Optimization of the Drying Temperature for High Quality Dried Melissa officinalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Drying Process
2.2. Moisture Content
2.3. Energy Consumption, CO2 Production, and Time Duration
2.4. Color and Chlorophyll Content
2.5. Essential Oil Extraction and Composition
2.6. Statistical Analysis
3. Results
3.1. Moisture Content
3.2. Energy Consumption, CO2 Production, and Time Duration
3.3. Color and Chlorophyll Content
3.4. Essential Oil Yield and Composition
3.5. Correlation Between Measured Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stojanović, N.M.; Mladenović, M.Z.; Randjelović, P.J.; Radulović, N.S. The potential of lemon balm (Melissa officinalis L.) essential oil as an anti-anxiety agent—Is the citronellal the activity carrier? J. Ethnopharmacol. 2023, 314, 116661. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Capozza, P.; Pellegrini, F.; Cordisco, M.; Sposato, A.; Sblano, S.; Camero, M.; Lanave, G.; Fracchiolla, G.; Corrente, M.; et al. Antimicrobial Activity of Essential Oils Evaluated In Vitro against Escherichia coli and Staphylococcus aureus. Antibiotics 2022, 11, 979. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Szymczykowska, K.; Melkis, K.; Maciejewska-Markiewicz, D.; Nowak, A.; Muzykiewicz-Szymańska, A.; Skonieczna-Żydecka, K. The Role of Light in Enhancing the Nutritional and Antioxidant Qualities of Basil, Mint and Lemon Balm. Foods 2024, 13, 3954. [Google Scholar] [CrossRef]
- Naseri, M.; Arabi Mianroodi, R.; Pakzad, Z.; Falahati, P.; Borbor, M.; Azizi, H.; Nasri, S. The effect of Melissa officinalis L. extract on learning and memory: Involvement of hippocampal expression of nitric oxide synthase and brain-derived neurotrophic factor in diabetic rats. J. Ethnopharmacol. 2021, 276, 114210. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Mladenović, M.Z.; Maslovarić, A.; Stojiljković, N.I.; Randjelović, P.J.; Radulović, N.S. Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms—In vitro and in vivo studies. J. Ethnopharmacol. 2022, 284, 114788. [Google Scholar] [CrossRef] [PubMed]
- Dimas, D.; Tomou, E.-M.; Karamani, C.; Sfiniadakis, I.; Siakavella, K.I.; Liakopoulou, A.; Hatziantoniou, S.; Rallis, M.; Skaltsa, H. Melissa officinalis ssp. altissima extracts: A therapeutic approach targeting psoriasis in mice. J. Ethnopharmacol. 2020, 246, 112208. [Google Scholar]
- Koliopoulos, G.; Pitarokili, D.; Kioulos, E.; Michaelakis, A.; Tzakou, O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol. Res. 2010, 107, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Petropoulos, S.A.; Tzortzakis, N. Essential Oil Composition and Bioactive Properties of Lemon Balm Aerial Parts as Affected by Cropping System and Irrigation Regime. Agronomy 2022, 12, 649. [Google Scholar] [CrossRef]
- Kokkinou, I.; Ntoulas, N.; Nektarios, P.A.; Varela, D. Response of native aromatic and medicinal plant species to water stress on adaptive green roof systems. HortScience 2016, 51, 608–614. [Google Scholar] [CrossRef]
- Seidler-Łożykowska, K.; Mordalski, R.; Kucharski, W.; Kędzia, E.; Nowosad, K.; Bocianowski, J. Effect of organic cultivation on yield and quality of lemon balm herb (Melissa officinalis L.). Acta Sci. Pol. Hortorum Cultus 2015, 14, 55–67. [Google Scholar]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Tzortzakis, N. The postharvest safety and quality of fresh basil as affected by the use of Cypriot oregano (Origanum dubium) extracts. Horticulturae 2024, 10, 159. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Mahdad, E.; Craker, L. Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.; Cvetkovic, D.; Ramić, M.; Dunjić, M.; Malbaša, R.; Tepić, A.; Šumić, Z.; Velićanski, A.; Jokić, S. Screening of changes in content of health benefit compounds, antioxidant activity and microbiological status of medicinal plants during the production of herbal filter tea. Ind. Crops Prod. 2013, 50, 338–345. [Google Scholar] [CrossRef]
- Kunle, O.F.; Egharevba, H.O.; Ahmadu, P.O. Standardization of herbal medicines—A review. Int. J. Biodivers. Conserv. 2012, 4, 101–112. [Google Scholar] [CrossRef]
- Khater, E.S.G.; Bahnasawy, A.H.; Abd El-All, M.H.; Mustafa, H.M.M.; Mousa, A.M. Effect of drying system, layer thickness and drying temperature on the drying parameters, product quality, energy consumption and cost of the marjoram leaves. Sci. Rep. 2024, 14, 4637. [Google Scholar] [CrossRef]
- Orphanides, A.; Goulas, V.; Gekas, V. Drying Technologies: Vehicle to High-Quality Herbs. Food Eng. Rev. 2016, 8, 164–180. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Sharma, S.; Kumar, N. Drying methods and distillation time affects essential oil content and chemical compositions of Acorus calamus L. in the western Himalayas. J. Appl. Res. Med. Aromat. Plants 2016, 3, 136–141. [Google Scholar] [CrossRef]
- Osae, R.; Apaliya, M.T.; Kwaw, E.; Chisepo, M.T.R.; Yarley, O.P.N.; Antiri, E.A.; Alolga, R.N. Drying techniques affect the quality and essential oil composition of Ghanaian ginger (Zingiber officinale Roscoe). Ind. Crops Prod. 2021, 172, 114048. [Google Scholar] [CrossRef]
- Nurhaslina, C.R.; Andi Bacho, S.; Mustapa, A.N. Review on drying methods for herbal plants. Mater. Today Proc. 2022, 63, S122–S139. [Google Scholar] [CrossRef]
- Gulati, S.; Pandey, A.K.; Gupta, A. Impact of drying methods on the active phytochemical constituent of Andrographis paniculata (Kalmegh). J. Pharmacogn. Phytochem. 2020, 9, 96–100. [Google Scholar]
- Amer, A.; Ibrahim, A.; Shahin, A.; Elsebaee, I.; Saad, R.; Hassan, M.F.; Hassan, Z. Performance evaluation of an automated hybrid solar system dryer for drying some aromatic herbs. Dry. Technol. 2024, 42, 728–747. [Google Scholar] [CrossRef]
- Mokhtarikhah, G.; Ebadi, M.T.; Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Djamila, B.; Fatima Zohra, K.; Lahcene, K.; Zohra, R.F. Drying methods affect the extracts and essential oil of Mentha aquatica L. Food Biosci. 2021, 41, 101007. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Müllera, J. Effect of Convective Drying on Quality of Lemon Balm (Melissa officinalis L.). Procedia Food Sci. 2011, 1, 1932–1939. [Google Scholar] [CrossRef]
- Trujillo-Echeverria, L.; Pinanjota Guaytarilla, H.G.; Lara Fiallos, M.V. Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.). Rev. Fac. Nac. Agron. Medellin 2024, 77, 10751–10763. [Google Scholar] [CrossRef]
- Ibrahim, A.; Amer, A.; Elsebaee, I.; Sabahe, A.; Amer, M.A. Applied insight: Studying reducing the carbon footprint of the drying process and its environmental impact and financial return. Front. Bioeng. Biotechnol. 2024, 12, 1355133. [Google Scholar]
- Ricquier, P. Renewable Energy Masterplan for a New Development in Kokkinotrimithia. 2020. Available online: https://clean-energy-islands.ec.europa.eu/system/files/2021-11/EUIslands_Cyprus_REMasterplan_20200708.pdf (accessed on 1 March 2025).
- Eliane, M.F.M.; Afonso, M.R.; Maurilio, L.M.; Patricia, M.d.O.; Paulo, C.S. Minimally processed fruit salad enriched with Lactobacillus acidophilus: Viability of anti-browning compounds in the preservation of color. Afr. J. Biotechnol. 2015, 14, 2022–2027. [Google Scholar] [CrossRef]
- Nazari, D.; Naghdi Badi, H.; Mehrafarin, A.; Taj-abadi, F.; Soltanipour, M. Expression of the changes in essential oil components of Shirazi thyme (Zataria multiflora Boiss.) as affected by various drying methods. Ind. Crops Prod. 2024, 220, 119222. [Google Scholar] [CrossRef]
- Orphanides, A.; Goulas, V.; Botsaris, G.; Gekas, V. Influence of Air-Drying on the Quality Characteristics of Spearmint: Effects of Air Temperature and Velocity. J. Food Process. Preserv. 2017, 41, e12817. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2012; ISBN 978-0-9981557-2-2. [Google Scholar]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Rahimmalek, M.; Goli, S.A.H. Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind. Crops Prod. 2013, 42, 613–619. [Google Scholar] [CrossRef]
- Rodríguez, J.; Ortuño, C.; Benedito, J.; Bon, J. Optimization of the antioxidant capacity of thyme (Thymus vulgaris L.) extracts: Management of the drying process. Ind. Crops Prod. 2013, 46, 258–263. [Google Scholar] [CrossRef]
- Shi, X.F.; Chu, J.Z.; Zhang, Y.F.; Liu, C.Q.; Yao, X.Q. Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods. Ind. Crops Prod. 2017, 104, 45–51. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Cabezudo, M.D. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). J. Agric. Food Chem. 2002, 50, 4520–4524. [Google Scholar] [CrossRef]
- Mashkani, M.R.D.; Larijani, K.; Mehrafarin, A.; Naghdi Badi, H. Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Ind. Crops Prod. 2018, 112, 389–395. [Google Scholar] [CrossRef]
- Marcelino, S.; Hamdane, S.; Gaspar, P.D.; Paço, A. Sustainable Agricultural Practices for the Production of Medicinal and Aromatic Plants: Evidence and Recommendations. Sustainability 2023, 15, 14095. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ng, Z.X.; Yong, P.H.; Lim, S.Y. Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Ind. Crops Prod. 2020, 155, 112815. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Lu, Q.; Hu, Q.; Liu, P.; Yang, Y.; Li, G.; Xie, H.; Tang, H. Drying temperature affects essential oil yield and composition of black cardamom (Amomum tsao-ko). Ind. Crops Prod. 2021, 168, 113580. [Google Scholar] [CrossRef]
- Karami, H.; Lorestani, A.N.; Tahvilian, R. Assessment of kinetics, effective moisture diffusivity, specific energy consumption, and percentage of thyme oil extracted in a hybrid solar-electric dryer. J. Food Process Eng. 2021, 44, e13588. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Mumivand, H.; Fanourakis, D.; Fatahi, S.; Taghipour, S. An artificial neural network approach for non-invasive estimation of essential oil content and composition through considering drying processing factors: A case study in Mentha aquatica. Ind. Crops Prod. 2021, 171, 113985. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Łyczko, J. Drying of Phyla nodiflora leaves: Antioxidant activity, volatile and phytosterol content, energy consumption, and quality studies. Processes 2019, 7, 210. [Google Scholar] [CrossRef]
Temperature | kWh/h | kg CO2/h | kWh/kg | kg CO2/kg |
---|---|---|---|---|
20 °C | 0.000 | 0.000 | 0.00 ± 0.00 d | 0.00 ± 00.0 d |
35 °C | 0.0385 | 0.030 | 23.61 ± 0.17 c | 18.40 ± 0.13 c |
42 °C | 0.0905 | 0.085 | 52.36 ± 0.40 a | 49.18 ± 0.37 a |
49 °C | 0.1170 | 0.110 | 48.60 ± 0.16 b | 45.69 ± 0.15 b |
Temperature | Hue Angle (°) | Chroma Value | Color Index | Browning Index |
---|---|---|---|---|
20 °C | 178.56 ± 0.01 | 15.00 ± 2.50 | −4.40 ± 0.91 a | 56.14 ± 1.93 a |
35 °C | 178.81 ± 0.05 | 16.30 ± 1.62 | −11.01 ± 0.18 b | 38.12 ± 5.84 b |
42 °C | 178.60 ± 0.07 | 13.98 ± 2.30 | −4.76 ± 1.13 a | 43.59 ± 4.36 ab |
49 °C | 178.53 ± 0.01 | 13.33 ± 1.94 | −3.40 ± 0.06 a | 55.36 ± 2.38 a |
Temperature | Chl a (mg/g Dw) | Chl b (mg/g Dw) | Tot Chl (mg/g Dw) |
---|---|---|---|
20 °C | 0.44 ± 0.06 | 2.34 ± 0.23 b | 2.77 ± 0.17 bc |
35 °C | 0.57 ± 0.00 | 3.48 ± 0.16 a | 4.05 ± 0.16 ab |
42 °C | 0.51 ± 0.08 | 3.66 ± 0.37 a | 4.16 ± 0.46 a |
49 °C | 0.36 ± 0.08 | 1.54 ± 0.34 b | 1.90 ± 0.43 c |
Compound | RI | 20 °C | 35 °C | 42 °C | 49 °C |
---|---|---|---|---|---|
1-Octen-3-ol | 975 | 0.51 ± 0.00 a | 0.00 ± 0.00 b | 0.01 ± 0.01 b | 0.00 ± 0.00 b |
5-Hepten-2-one,6-methyl | 983 | 0.22 ± 0.01 b | 0.25 ± 0.01 ab | 0.28 ± 0.01 a | 0.00 ± 0.00 c |
β Myrcene | 989 | 0.06 ± 0.00 a | 0.05 ± 0.00 a | 0.04 ± 0.00 b | 0.00 ± 0.00 c |
trans β Ocimene | 1046 | 0.11 ± 0.00 a | 0.07 ± 0.01 b | 0.07 ± 0.00 b | 0.00 ± 0.00 c |
Bergamal | 1050 | 0.06 ± 0.00 b | 0.06 ± 0.01 b | 0.07 ± 0.01 a | 0.00 ± 0.00 c |
Linalool | 1100 | 0.04 ± 0.00 a | 0.01 ± 0.01 b | 0.06 ± 0.00 a | 0.00 ± 0.00 b |
cis Rose oxide | 1109 | 0.02 ± 0.00 b | 0.06 ± 0.01 a | 0.02 ± 0.02 b | 0.00 ± 0.00 c |
exo Isocitral | 1142 | 0.04 ± 0.00 a | 0.03 ± 0.00 b | 0.03 ± 0.00 b | 0.00 ± 0.00 c |
neo Isopulegone | 1148 | 0.17 ± 0.00 a | 0.08 ± 0.01 c | 0.13 ± 0.00 b | 0.00 ± 0.00 d |
Citronellal | 1153 | 33.32 ± 0.08 a | 27.51 ± 0.10 c | 17.86 ± 0.09 d | 31.33 ± 0.08 b |
Z Isocitral | 1162 | 0.45 ± 0.00 a | 0.46 ± 0.02 a | 0.42 ± 0.08 a | 0.06 ± 0.01 b |
Rosefuran epoxide | 1173 | 0.03 ± 0.00 c | 0.07 ± 0.01 b | 0.10 ± 0.01 a | 0.00 ± 0.00 d |
E Isocitral | 1180 | 0.76 ± 0.00 b | 0.90 ± 0.02 a | 0.87 ± 0.01 a | 0.44 ± 0.01 c |
Neral | 1242 | 23.26 ± 0.03 c | 25.63 ± 0.04 b | 29.66 ± 0.01 a | 23.07 ± 0.10 c |
Carvone | 1244 | 0.61 ± 0.01 a | 0.11 ± 0.03 c | 0.67 ± 0.01 a | 0.37 ± 0.05 b |
Methyl citronellate | 1259 | 0.98 ± 0.02 a | 1.01 ± 0.03 a | 0.44 ± 0.01 b | 0.35 ± 0.06 b |
Geranial | 1271 | 36.30 ± 0.00 d | 39.18 ± 0.08 b | 45.23 ± 0.05 a | 38.47 ± 0.13 c |
Thymol | 1292 | 0.01 ± 0.00 d | 1.44 ± 0.05 b | 0.94 ± 0.01 c | 2.02 ± 0.15 a |
Methyl geranate | 1321 | 0.29 ± 0.01 a | 0.24 ± 0.02 b | 0.22 ± 0.01 ab | 0.26 ± 0.02 ab |
iso Dihydrocarveol acetate | 1326 | 0.10 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.28 ± 0.05 a |
Geranyl acetate | 1381 | 0.23 ± 0.01 c | 0.42 ± 0.01 b | 0.49 ± 0.01 a | 0.11 ± 0.01 d |
β Caryophyllene | 1425 | 1.95 ± 0.02 a | 1.72 ± 0.02 b | 1.35 ± 0.01 c | 1.00 ± 0.02 d |
Caryophyllene oxide | 1587 | 0.75 ± 0.02 b | 0.53 ± 0.03 c | 0.84 ± 0.02 a | 0.33 ± 0.01 d |
Total identified | 99.37 ± 0.03 | 99.45 ± 0.02 | 99.38 ± 0.01 | 98.25 ± 0.52 | |
Monoterpenes hydrocarbons | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.04 ± 0.00 b | 0.00 ± 0.00 c | |
Oxygenated monoterpenes | 93.07 ± 0.03 b | 93.52 ± 0.11 ab | 94.04 ± 0.02 a | 93.79 ± 0.26 a | |
Sesquiterpenes hydrocarbons | 1.96 ± 0.01 a | 1.72 ± 0.03 b | 1.35 ± 0.00 c | 1.07 ± 0.09 d | |
Oxygenated sesquiterpenes | 0.75 ± 0.02 b | 0.53 ± 0.03 c | 0.84 ± 0.02 a | 0.33 ± 0.01 d | |
Others | 4.02 ± 0.02 a | 2.06 ± 0.05 c | 3.01 ± 0.01 b | 1.12 ± 0.21 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xylia, P.; Chrysargyris, A. Optimization of the Drying Temperature for High Quality Dried Melissa officinalis. Appl. Sci. 2025, 15, 5136. https://doi.org/10.3390/app15095136
Xylia P, Chrysargyris A. Optimization of the Drying Temperature for High Quality Dried Melissa officinalis. Applied Sciences. 2025; 15(9):5136. https://doi.org/10.3390/app15095136
Chicago/Turabian StyleXylia, Panayiota, and Antonios Chrysargyris. 2025. "Optimization of the Drying Temperature for High Quality Dried Melissa officinalis" Applied Sciences 15, no. 9: 5136. https://doi.org/10.3390/app15095136
APA StyleXylia, P., & Chrysargyris, A. (2025). Optimization of the Drying Temperature for High Quality Dried Melissa officinalis. Applied Sciences, 15(9), 5136. https://doi.org/10.3390/app15095136