Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
- PM0: Non-mycorrhizal, between the panels;
- PM1: Mycorrhizal, between the panels;
- PAM0: Non-mycorrhizal, under the panels;
- PAM1: Mycorrhizal, under the panels.
2.2. Collection of Microclimate Data
2.3. Soil Characterization
2.4. Plant Analysis
2.5. Statistical Analyses
3. Results
3.1. Photosynthetically Active Radiation (PAR)
3.2. Temperature Analysis
3.3. Mentha arvensis vs. Mentha × piperita Yield and Macro- and Micronutrient Elements
3.4. Essential Oil Yield and Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgiou, A.; Skarlatos, D. Optimal site selection for sitting a solar park using multi-criteria decision analysis and geographical information systems. Geosci. Instrum. Methods Data Syst. 2016, 5, 321–332. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.; Kim, K. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Laasri, S.; El Hafidi, E.; Mortadi, A.; Chahid, E.G. Solar-powered single-stage distillation and complex conductivity analysis for sustainable domestic wastewater treatment. Environ. Sci. Pollut. Res. 2024, 31, 29321–29333. [Google Scholar] [CrossRef]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to enhance pollinator biodiversity in solar parks. Renew. Sustain. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Hábenczyus, A.A.; Kelemen, A.; Török, P.; Valkó, O.; Deák, B.; Bátori, Z. How to not trade water for carbon with tree planting in water-limited temperate biomes? Sci. Total Environ. 2023, 856, 158960. [Google Scholar] [CrossRef]
- Walston, L.J.; Li, Y.; Hartmann, H.M.; Macknick, J.; Hanson, A.; Nootenboom, C.; Lonsdorf, E.; Hellmann, J. Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern. United States Ecosyst. Serv. 2021, 47, 101227. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sust. Energ. Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Suuronen, A.; Muñoz-Escobar, C.; Lensu, A.; Kuitunen, M.; Celis, N.G.; Astudillo, P.E.; Ferrú, M.; Taucare-Ríos, A.; Miranda, M.; Kukkonen, J.V.K. The influence of solar power plants on microclimatic conditions and the biotic community in Chilean desert environments. Environ. Manag. 2017, 60, 630–642. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Bao, J.; Wu, T.; Chai, B. Effect of Light Heterogeneity Caused by Photovoltaic Panels on the Plant–Soil–Microbial System in Solar Park. Land 2023, 12, 367. [Google Scholar] [CrossRef]
- Lafitte, A.; Sordello, R.; de Crespin de Billy, V.; Froidevaux, J.; Gourdain, P.; Kerbiriou, C.; Langridge, J.; Marx, G.; Schatz, B.; Thierry, C.; et al. What evidence exists regarding the effects of photovoltaic panels on biodiversity? A critical systematic map protocol. Environ. Evid. 2022, 11, 36. [Google Scholar] [CrossRef]
- Gómez-Catasús, J.; Morales, B.; Giralt, D.; González Portillo, D.; Manzano-Rubio, R.; Solé-Bujalance, L.; Sardà-Palomera, F.; Traba, J.; Bota, G. Solar photovoltaic energy development and biodiversity conservation: Current knowledge and research gaps. Conserv. Lett. 2024, 17, e13025. [Google Scholar] [CrossRef]
- Copetta, C.; Lingua, G.; Berta, G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 2016, 16, 485–494. [Google Scholar] [CrossRef]
- Kapoor, R.; Chaudhary, V.; Bhatnagar, A.K. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 2007, 17, 581–587. [Google Scholar] [CrossRef]
- Gupta, M.L.; Prasad, A.; Ram, M.; Kumar, S. Effect of the vesicular–arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour. Technol. 2002, 81, 77–79. [Google Scholar] [CrossRef]
- Kapoor, R.; Giri, B.; Mukerji, K.G. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour. Technol. 2004, 93, 307–311. [Google Scholar] [CrossRef]
- Khaosaad, T.; Vierheilig, H.; Nell, M.; Zitterl-Eglseer, K.; Novak, J. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 2006, 16, 443–446. [Google Scholar] [CrossRef]
- Russomanno, O.M.R.; Kruppa, P.C.; Minhoni, M.T.A. Infuência de fungos micorrízicos arbusculares no desenvolvimento de plantas de alecrim e manjericão. Arq. Inst. Biol. 2008, 75, 37–43. [Google Scholar] [CrossRef]
- Zubek, S.; Błaszkowski, J. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem. Rev. 2009, 8, 571–580. [Google Scholar] [CrossRef]
- Zubek, S.; Stojakowska, A.; Anielska, T.; Turnau, K. Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 2010, 20, 497–504. [Google Scholar] [CrossRef]
- Binet, M.N.; Van Tuinen, D.; Deprêtre, N.; Koszela, N.; Chambon, C.; Gianinazzi, S. Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza 2011, 21, 523–535. [Google Scholar] [CrossRef]
- Arango, M.C.; Ruscitti, M.F.; Ronco, M.G.; Beltrano, J. Mycorrhizal fungi inoculation and phosphorus fertilizer on growth, essential oil production and nutrient uptake in peppermint (Mentha piperita L.). Rev. Bras. Plantas Med. 2012, 14, 692–699. [Google Scholar] [CrossRef]
- Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 12, 267–276. [Google Scholar] [CrossRef]
- Mint Essential Oils Market Report. 2025. Available online: https://www.researchandmarkets.com/report/mint-oil?srsltid (accessed on 31 May 2025).
- Yilmaz, K.; Telci, I. Yield and oil composition of peppermint cultivars grown in the Isparta climate of Turkey. Turk. J. Agric. For. 2022, 46, 10. [Google Scholar] [CrossRef]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Wei, H.; Kong, S.; Jayaraman, V.; Selvaraj, D.; Soundararajan, P.; Manivannan, A. Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits. Horticulturae 2023, 9, 224. [Google Scholar] [CrossRef]
- Temel, M.; Tınmaz, A.B.; Oztürk, M.; Gündüz, O. Production and Trade of Medicinal and Aromatic Plants in the World and Turkey. KSU J. Agric. Nat. 2018, 21, 198–214. [Google Scholar] [CrossRef]
- Fortune Business Insights. Mint Oils Market Size, Share & Industry Analysis, by Application (Oral Products, Confectionary Products, Pharmaceutical Products, Tobacco Products, Fragrance Products, and Others), and Regional Forecast, 2025–2032. 2024. Available online: http://www.fortunebusinessinsights.com/mint-oils-market-104220 (accessed on 11 May 2025).
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Horčinová Sedláčková, V.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Ozguven, M.; Kırıcı, S. Research on yield, essential oil, contents and components of mint (mentha) species in different ecologies. Turk. J. Agric. For. 1999, 23, 465–472. [Google Scholar]
- Kumar, A.; Shukla, R.; Singh, P.; Singh, A.K.; Dubey, N.K. Use of essential oil from Mentha arvensis L. to control storage moulds and insects in stored chickpea. J. Sci. Food Agric. 2010, 89, 2643–2649. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Walasek, M. Preparative separation of menthol and pulegone from peppermint oil (Mentha piperita L.) by high-performance counter-current chromatography. Phytochem. Lett. 2014, 10, 94–98. [Google Scholar] [CrossRef]
- Grulova, D.; De Martino, L.; Mancini, E.; Salamon, I.; De Feo, V. Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric. 2015, 95, 621–627. [Google Scholar] [CrossRef]
- Oliveira Santos, G.A.; Matos Jorge, R.M.; Oliveira Farias, F.; Mathias, A.L. Perspective on the Use of Agrivoltaic Systems for the Production of Secondary Metabolites Applicable to Food: The Case for Mint. Braz. Arch. Biol. Technol. 2024, 67, e24240160. [Google Scholar] [CrossRef]
- De Francesco, C.; Centorame, L.; Toscano, G.; Duca, D. Opportunities, Technological Challenges and Monitoring Approaches in Agrivoltaic Systems for Sustainable Management. Sustainability 2025, 17, 634. [Google Scholar] [CrossRef]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Rychewaert, M.; Christophe, A. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 2017, 206, 1495–1507. [Google Scholar] [CrossRef]
- Meteoblue. Available online: https://www.meteoblue.com (accessed on 24 March 2025).
- Kacar, B. Physical and Chemical Soil Analysis; Nobel Publications and Distribution: Ankara, Türkiye, 2016. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; Technical Paper No. 9; FAO/ISRIC: Wageningen, The Netherlands, 2002; 120p. [Google Scholar]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties; Black, C.A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Kacar, B.; İnal, A. Plant Analyses; Nobel Publishing: Ankara, Türkiye, 2008. [Google Scholar]
- Harborne, J.B. Phytochemical Methods, 2nd ed.; Chapman and Hall: New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Mrlianova, M.; Tekelova, D.; Felklova, M.; Toth, J.; Musil, P.; Grancai, D. Comparison of the quality of Melissa officinalis L. cultivar citra with mellissas of european origin. Ceska Slov. Farm. 2001, 50, 299–302. [Google Scholar]
- Council of Europe. European Pharmacopoeia, 3rd ed.; Council of Europe: Strasbourg, France, 1997; Available online: https://openlibrary.org/books/OL20075393M/ (accessed on 17 April 2025).
- Adams, R.P. Identification of Essential Oils Components by Gas Cromatigraphy/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Ozturk, B.; Konyalioglu, S.; Kantarcı, G.; Cetinkol, D. Essential oil composition, antibacterial antifungal and antioxidant capacity of wild Lavandula stoechas L. subsp. stoechas from Izmir. Anadolu JAARI 2005, 15, 61–72. [Google Scholar]
- Jamil, F.; Ali, H.M.; Nasir, M.A.; Karahan, M.; Janjua, M.M.; Naseer, A.; Pasha, R.A. Evaluation of photovoltaic panels using different nano phase change material and a concise comparison: An experimental study. Renew. Energy 2021, 169, 1265–1279. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Li, W.; Shi, W.; Sui, X. The Early Effects of an Agrivoltaic System within a Different Crop Cultivation on Soil Quality in Dry–Hot Valley Eco-Fragile Areas. Agronomy 2024, 14, 584. [Google Scholar] [CrossRef]
- Disciglio, G.; Frabboni, L.; Tarantino, A.; Stasi, A. Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants. Sustainability 2023, 15, 16252. [Google Scholar] [CrossRef]
- Ram, M.; Kumar, S. Yield and resource use optimization in late transplanted mint (Mentha arvensis) under sub-tropical conditions. J. Agron. Crop Sci. 1998, 180, 109–112. [Google Scholar] [CrossRef]
- Giri, N.C.; Mohanty, R.C. Design of Agrivoltaic System to Optimize Land Use for Clean Energy-Food Production: A Socio-Economic and Environmental Assessment. Clean. Technol. Environ. Policy 2022, 24, 2595–2606. [Google Scholar] [CrossRef]
- Ferrante, A.; Marian, L. Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef]
- Yasoda, P.G.C.; Pradheeban, L.; Nishanthan, K.; Sivachandiran, S. Effect of Different Shade Levels on Growth and Yield Performances of Cauliflower. Int. J. Environ. Agric. Biotechnol. 2018, 3, 948–955. [Google Scholar] [CrossRef]
- Ferreira, R.F.; Marques Lameirinhas, R.A.; Bernardo, C.P.C.V.; João, J.P.; Santos, M. Agri-PV in Portugal: How to Combine Agriculture and Photovoltaic Production. Energy Sustain. Dev. 2024, 79, 101408. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on crop development, yields and chemical composition of celeriac (Apium graveolens L. var. rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Harold, S. Photovoltaics alter plant productivity. Nat. Ecol. Evol. 2023, 7, 494. [Google Scholar] [CrossRef]
- Chae, S.-H.; Kim, H.J.; Moon, H.-W.; Kim, Y.H.; Ku, K.-M. Agrivoltaic Systems Enhance Farmers’ Profits through Broccoli Visual Quality and Electricity Production without Dramatic Changes in Yield, Antioxidant Capacity, and Glucosinolates. Agronomy 2022, 12, 1415. [Google Scholar] [CrossRef]
- Giardini, L. Agronomia Generale, Ambientale ve Aziendale; Scienza E Tecniche Delle Produz. Vegetali: Bologne, Italia, 1992; p. 600. [Google Scholar]
- Ilić, S.Z.; Milenković, L.; Šunić, L.; Tmušić, N.; Mastilović, J.; Kevrešan, Ž.; Stanojević, L.; Danilović, B.; Stanojević, J. Efficiency of basil essential oil antimicrobial agents under different shading treatments and harvest times. Agronomy 2021, 11, 1574. [Google Scholar] [CrossRef]
- Fokom, R.; Adamou, S.; Essono, D.; Ngwasiri, D.P.; Eke, P.; Mofor, C.T.; Tchoumbougnang, F.; Fekam, B.F.; Zollo, P.H.A.; Nwaga, D.; et al. Growth, essential oil content, chemical composition and antioxidant properties of lemongrass as affected by harvest period and arbuscular mycorrhizal fungi in field conditions. Ind. Crops Prod. 2019, 138, 111477. [Google Scholar] [CrossRef]
- Kaba, J.S.; Abunyewa, A.A.; Kugbe, J.; Kwashie, G.K.S.; Ansah, E.O.; Andoh, H. Arbuscular mycorrhizal fungi and potassium fertilizer as plant biostimulants and alternative research for enhancing plants adaptation to drought stress: Opportunities for enhancing drought tolerance in cocoa (Theobroma cacao L.). Sustain. Environ. 2021, 7, 1963927. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil. Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Gupta, M.M. Arbuscular mycorrhizal fungi: The potential soil health indicators. In Soil Health; Giri, B., Varma, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 183–195. [Google Scholar]
- Duan, J.; Tian, H.; Drijber, R.A.; Gao, Y. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2015, 96, 199–208. [Google Scholar] [CrossRef]
- Hazzoumi, Z.; Moustakime, Y.; Joutei, K.A. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L.). Chem. Biol. Technol. Agric. 2015, 2, 10. [Google Scholar] [CrossRef]
Parameter | Jananury | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg Temp (°C) | 5.8 | 6.7 | 9.2 | 13.0 | 18 | 22.7 | 25.2 | 25.3 | 21.6 | 16.5 | 12.0 | 7.7 |
Min Temp (°C) | 2.7 | 3.1 | 5 | 8.4 | 13.3 | 18.1 | 21 | 21.6 | 17.9 | 13.4 | 8.8 | 4.7 |
Max Temp (°C) | 9.1 | 10.4 | 13.6 | 17.6 | 22.6 | 27 | 29.5 | 29.5 | 25.6 | 20 | 15.5 | 10.8 |
Precip. (mm) | 81 | 77 | 73 | 53 | 44 | 39 | 22 | 19 | 44 | 69 | 72 | 102 |
Humidity (%) | 79 | 78 | 73 | 71 | 68 | 64 | 62 | 64 | 67 | 75 | 77 | 80.0 |
Rainy Days | 9.0 | 8 | 8 | 6 | 5 | 5 | 3 | 3 | 5 | 6 | 7 | 10 |
Avg. Sun Hours | 4.6 | 5.4 | 7.1 | 8.8 | 10.2 | 11.5 | 11.6 | 10.4 | 8.8 | 6.3 | 5.4 | 4.7 |
Soil | Between Panels 0–30 cm | Under Panels 0–30 cm | ||
---|---|---|---|---|
O.M.% | 1.91 | 2.18 | ||
Total N% | 0.10 | 0.13 | ||
Available | P | mg/kg | 18.9 | 19.4 |
K | 493 | 377 | ||
Na | 203 | 240 | ||
Mg | 1054 | 995 | ||
Fe | 11.51 | 12.57 | ||
Zn | 0.55 | 0.69 | ||
Mn | 21.15 | 23.30 | ||
Cu | 1.83 | 1.80 | ||
pH | 7.17 | 7.09 | ||
Texture | Sandy clay loam | Sandy clay loam | ||
EC dS/m | 0.87 | 0.94 | ||
CaCO3% | 2.47 | 2.05 |
Fresh Herb Yield kg/ha | N % | P % | K % | Na % | Ca % | Mg % | |
---|---|---|---|---|---|---|---|
PM0 | 10,620 ab | 2.80 b | 0.20 c | 2.20 c | 0.19 b | 2.07 b | 0.60 |
PM1 | 15,230 a | 2.81 b | 0.26 bc | 2.31 bc | 0.29 ab | 2.10 b | 0.61 |
PAM0 | 6250 b | 3.35 a | 0.28 b | 2.44 ab | 0.38 a | 2.14 b | 0.60 |
PAM1 | 9580 ab | 3.40 a | 0.40 a | 2.60 a | 0.19 b | 2.70 a | 0.60 |
SD | 125 | 0.029 | 0.015 | 0.041 | 0.003 | 0.093 | 0.051 |
p | ** | ** | ** | ** | ** | * | ns |
Fresh Herb Yield kg/ha | N % | P % | K % | Na % | Ca % | Mg % | |
---|---|---|---|---|---|---|---|
PM0 | 15,720 a | 2.63 c | 0.30 ab | 2.07 b | 0.06 b | 1.51 c | 0.90 |
PM1 | 18,190 a | 2.85 bc | 0.35 a | 2.32 b | 0.04 b | 1.93 ab | 0.87 |
PAM0 | 9730 b | 3.24 ab | 0.27 b | 2.61 a | 0.09 a | 1.64 bc | 0.89 |
PAM1 | 13,490 ab | 3.35 a | 0.26 b | 2.67 a | 0.09 a | 2.10 a | 0.89 |
SD | 100 | 0.086 | 0.012 | 0.058 | 0.002 | 0.06 | 0.032 |
p | ** | ** | ** | * | * | ** | ns |
Fe | Mn | Zn | Cu | |
---|---|---|---|---|
PM0 | 262 b | 29 b | 40 c | 32 |
PM1 | 274 b | 39 b | 48 b | 39 |
PAM0 | 474 a | 39 b | 48 b | 31 |
PAM1 | 482 a | 86 a | 60 a | 37 |
SD | 12.57 | 3.55 | 0.68 | 1.80 |
p | * | * | ** | ns |
Fe | Mn | Zn | Cu | |
---|---|---|---|---|
PM0 | 276 b | 37 b | 32 | 33 b |
PM1 | 287 b | 64 ab | 35 | 33 b |
PAM0 | 350 a | 56 ab | 37 | 30 b |
PAM1 | 365 a | 79 a | 39 | 56 a |
SD | 6.85 | 6.45 | 1.71 | 1.76 |
p | * | ** | ns | * |
EO % | Menthol % | Menthone % | Limonene % | İsomenthone % | Neomenthol % | Germacren-D % | |
---|---|---|---|---|---|---|---|
PM0 | 6.67 b | 66.02 | 9.83 | 3.42 a | 4.40 | 2.16 | 1.42 b |
PM1 | 10.08 a | 65.91 | 11.50 | 3.07 b | 4.69 | 2.26 | 1.68 a |
PAM0 | 7.33 ab | 67.91 | 10.71 | 3.02 b | 4.90 | 2.32 | 1.20 c |
PAM1 | 7.92 ab | 68.56 | 10.20 | 1.38 c | 4.69 | 2.42 | 1.49 ab |
SD | 0.70 | 1.14 | 0.71 | 0.067 | 0.19 | 0.065 | 0.042 |
p | ** | ns | ns | ** | ns | ns | ** |
EO % | Menthol % | Menthone % | Menthofurane % | İsomenthone % | 1,8 Cineol % | Menthol Acetate % | |
---|---|---|---|---|---|---|---|
PM0 | 3.23 b | 25.66 b | 32.37 b | 15.76 ab | 3.56 | 5.35 b | 1.70 bc |
PM1 | 3.67 b | 30.38 a | 20.35 d | 12.33 b | 3.51 | 5.44 b | 3.25 a |
PAM0 | 3.33 b | 27.46 ab | 27.07 c | 16.34 a | 3.86 | 6.60 a | 2.03 b |
PAM1 | 4.50 a | 18.79 c | 41.90 a | 15.46 ab | 3.44 | 6.52 a | 0.89 c |
SD | 0.34 | 0.76 | 0.74 | 0.72 | 0.20 | 0.19 | 0.21 |
p | * | ** | ** | * | ns | * | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çolak Esetlili, B.; Esetlili, M.T.; Emir, K.; Eröz, M. Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production. Sustainability 2025, 17, 5516. https://doi.org/10.3390/su17125516
Çolak Esetlili B, Esetlili MT, Emir K, Eröz M. Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production. Sustainability. 2025; 17(12):5516. https://doi.org/10.3390/su17125516
Chicago/Turabian StyleÇolak Esetlili, Bihter, M. Tolga Esetlili, Kaan Emir, and Murat Eröz. 2025. "Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production" Sustainability 17, no. 12: 5516. https://doi.org/10.3390/su17125516
APA StyleÇolak Esetlili, B., Esetlili, M. T., Emir, K., & Eröz, M. (2025). Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production. Sustainability, 17(12), 5516. https://doi.org/10.3390/su17125516