of Metal Nanoparticles Supported onto Carbon Foams. Cellulose 2020, 27, 263–271. [Google Scholar] [CrossRef]
- Maslamani, N.; Bakhsh, E.M.; Khan, S.B.; Danish, E.Y.; Akhtar, K.; Fagieh, T.M.; Su, X.; Asiri, A.M. Chitosan@ Carboxymethylcellulose/CuO-Co2O3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants. Gels 2022, 8, 91. [Google Scholar] [CrossRef]
- Maslamani, N.; Khan, S.B.; Danish, E.Y.; Bakhsh, E.M.; Zakeeruddin, S.M.; Asiri, A.M. Super Adsorption Performance of Carboxymethyl Cellulose/Copper Oxide-Nickel Oxide Nanocomposite toward the Removal of Organic and Inorganic Pollutants. Environ. Sci. Pollut. Res. 2021, 28, 38476–38496. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhang, D.; Xu, J.; Lu, Y.; Liu, Y.; Qiu, K.; Zhang, Y.; Luo, Y. Solution Growth of NiO Nanosheets Supported on Ni Foam as High-Performance Electrodes for Supercapacitors. Nanoscale Res. Lett. 2014, 9, 1–7. [Google Scholar] [CrossRef]
- Bakhsh, E.M.; Khan, S.B.; Maslamani, N.; Danish, E.Y.; Akhtar, K.; Asiri, A.M. Carboxymethyl Cellulose/Copper Oxide–Titanium Oxide Based Nanocatalyst Beads for the Reduction of Organic and Inorganic Pollutants. Polymers 2023, 15, 1502. [Google Scholar] [CrossRef] [PubMed]
- Rahdar, A.; Aliahmad, M.; Azizi, Y.; Keikha, N.; Moudi, M.; Keshavarzi, F. CuO-NiO Nano Composites: Synthesis, Characterization, and Cytotoxicity Evaluation. Nanomed. Res. J. 2017, 2, 78–86. [Google Scholar]
- Arulkumar, E.; Shree, S.S.; Thanikaikarasan, S. Structure, Morphology, Composition, Optical Properties of CuO/NiO Nanocomposite for Electrochemical Energy Storage Devices. Results Chem. 2023, 6, 101087. [Google Scholar] [CrossRef]
- Siddiqui, H.; Parra, M.R.; Qureshi, M.S.; Malik, M.M.; Haque, F.Z. Studies of Structural, Optical, and Electrical Properties Associated with Defects in Sodium-Doped Copper Oxide (CuO/Na) Nanostructures. J. Mater. Sci. 2018, 53, 8826–8843. [Google Scholar] [CrossRef]
- Shahzaib, A.; Ahmad, I.; Alshehri, S.M.; Ahamad, T.; Nishat, N. Green Synthesis of ZIF-67 Composite Embedded with Magnetic Nanoparticles and ZnO Decoration for Efficient Catalytic Reduction of Rhodamine B and Methylene Blue. Chem. Inorg. Mater. 2024, 2, 100037. [Google Scholar] [CrossRef]
- Bakhsh, E.M.; Maslamani, N.; Akhtar, K.; Danish, E.Y.; Asiri, A.M.; Khan, S.B. Fe2O3-NiO Embedded Calcium Alginate-Carboxymethyl Cellulose Composite as an Efficient Nanocatalyst for 4-Nitrophenol Reduction. Inorg. Chem. Commun. 2023, 156, 111157. [Google Scholar] [CrossRef]
- Benhadria, N.; Hachemaoui, M.; Zaoui, F.; Mokhtar, A.; Boukreris, S.; Attar, T.; Belarbi, L.; Boukoussa, B. Catalytic Reduction of Methylene Blue Dye by Copper Oxide Nanoparticles. J. Clust. Sci. 2022, 33, 249–260. [Google Scholar] [CrossRef]
- Nagarajan, D.; Venkatanarasimhan, S. Copper (II) Oxide Nanoparticles Coated Cellulose Sponge—An Effective Heterogeneous Catalyst for the Reduction of Toxic Organic Dyes. Environ. Sci. Pollut. Res. 2019, 26, 22958–22970. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, Y.; Yi, S.; Yan, S.; Ouyang, C.; Deng, F.; Li, C.; Liao, G.; Li, Q. Facile Synthesis of Pure Silicon Zeolite-Confined Silver Nanoparticles and Their Catalytic Activity for the Reduction of 4-Nitrophenol and Methylene Blue. Sep. Purif. Technol. 2023, 307, 122727. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Nand, D. A Comparative Study of the Individual and Mixed Oxide Nanostructures on Sunlight Driven Degradation of Methylene Blue Dye and Antimicrobial Efficacy. Braz. J. Phys. 2024, 54, 230. [Google Scholar] [CrossRef]
Pollutants | Catalyst | Time (Sec) | Rate Constant S−1 | Ref. |
---|---|---|---|---|
MB | CuO–SDS 1 | 600 | 5.75 × 10−3 | [40] |
MB | CuO@CS 2 | 600 | 5.75 × 10−3 | [41] |
MB | Ag/PSZN-5 3 | 240 | 17.29 × 10−3 | [42] |
MB | Fe3O4/ZIF-67@ZnO | 540 | 2.23 × 10−3 | [38] |
MB | CuO-NiO | 180 | 1.195 × 10−2 | [43] |
MB | GG-CuO-NiO Hydrogel | 60 | 5.67 × 10−2 | This study |
Real Samples | Reduction Time (s) | Reduction % |
---|---|---|
Juice | 85 | 87 |
Tap water | 93 | 95 |
Sea water | 79 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslamani, N. CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal. Polymers 2025, 17, 1577. https://doi.org/10.3390/polym17111577
Maslamani N. CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal. Polymers. 2025; 17(11):1577. https://doi.org/10.3390/polym17111577
Chicago/Turabian StyleMaslamani, Nujud. 2025. "CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal" Polymers 17, no. 11: 1577. https://doi.org/10.3390/polym17111577
APA StyleMaslamani, N. (2025). CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal. Polymers, 17(11), 1577. https://doi.org/10.3390/polym17111577