Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = Mentha essential oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

22 pages, 2039 KiB  
Article
Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel D. Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Agronomy 2025, 15(7), 1735; https://doi.org/10.3390/agronomy15071735 - 18 Jul 2025
Viewed by 324
Abstract
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was [...] Read more.
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was conducted to investigate the impact of coloured shading nets on the physiology, essential oil (EO) content, and composition of three Mentha genotypes: Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’, and Mentha rotundifolia ‘Apfelminze’. In addition to an unshaded control, the Mentha plants were grown under red and blue shading nets. Plant height and vegetation indices were collected weekly. Biomass accumulation, EO content, and composition were determined for each harvest. Both red and blue shading were found to influence the physiological responses and EO compositions of the plants, with red shading promoting slightly higher p-menthone levels in ‘Fränkische Blaue’ and ‘Multimentha’, while blue shading slightly increased carvone levels in ‘Apfelminze’. While EO content varied across harvest seasons (spring, summer, and autumn), ‘Fränkische Blaue’ responded to red shading, demonstrating an increased EO content. The findings suggest that targeted use of coloured shading nets can modulate EO quality. However, genotype-specific responses highlight the necessity of further research to define shading applications for different species and genotypes. Full article
(This article belongs to the Special Issue Cultivation and Utilization of Herbal and Aromatic Plants)
Show Figures

Figure 1

14 pages, 1796 KiB  
Article
In Vitro Efficacy of Thymbra capitata (L.) Cav. Essential Oil Against Olive Phytopathogenic Fungi
by Gabriele Simone, Margherita Campo, Silvia Urciuoli, Lorenzo Moncini, Maider Giorgini, Francesca Ieri and Pamela Vignolini
Microorganisms 2025, 13(7), 1503; https://doi.org/10.3390/microorganisms13071503 - 27 Jun 2025
Viewed by 389
Abstract
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus [...] Read more.
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus globulus Labill, and Mentha piperita L. were analyzed by GC–MS and tested in vitro using the poisoned food technique against six olive pathogen fungi: Alternaria sp., Arthrinium marii, Colletotrichum acutatum, Fomitiporia mediterranea, Fusarium solani, and Verticillium dahliae. T. capitata essential oil (0.1 g/L) showed the highest antifungal activity when compared to E. globulus and M. piperita essential oils, which exhibited significantly lower efficacy against the tested olive phytopathogenic fungi. GC–MS analysis revealed that carvacrol is the main compound (76.1%) in T. capitata essential oil. A comparison of the inhibitory effect of T. capitata essential oil (0.1 g/L) and carvacrol (0.07 g/L) on selected fungal strains showed similar results, with carvacrol slightly more effective, although the differences were mostly statistically insignificant, except for C. acutatum. To the authors knowledge, this is the first study demonstrating the inhibitory effect of Thymbra capitata essential oil against A. marii and F. mediterranea. The results of this study represent a basis for the development of new biochemical biopesticides based on T. capitata essential oil as a useful tool for the contrast of some fungal olive tree diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

17 pages, 4013 KiB  
Article
Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production
by Bihter Çolak Esetlili, M. Tolga Esetlili, Kaan Emir and Murat Eröz
Sustainability 2025, 17(12), 5516; https://doi.org/10.3390/su17125516 - 16 Jun 2025
Viewed by 588
Abstract
Agriphotovoltaic (Agri-PV) systems are a dual-purpose solution for resolving land utilization conflicts through combining agricultural practices and photovoltaic power generation. However, the reduced light intensities and altered microclimatic conditions under PV modules may have negative effects on the productivity of crops. This study [...] Read more.
Agriphotovoltaic (Agri-PV) systems are a dual-purpose solution for resolving land utilization conflicts through combining agricultural practices and photovoltaic power generation. However, the reduced light intensities and altered microclimatic conditions under PV modules may have negative effects on the productivity of crops. This study investigated whether incorporating arbuscular mycorrhizal fungi (AMF) inoculation into Agri-PV systems could mitigate such limitations for mint cultivation (Mentha arvensis and Mentha × piperita). A field trial was conducted in Bandırma, Türkiye, where both mint species were grown under and between PV panels, with and without AMF. The photosynthetically active radiation (PAR), temperature, fresh biomass, nutrient uptake, and essential oil content were evaluated. PAR was reduced by more than 90% under panels, while air temperatures were 1.0–1.6 °C lower than those in the between-panel areas. AMF inoculation significantly improved the yield and quality. In Mentha arvensis, the fresh herb yield increased by 43.4% (from 10,620 to 15,230 kg ha−1), and the essential oil content reached 10.08% under between-panel mycorrhizal conditions. For Mentha × piperita, the highest menthol concentration (30.38%) was observed exclusively in between-panel plots with AMF. In contrast, the highest oil content (4.50%) was achieved under shaded, mycorrhizal conditions, indicating that both light exposure and microbial interactions shape biochemical responses. This is the first study to demonstrate the synergistic impact of AMF inoculation and agrivoltaic shading on essential oil crops. This paper presents a novel and sustainable model that enhances crop productivity and biochemical quality in solar-integrated agriculture. Full article
Show Figures

Figure 1

15 pages, 715 KiB  
Article
Essential Oils as Nature’s Dual Powerhouses for Agroindustry and Medicine: Volatile Composition and Bioactivities—Antioxidant, Antimicrobial, and Cytotoxic
by Javier Rocha-Pimienta, Javier Espino, Sara Martillanes and Jonathan Delgado-Adámez
Separations 2025, 12(6), 145; https://doi.org/10.3390/separations12060145 - 1 Jun 2025
Viewed by 495
Abstract
Essential oils (EOs), which are complex mixtures of plant-derived volatile compounds, have been utilized for centuries in the medical, food, and pharmaceutical industries because of their diverse biological properties. In recent years, there has been growing interest in elucidating the bioactivities of essential [...] Read more.
Essential oils (EOs), which are complex mixtures of plant-derived volatile compounds, have been utilized for centuries in the medical, food, and pharmaceutical industries because of their diverse biological properties. In recent years, there has been growing interest in elucidating the bioactivities of essential oils and their underlying mechanisms of action. This study aimed to investigate the antioxidant, antimicrobial, and cytotoxic characteristics of Laurus nobilis, Eucalyptus camaldulensis, Rosmarinus officinalis, and Mentha suaveolens oils and relate them to their volatile compound content. The volatile compounds of the essential oils were characterized and quantified by gas chromatography, the antioxidant activity was quantified using the ABTS assay, the antibacterial activity was quantified using broth microdilution and agar diffusion techniques, and the MTT assay was used to establish the cytotoxic potential. This study revealed a significant antioxidant capacity, which correlated with the proportion of terpenes known for their antioxidant properties. The antioxidant potency was ranked in descending order: R. officinalis, M. suaveolens, E. camaldulensis, and L. nobilis. Antimicrobial testing demonstrated that all the examined essential oils were effective against the evaluated microbial species, including both Gram-positive (Listeria innocua) and Gram-negative (Escherichia coli) bacteria. Additionally, all the tested essential oils triggered cell death in the human epithelioid cervical carcinoma (HeLa) cell line. Collectively, this article highlights the promising therapeutic and alimentary potential of essential oils and underscores the need for further research to fully harness their benefits in industrial settings. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

19 pages, 3406 KiB  
Article
Clove, Cinnamon, and Peppermint Essential Oils as Antibiofilm Agents Against Alicyclobacillus acidoterrestris
by Agnieszka Tyfa, Alina Kunicka-Styczyńska, Magdalena Molska, Radosław Michał Gruska and Andrzej Baryga
Molecules 2025, 30(11), 2312; https://doi.org/10.3390/molecules30112312 - 24 May 2025
Viewed by 826
Abstract
Alicyclobacillus acidoterrestris, an acidothermophilic bacterium, is one of the main contaminants in the fruit industry due to its high tolerance to environmental stress and ability to form biofilms. As conventional methods of biofilm elimination may be ineffective, there is a need for [...] Read more.
Alicyclobacillus acidoterrestris, an acidothermophilic bacterium, is one of the main contaminants in the fruit industry due to its high tolerance to environmental stress and ability to form biofilms. As conventional methods of biofilm elimination may be ineffective, there is a need for safe and sustainable methods for A. acidoterrestris management. The objective of the study was to evaluate the antibiofilm activity of commercial essential oils derived from clove (Syzygium aromaticum (L.) Merr. & Perry), cinnamon (Cinnamomum zeylanicum Blume), and peppermint (Mentha piperita (L.) Huds.) against A. acidoterrestris. The effect of the essential oils on the mature biofilms of fifteen environmental A. acidoterrestris isolates subjected to variable pH values (3.0, 4.0, and 5.5), temperatures (25, 37, and 44 °C), and essential oil concentrations (0.5 MIC, MIC, and 2 MIC compared to planktonic cells) was studied. The essential oils showed significant antibiofilm activity against A. acidoterrestris isolates, with the efficiency of biofilm eradication depending on the strain and environmental parameters such as acidity, culture temperature, type, and concentration of essential oil. The greatest antibiofilm potential was observed for clove essential oil regardless of oil concentrations and environmental conditions. Cinnamon oil exhibited lower activity against the tested A. acidoterrestris strains. Peppermint essential oil showed the weakest antibiofilm ability and did not completely eradicate any strain biofilm of the tested strains. Clove and cinnamon essential oils have the potential to be effective alternatives to synthetic disinfectants directed against A. acidoterrestris grown in the form of biofilms. Full article
(This article belongs to the Special Issue Biological Activities of Traditional Medicinal Plants, 2nd Edition)
Show Figures

Figure 1

26 pages, 6502 KiB  
Systematic Review
Investigating the Health Potential of Mentha Species Against Gastrointestinal Disorders—A Systematic Review of Clinical Evidence
by Mariana Hirata, Lucas Fornari Laurindo, Victória Dogani Rodrigues, Flávia Cristina Castilho Caracio, Vitor Engrácia Valenti, Eliana de Souza Bastos Mazuqueli Pereira, Rodrigo Haber Mellem, Cláudia Rucco Penteado Detregiachi, Manuela dos Santos Bueno, Leila Maria Guissoni Campos, Caio Sérgio Galina Spilla and Sandra Maria Barbalho
Pharmaceuticals 2025, 18(5), 693; https://doi.org/10.3390/ph18050693 - 8 May 2025
Cited by 1 | Viewed by 1642
Abstract
Background/Objectives: Gastrointestinal disorders include a broad spectrum of clinical conditions due to various symptoms. Abdominal pain claims attention as it can be associated with multiple diseases, and some of them can lead to chronic abdominal pain, such as chronic gastritis and irritable bowel [...] Read more.
Background/Objectives: Gastrointestinal disorders include a broad spectrum of clinical conditions due to various symptoms. Abdominal pain claims attention as it can be associated with multiple diseases, and some of them can lead to chronic abdominal pain, such as chronic gastritis and irritable bowel syndrome. Moreover, dyspepsia is also a prevalent condition, and its symptoms are postprandial fullness, epigastric pain or burn, and early satiety. Conventional therapeutic approaches for gastrointestinal disorders exist, but the Mentha plant has a millenary tradition. Mentha aerial parts and leaves hold therapeutic and pharmacological value, and its components are characterized as non-essential oil with superabundant phenolic compounds, and essential oil classified as volatile secondary metabolites like menthol and menthone. Studies have shown that Mentha species can exert benefits by modulating the inflammatory process and scavenging free radicals, which can benefit gastrointestinal tract disorders. The aim of this review was to systematically investigate the effects of Mentha species on gastrointestinal disorders. Methods: Sixteen clinical trials included patients diagnosed with irritable bowel syndrome, functional dyspepsia, and functional abdominal pain, as well as some healthy volunteers. The COCHRANE tool was utilized to assess the bias of the included studies. Results: Most studies reported significant outcomes for Mentha oil-treated groups, such as better control of abdominal pain and discomfort, even though two trials did not report superior outcomes. Conclusions: Due to the increasing interest in natural compounds, further clinical trials are necessary to confirm the status of Mentha for improvement in gastrointestinal disorders. Full article
Show Figures

Figure 1

13 pages, 1983 KiB  
Article
Optimization of the Drying Temperature for High Quality Dried Melissa officinalis
by Panayiota Xylia and Antonios Chrysargyris
Appl. Sci. 2025, 15(9), 5136; https://doi.org/10.3390/app15095136 - 5 May 2025
Viewed by 984
Abstract
The drying temperature is one of the main factors affecting the storage of medicinal and aromatic plants (MAPs). The present study aimed to investigate the impact of different drying temperatures (20, 35, 42, and 49 °C) on Mentha officinalis quality attributes (moisture content, [...] Read more.
The drying temperature is one of the main factors affecting the storage of medicinal and aromatic plants (MAPs). The present study aimed to investigate the impact of different drying temperatures (20, 35, 42, and 49 °C) on Mentha officinalis quality attributes (moisture content, color, chlorophyll content) and the composition of its essential oil (EO), as well as the environmental impact, to determine the optimum drying temperature for this herb. According to the current findings, higher temperatures resulted in shorter drying times. However, this was accompanied by increased energy consumption and higher carbon footprint per hour of operation. Both room temperature (20 °C) and high oven temperature (49 °C) led to a darker colored product (i.e., higher browning index). Drying at 20 °C resulted in a higher EO yield compared to drying at higher temperatures (42 and 49 °C). Furthermore, lower temperatures (20 and 35 °C) and the highest temperature (49 °C) significantly decreased the levels of the two major EO compounds (geranial and neral), whereas both compounds were found in higher levels when the plants were dried at 42 °C. On the other hand, plants dried at 42 °C appeared to have the lowest amount of citronellal, significantly lower than those dried at the other tested temperatures. The results suggest that the optimum temperature for drying M. officinalis is at 42 °C, as it maintained the quality attributes of the dried product while also resulting in high quality EO. Full article
(This article belongs to the Special Issue Essential Oils: Sources, Chemical Composition and Applications)
Show Figures

Figure 1

24 pages, 4413 KiB  
Article
Mentha piperita Supplementation Promotes Growth, Immunity, and Disease Resistance in Nile tilapia Against Aeromonas hydrophila
by Attia A. Abou Zaid, Nagwa H. Mohammed, Ahmed E. Elshafey, Ebtehal E. Hussein, Adel M. El-Gamal and Haitham G. Abo-Al-Ela
Pathogens 2025, 14(4), 378; https://doi.org/10.3390/pathogens14040378 - 12 Apr 2025
Cited by 1 | Viewed by 1232
Abstract
This study investigated the effects of dietary supplementation with Mentha piperita (MP) on growth, immune enhancement, and disease resistance in Nile tilapia (Oreochromis niloticus) over a 90-day period, particularly against Aeromonas hydrophila. MP was incorporated into the diets at concentrations [...] Read more.
This study investigated the effects of dietary supplementation with Mentha piperita (MP) on growth, immune enhancement, and disease resistance in Nile tilapia (Oreochromis niloticus) over a 90-day period, particularly against Aeromonas hydrophila. MP was incorporated into the diets at concentrations of 0.0%, 0.2%, 0.4%, and 0.6%. Analysis of the essential oil composition of MP identified menthol derivatives as the primary components, along with other bioactive compounds. The results revealed that MP supplementation significantly enhanced growth performance, with fish receiving the 0.6% MP diet achieving the highest weight gain, growth rate, and feed efficiency. Additionally, MP significantly enhanced the fish’s resistance to A. hydrophila infection, with the highest survival rate observed in the 0.6% MP group. Further analyses revealed that MP positively influenced blood parameters, improving RBC and WBC counts, hemoglobin levels, as well as serum immunoglobulin M and phagocytic activity. MP also mitigated oxidative stress by increasing antioxidant enzyme activity and reducing malondialdehyde levels. Moreover, MP supplementation at the concentration of 0.6% maintained intestinal integrity against bacterial damage. Gene expression analysis showed that MP upregulated insulin-like growth factor 1, suggesting a potential mechanism for improved growth. Interestingly, MP downregulated the expression of the inflammatory gene nuclear factor kappa B before the bacterial challenge, while its expression remained more downregulated post-challenge compared to control. These findings highlight the potential of MP as an effective feed additive that enhances growth rates in Nile tilapia, boosts immunity against diseases, and improves their overall health. Full article
Show Figures

Figure 1

32 pages, 19603 KiB  
Article
Analysis of the Antioxidant and Antimicrobial Activity, Cytotoxic, and Anti-Migratory Properties of the Essential Oils Obtained from Cultivated Medicinal Lamiaceae Species
by Gabriela Valentina Ciobotaru, Iacob-Daniel Goje, Cristina Adriana Dehelean, Corina Danciu, Ioana Zinuca Magyari-Pavel, Elena-Alina Moacă, Delia Muntean, Ilinca Merima Imbrea, Veronica Sărățeanu and Georgeta Pop
Plants 2025, 14(6), 846; https://doi.org/10.3390/plants14060846 - 8 Mar 2025
Cited by 1 | Viewed by 1180
Abstract
This study aims to highlight the therapeutic potential of some Lamiacea essential oils (EOs). For this purpose, eight EOs, including two from Lavandula angustifolia Mill. cultivated in Romania and Spain (LA1 and LA2), Salvia officinalis L. (SO), Lavandula hybrida Balb. ex Ging (LH), [...] Read more.
This study aims to highlight the therapeutic potential of some Lamiacea essential oils (EOs). For this purpose, eight EOs, including two from Lavandula angustifolia Mill. cultivated in Romania and Spain (LA1 and LA2), Salvia officinalis L. (SO), Lavandula hybrida Balb. ex Ging (LH), Salvia sclarea L. (SS), Mentha smithiana L. (MS), Perovskia atriplicifolia Benth. (PA), and Mentha x piperita L. (MP), were evaluated in vitro in terms of antioxidant, cytotoxic, antimicrobial, and anti-migratory activities. As regards the antioxidant capacity, expressed as the EO concentration that produces 50% of the maximum effect (IC50 value), the EOs obtained from the cultivated plants of the Lamiaceae family are ordered as follows: LA2 ˃ LA1 ˃ LH > MP > MS > SO > SS > PA. For the determination of antimicrobial activity, the reference strains used for testing were Salmonella enterica serotype typhimurium, Shigella flexneri serotype 2b, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Candida parapsilosis. The most intense inhibitory effect was observed in EOs of MS and MP on all tested microbial strains. The cytotoxic and anti-migratory activity of EOs was tested on two melanoma cell lines (A375 and B164A5) and on a healthy keratinocyte line (HaCaT). EOs LA1 and MP manifested the highest selectivity on the analysed tumoural cells, by reducing their migration in comparison with the control, proving to have therapeutic potential. Full article
Show Figures

Figure 1

32 pages, 3212 KiB  
Article
Evaluating the Antifungal Activity of Volatilized Essential Oils on Fungi Contaminating Artifacts from a Museum Collection
by Luís Fernandes, Diana Sofia Paiva, Emília Pereira, Ana Cristina Rufino, Euclides Landim, Mário Pedro Marques, Célia Cabral, António Portugal and Nuno Mesquita
Appl. Sci. 2025, 15(5), 2378; https://doi.org/10.3390/app15052378 - 23 Feb 2025
Viewed by 959
Abstract
As is the case for all forms of cultural heritage, museum collections are under a serious threat of biodeterioration, with fungi playing a significant role in this phenomenon, compromising the preservation and dissemination of past knowledge, artifacts and traditions. As part of the [...] Read more.
As is the case for all forms of cultural heritage, museum collections are under a serious threat of biodeterioration, with fungi playing a significant role in this phenomenon, compromising the preservation and dissemination of past knowledge, artifacts and traditions. As part of the ongoing efforts to study the fungal contaminations observed in the artifacts that compose the collection of the Science Museum of the University of Coimbra, non-invasive sampling of four objects present in the archive was conducted and 43 fungal isolates were retrieved. These isolates were subjected to a comprehensive analysis based on molecular and morphological characteristics and were identified as belonging to 15 different species. Of the 15 isolated species, 5 were selected for in vitro antifungal essential oil assays, based on their relative abundance and biodeteriorative potential. For these, essential oils of Cymbopogon citratus, Lavandula angustifolia, Thapsia gummifera, Mentha pulegium, Mentha suaveolens, Thapsia villosa, Thymus mastichina and Agastache foeniculum were obtained via hydrodistillation, in accordance with the European Pharmacopeia. Of the tested oils, most impacted fungal growth, with Cymbopogon citratus and Lavandula angustifolia being able to fully inhibit the growth of most fungi even at the lowest tested concentrations. Full article
Show Figures

Figure 1

24 pages, 1700 KiB  
Article
Antifungal Efficacy of Essential Oils and Their Predominant Components Against Olive Fungal Pathogens
by Elena Petrović, Karolina Vrandečić, Jasenka Ćosić, Tamara Siber and Sara Godena
Agriculture 2025, 15(3), 340; https://doi.org/10.3390/agriculture15030340 - 4 Feb 2025
Cited by 1 | Viewed by 1817
Abstract
The antifungal effectiveness of essential oils (EOs) and their predominant components were tested on 14 phytopathogenic fungi isolated from olive trees. Commercial EOs from holy basil (Ocimum tenuiflorum L.), Chinese cinnamon (Cinnamomum aromaticum Ness), lemon (Citrus × limon), peppermint [...] Read more.
The antifungal effectiveness of essential oils (EOs) and their predominant components were tested on 14 phytopathogenic fungi isolated from olive trees. Commercial EOs from holy basil (Ocimum tenuiflorum L.), Chinese cinnamon (Cinnamomum aromaticum Ness), lemon (Citrus × limon), peppermint (Mentha × piperita L.), oregano (Origanum compactum Benth), and thyme (Thymus vulgaris L.) and components eugenol, e-cinnamaldehyde, limonene, menthol, carvacrol, and thymol were used. Antifungal efficacy was tested on six species from the Botryosphaeriaceae family: Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not.; Diplodia mutila (Fr.) Fr.; D. seriata De Not.; Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves; Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque; and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Other tested species included Biscogniauxia mediterranea (De Not.) Kuntze, B. nummularia (Bull.) Kuntze; Cytospora pruinosa Défago; Nigrospora gorlenkoana Novobr.; N. osmanthi Mei Wang & L. Cai; N. philosophiae-doctoris M. Raza, Qian Chen & L. Cai; Phaeoacremonium iranianum L. Mostert, Grafenhan, W. Gams & Crous; and Sordaria fimicola (Roberge ex Desm.) Ces. & De Not. The results show that Chinese cinnamon and oregano EOs, along with their components, completely inhibited the growth of all tested fungi, indicating their potential as biological control agents in sustainable agriculture. In contrast, the least effective treatments were the EOs derived from lemon and peppermint, as well as the components limonene, menthol, and thymol. Notably, the fungi Do. iberica and N. gorlenkoana were among the most sensitive to all the treatments applied. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

22 pages, 849 KiB  
Review
Botanical Antifeedants: An Alternative Approach to Pest Control
by Roman Pavela, Kateřina Kovaříková and Matěj Novák
Insects 2025, 16(2), 136; https://doi.org/10.3390/insects16020136 - 31 Jan 2025
Cited by 1 | Viewed by 1744
Abstract
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of [...] Read more.
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of research and the development of new ecological insecticides. The mode of action does not have to rely exclusively on acute or chronic toxicity. Another promising approach is the use of plant antifeedants, which can significantly reduce the food intake of phytophagous insects. However, the information on antifeedant substances has not yet been sufficiently evaluated. The aim of this review was to find the most promising plants that provide potent extracts, essential oils (EOs), or isolated compounds with antifeedant properties. The selection was based on a comparison of effective concentrations or doses. Effective extracts were obtained from 85 plant species belonging to 35 families and the EOs came from 38 aromatic plant species from 11 families. Based on the results, Angelica archangelica, Caesalpinia bonduc, Grindelia camporum, Inula auriculata, Lavandula luisieri, Mentha pulegium, Piper hispidinervum, and Vitis vinifera were selected as promising plants with antifeedant potential. These plants are potent antifeedants, and at the same time provide sufficient biomass for industrial use in the development and production of botanical antifeedants. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

39 pages, 1181 KiB  
Review
Phytochemical and Pharmacological Insights into Mentha asiatica Boriss.: A Promising Antimicrobial Plant
by Baiken Baimakhanova, Amankeldi Sadanov, Gul Baimakhanova, Diana Tluebekova, Alma Amangeldi, Zere Turlybaeva, Irina Ratnikova, Zhanar Nurgaliyeva, Roza Seisebayeva, Botagoz Ussipbek, Lyazzat Umbetyarova, Akerke Amirkhanova, Gulnaz Seitimova and Aknur Turgumbayeva
Molecules 2025, 30(3), 511; https://doi.org/10.3390/molecules30030511 - 23 Jan 2025
Cited by 1 | Viewed by 1569
Abstract
Mentha asiatica Boriss., a species native to Central Asia, has garnered significant attention for its diverse phytochemical profile and antimicrobial potential. This review synthesizes current knowledge on the antimicrobial activities of M. asiatica, focusing on its essential oils and other bioactive constituents. [...] Read more.
Mentha asiatica Boriss., a species native to Central Asia, has garnered significant attention for its diverse phytochemical profile and antimicrobial potential. This review synthesizes current knowledge on the antimicrobial activities of M. asiatica, focusing on its essential oils and other bioactive constituents. The study contextualizes the importance of natural antimicrobials in the era of rising antibiotic resistance and highlights the plant’s traditional use in ethnomedicine. The main methodologies explored include gas chromatography–mass spectrometry (GC–MS) for phytochemical characterization and various in vitro assays to assess antimicrobial efficacy against bacterial and fungal pathogens. The essential oils of M. asiatica demonstrate a broad spectrum of activity, attributed to compounds such as menthol, menthone, and carvone. Other phytochemicals, including sesquiterpenes and terpenoids, also contribute to its bioactivity. The review underscores the potential of M. asiatica as a source of novel antimicrobial agents and calls for further research into its mechanisms of action, bioavailability, and safety profiles. The findings position M. asiatica as a promising candidate for developing plant-based antimicrobial formulations, addressing critical needs in healthcare and food preservation. Full article
(This article belongs to the Special Issue Cutting-Edge Progress in Natural Product-Derived Antimicrobial Drugs)
Show Figures

Figure 1

25 pages, 4455 KiB  
Article
Chemical Screening and Nematicidal Activity of Essential Oils from Macaronesian and Mediterranean Plants for Controlling Plant-Parasitic Nematodes
by Rui Ferreira, Carla Maleita, Luís Fonseca, Ivânia Esteves, Ivo Sousa-Ferreira, Raimundo Cabrera and Paula Castilho
Plants 2025, 14(3), 337; https://doi.org/10.3390/plants14030337 - 23 Jan 2025
Cited by 1 | Viewed by 1282
Abstract
Plant-parasitic nematodes are highly damaging pests responsible for heavy losses in a considerable number of plant crops. Common pest management strategies rely on the use of synthetic chemical nematicides, which have led to serious concerns regarding their impact on human health and the [...] Read more.
Plant-parasitic nematodes are highly damaging pests responsible for heavy losses in a considerable number of plant crops. Common pest management strategies rely on the use of synthetic chemical nematicides, which have led to serious concerns regarding their impact on human health and the environment. The essential oils (EOs) obtained from aromatic plant species can provide a good source of agents for the sustainable control of nematodes, due to higher biodegradability, generally low toxicity for mammals, fish, and birds, and lower bioaccumulation in the environment. This study aimed to evaluate the nematicidal and nematostatic properties of EOs extracted from plant species relevant to Macaronesia flora or with widespread use as culinary herbs in Mediterranean cuisine. Eighteen EOs were chemically characterized and evaluated by direct contact and hatching bioassays on the root-knot nematode Meloidogyne javanica. The EOs that showed a significant effect on M. javanica second-stage juveniles’ (J2) mortality (≥40%) were also used in chemotaxis assays. From the eighteen EOs, seven showed strong nematicidal activity (>80%) and hatching inhibition. The chemotaxis assays revealed that only Mentha pulegium exhibited repellent behavior for M. javanica J2, and the rest of EOs had attractive behavior. Furthermore, EOs were assessed against the root-lesion nematode Pratylenchus penetrans and the pinewood nematode Bursaphelenchus xylophilus. Cinnamomum burmanni was the EO with the highest nematicidal activity for the three nematode species. Among the terpene-rich EOs, high mortality values and hatching inhibition for M. javanica were observed for the carvacrol chemotype Origanum vulgare, albeit with low activity for P. penetrans and B. xylophilus. Mentha pulegium, mainly composed of monoterpene ketones and monoterpenoids, demonstrated moderate-to-high mortality activity (from 30% for P. penetrans to 99% for M. javanica) for the three nematode species. Full article
(This article belongs to the Special Issue Plant-Parasitic Nematodes in Horticultural Plants)
Show Figures

Figure 1

Back to TopTop