Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Melanaphis sacchari

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4343 KB  
Article
Transcriptome Analysis of Resistant and Susceptible Sorghum Lines to the Sorghum Aphid (Melanaphis sacchari (Zehntner))
by Minghui Guan, Junli Du, Jieqin Li, Tonghan Wang, Lu Sun, Yongfei Wang and Degong Wu
Agriculture 2025, 15(14), 1502; https://doi.org/10.3390/agriculture15141502 - 12 Jul 2025
Viewed by 300
Abstract
The sorghum aphid (Melanaphis sacchari (Zehntner, 1897)), a globally destructive pest, severely compromises sorghum yield and quality. This study compared aphid-resistant (HX133) and aphid-susceptible (HX37) sorghum (Sorghum bicolor (L.) Moench) cultivars, revealing that HX133 significantly suppressed aphid proliferation through repellent and [...] Read more.
The sorghum aphid (Melanaphis sacchari (Zehntner, 1897)), a globally destructive pest, severely compromises sorghum yield and quality. This study compared aphid-resistant (HX133) and aphid-susceptible (HX37) sorghum (Sorghum bicolor (L.) Moench) cultivars, revealing that HX133 significantly suppressed aphid proliferation through repellent and antibiotic effects, while aphid populations increased continuously in HX37. Transcriptome analysis identified 2802 differentially expressed genes (DEGs, 45.9% upregulated) in HX133 at 24 h post-infestation, in contrast with only 732 DEGs (21% upregulated) in HX37. Pathway enrichment highlighted shikimate-mediated phenylpropanoid/flavonoid biosynthesis and glutathione metabolism as central to HX133’s defense response, alongside photosynthesis-related pathways common to both cultivars. qRT-PCR validation confirmed activation of the shikimate pathway in HX133, driving the synthesis of dhurrin—a cyanogenic glycoside critical for aphid resistance—and other tyrosine-derived metabolites (e.g., benzyl isoquinoline alkaloids, tocopherol). These findings demonstrate that HX133 employs multi-layered metabolic regulation, particularly dhurrin accumulation, to counteract aphid infestation, whereas susceptible cultivars exhibit limited defense induction. This work provides molecular targets for enhancing aphid resistance in sorghum breeding programs. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

10 pages, 1270 KB  
Communication
Effects of Conventional and Organic Fertilization on the Chemical Profile of Sorghum bicolor and the Preference of Sugarcane Aphids (Melanaphis sacchari)
by Ericka Nieves-Silva, Engelberto Sandoval-Castro, Ma. D. Castañeda-Antonio, Adriana Delgado-Alvarado, Arturo Huerta-De la Peña and Ignacio Ocampo-Fletes
Agronomy 2024, 14(7), 1512; https://doi.org/10.3390/agronomy14071512 - 12 Jul 2024
Viewed by 1208
Abstract
Melanaphis sacchari is a cosmopolitan pest that causes losses in sorghum crops, so new management methods are needed. In addition, the type of fertilization used influences plant compositions and pest infestation, and allelochemicals are a promising method for the possible management of M. [...] Read more.
Melanaphis sacchari is a cosmopolitan pest that causes losses in sorghum crops, so new management methods are needed. In addition, the type of fertilization used influences plant compositions and pest infestation, and allelochemicals are a promising method for the possible management of M. sacchari. In this work, we measured the preference of M. sacchari through chemical stimuli towards sorghum plants grown under greenhouse conditions without fertilization (F0), conventional fertilization (CF), and organic fertilization (OF). Leaves were collected from sorghum plants fertilized with 200 kg N ha−1 using ammonium sulfate and poultry manure. Extracts were obtained using Soxhlet extraction, and the compounds were identified using a gas chromatograph coupled with mass spectrometry (GC-MS). Sorghum extracts were individually tested through bioassays to determine M. sacchari preference. The abundance and number of compounds in sorghum differed depending on the type of fertilization used. M. sacchari showed a preference for the extract from CF sorghum plants (76.66%) over the extract from OF plants (23.34%). Therefore, the type of fertilization can be used as a tactic to prevent higher infestations of M. sacchari. The biological activity of the compounds identified here with M. sacchari should be determined for future pest management strategies using allelochemicals, given that the sugarcane aphid uses chemical signals to locate its host plant. Full article
(This article belongs to the Special Issue Application of Allelochemicals in Agriculture)
Show Figures

Figure 1

14 pages, 1486 KB  
Article
Identification and Evaluation of qRT-PCR Reference Genes in Melanaphis sacchari
by Kunliang Zou, Tonghan Wang, Minghui Guan, Yang Liu, Jieqin Li, Yanlong Liu, Junli Du and Degong Wu
Insects 2024, 15(7), 522; https://doi.org/10.3390/insects15070522 - 11 Jul 2024
Cited by 1 | Viewed by 1402
Abstract
Appropriate reference genes must be selected for accurate qRT-PCR data to conduct a thorough gene expression analysis in the sorghum aphid (Melanaphis sacchari, Hemiptera, Aphididae). This approach will establish a foundation for gene expression analysis and determines the efficacy of RNA [...] Read more.
Appropriate reference genes must be selected for accurate qRT-PCR data to conduct a thorough gene expression analysis in the sorghum aphid (Melanaphis sacchari, Hemiptera, Aphididae). This approach will establish a foundation for gene expression analysis and determines the efficacy of RNA interference in the sorghum aphid. Nine potential reference genes, including Actin, 18S, GAPDH, RPL7, EF-1α, EF-1β, 28S, HSP70, and TATA, were assessed under various experimental conditions to gauge their suitability based on qRT-PCR Ct values. The stability of these candidate reference genes in diverse experimental setups was analyzed employing several techniques, including the ΔCt comparative method, geNorm, Normfinder, BestKeeper, and RefFinder. The findings revealed that the quantity of ideal reference genes ascertained by the geNorm method for diverse experimental conditions remained consistent. For the developmental stages of the sorghum aphid, RPL7 and 18S proved to be the most dependable reference genes, whereas GAPDH and EF-1β were recommended as the most stable reference genes for different tissues. In experiments involving wing dimorphism, EF-1α and GAPDH were identified as the optimal reference gene pair. Under varying temperatures, EF-1α and EF-1β were found to be the most dependable gene pair. For studies focusing on insecticide susceptibility, 18S and TATA emerged as the most stable candidate reference genes. Across all experimental conditions, EF-1α and EF-1β was the optimal combination of reference genes in the sorghum aphid. This research has pinpointed stable reference genes that can be utilized across various treatments, thereby enhancing gene expression studies and functional genomics research on the sorghum aphid. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Figure 1

17 pages, 4926 KB  
Article
Genomic Identification of Callose Synthase (CalS) Gene Family in Sorghum (Sorghum bicolor) and Comparative In Silico Expression Analysis under Aphid (Melanaphis sacchari) Infestation
by Kunliang Zou, Yang Liu, Tonghan Wang, Minghui Guan, Xiaofei Li, Jieqin Li, Haibing Yu, Degong Wu and Junli Du
Agronomy 2024, 14(7), 1393; https://doi.org/10.3390/agronomy14071393 - 27 Jun 2024
Cited by 2 | Viewed by 1626
Abstract
Callose is widely present in higher plants and plays a significant role in plant growth, development, and response to various stresses. Although numerous studies have highlighted the importance of the callose synthase (CalS) genes, their role in the resistance of sorghum [...] Read more.
Callose is widely present in higher plants and plays a significant role in plant growth, development, and response to various stresses. Although numerous studies have highlighted the importance of the callose synthase (CalS) genes, their role in the resistance of sorghum (Sorghum bicolor) to aphids (Melanaphis sacchari) remains limitedly understood. This study identified 11 sorghum callose synthase genes (SbCalS), unevenly distributed across four chromosomes of sorghum. All SbCalS proteins contain glucan synthase and Fks1 domains, with segmental duplication playing a major role in gene diversification. Cis-element prediction revealed the presence of numerous stress-responsive elements, indicating that this gene family is primarily involved in stress resistance. Using published RNA-seq data, we discovered the differential expression of the SbCalS5 gene between resistant and susceptible sorghum varieties. Real-time quantitative PCR (qPCR) analysis confirmed the relative expression levels of all SbCalS members under aphid stress. To further verify the role of callose in sorghum, we measured the callose content in both resistant and susceptible sorghum varieties. The results indicated that callose plays a critical role in aphid resistance in sorghum, particularly the SbCalS5 gene. This study provides a reference for further investigation into the role of callose synthase genes in sorghum aphid resistance. Full article
(This article belongs to the Special Issue New Insights into Plants’ Defense Mechanisms against Stresses)
Show Figures

Figure 1

10 pages, 1354 KB  
Article
Influence of Microbes in Mediating Sorghum Resistance to Sugarcane Aphids
by Edith Ikuze, Stephanie Cromwell, Paul Ayayee and Joe Louis
Diversity 2024, 16(2), 85; https://doi.org/10.3390/d16020085 - 27 Jan 2024
Cited by 3 | Viewed by 2201
Abstract
Gut microbiomes profoundly influence insect health and mediate interactions between plant hosts and their environments. Insects, including aphids, harbour diverse obligate symbionts that synthesize essential nutrients and facultative symbionts that enhance host fitness in specific ecological contexts. Sorghum (Sorghum bicolor) is [...] Read more.
Gut microbiomes profoundly influence insect health and mediate interactions between plant hosts and their environments. Insects, including aphids, harbour diverse obligate symbionts that synthesize essential nutrients and facultative symbionts that enhance host fitness in specific ecological contexts. Sorghum (Sorghum bicolor) is a significant cereal crop cultivated worldwide that has been negatively affected by the presence of an invasive piercing-sucking insect pest, the sugarcane aphid (SCA; Melanaphis sacchari). We previously identified SC265 and SC1345 as the resistant and susceptible sorghum lines, respectively, among the founder nested association mapping (NAM) population. Here, using these resistant and susceptible lines, we explored variations in the SCA gut microbiome when they feed on two different sorghum lines with varied resistance levels. Analyses after excluding the obligate endosymbiont Buchnera aphidicola from the dataset showed a significant difference in microbial diversity and composition between resistant and susceptible sorghum lines 7- and 14 days post aphid infestation. Our results indicate that the SCA fed on susceptible and resistant sorghum lines had Pseudomonadaceae and Rhizobiaceae, respectively, as the most abundant bacterial families. Differences in gut microbial community composition were underscored by alpha diversity metrics and beta diversity compositional analyses. These findings contribute to our understanding of the intricate interplay between plant and aphid microbiomes, shedding light on potential avenues to bolster sorghum resistance to SCA. Full article
(This article belongs to the Special Issue Plant-Insect-Microbe Interactions and Diversity)
Show Figures

Figure 1

12 pages, 1476 KB  
Article
The Characterization of Melanaphis sacchari Microbiota and Antibiotic Treatment Effect on Insects
by Beatriz Xoconostle-Cázares, José Abrahán Ramírez-Pool, Leandro Alberto Núñez-Muñoz, Berenice Calderón-Pérez, Brenda Yazmín Vargas-Hernández, Rafael Bujanos-Muñiz and Roberto Ruiz-Medrano
Insects 2023, 14(10), 807; https://doi.org/10.3390/insects14100807 - 11 Oct 2023
Cited by 4 | Viewed by 2317
Abstract
Insects are under constant selective pressure, which has resulted in adaptations to novel niches such as crops. This is the case of the pest Melanaphis sacchari, the sugarcane aphid, native to Africa and currently spreading worldwide. The aphid undergoes successful parthenogenesis, causing [...] Read more.
Insects are under constant selective pressure, which has resulted in adaptations to novel niches such as crops. This is the case of the pest Melanaphis sacchari, the sugarcane aphid, native to Africa and currently spreading worldwide. The aphid undergoes successful parthenogenesis, causing important damage to a variety of crops and leading to important economic losses for farmers. A natural M. sacchari population grown in sorghum was studied to identify its microbiome through the sequencing of its 16S rDNA metagenome. A high proportion of Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria, was observed. We also detected Wolbachia, which correlates with the asexual reproduction of its host. M. sacchari was challenged in a bioassay with the antibiotics oxytetracycline and streptomycin, resulting in a dose-dependent decay of its survival rate. The possibility of controlling this pest by altering its microbiota is proposed. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Graphical abstract

15 pages, 4078 KB  
Article
Yellow Leaf Disease Resistance and Melanaphis sacchari Preference in Commercial Sugarcane Cultivars
by Luiz Eduardo Tilhaqui Bertasello, Marcel Fernando da Silva, Luciana Rossini Pinto, Paula Macedo Nóbile, Michele Carmo-Sousa, Ivan Antônio dos Anjos, Dilermando Perecin, João Roberto Spotti Lopes and Marcos Cesar Gonçalves
Plants 2023, 12(17), 3079; https://doi.org/10.3390/plants12173079 - 28 Aug 2023
Cited by 3 | Viewed by 1991
Abstract
Sugarcane yellow leaf disease (YLD) caused by sugarcane yellow leaf virus (ScYLV) is a major threat for the sugarcane industry worldwide, and the aphid Melanaphis sacchari is its main vector. Breeding programs in Brazil have provided cultivars with intermediate resistance to ScYLV, whereas [...] Read more.
Sugarcane yellow leaf disease (YLD) caused by sugarcane yellow leaf virus (ScYLV) is a major threat for the sugarcane industry worldwide, and the aphid Melanaphis sacchari is its main vector. Breeding programs in Brazil have provided cultivars with intermediate resistance to ScYLV, whereas the incidence of ScYLV has been underestimated partly due to the complexity of YLD symptom expression and identification. Here, we evaluated YLD symptoms in a field assay using eight sugarcane genotypes comprising six well-established commercial high-sucrose cultivars, one biomass yield cultivar, and a susceptible reference under greenhouse conditions, along with estimation of virus titer through RT-qPCR from leaf samples. Additionally, a free-choice bioassay was used to determine the number of aphids feeding on the SCYLV-infected cultivars. Most of the cultivars showed some degree of resistance to YLD, while also revealing positive RT-qPCR results for ScYLV and virus titers with non-significant correlation with YLD severity. The cultivars IACSP01-5503 and IACBIO-266 were similar in terms of aphid preference and ScYLV resistance traits, whereas the least preferred cultivar by M. sacchari, IACSP96-7569, showed intermediate symptoms but similar virus titer to the susceptible reference, SP71-6163. We conclude that current genetic resistance incorporated into sugarcane commercial cultivars does not effectively prevent the spread of ScYLV by its main aphid vector. Full article
Show Figures

Figure 1

17 pages, 363 KB  
Review
The Known and Unknowns of Aphid Biotypes, and Their Role in Mediating Host Plant Defenses
by Neetu Khanal, Christopher Vitek and Rupesh Kariyat
Diversity 2023, 15(2), 186; https://doi.org/10.3390/d15020186 - 29 Jan 2023
Cited by 8 | Viewed by 5305
Abstract
Insect species are subjected to disparate selection pressure due to various biotic and abiotic stresses. Management practices including the heavy use of chemical insecticides and introduction of insect-resistant plant cultivars have been found to accelerate these processes. Clearly, natural selection coupled with human [...] Read more.
Insect species are subjected to disparate selection pressure due to various biotic and abiotic stresses. Management practices including the heavy use of chemical insecticides and introduction of insect-resistant plant cultivars have been found to accelerate these processes. Clearly, natural selection coupled with human intervention have led to insect adaptations that alter phenotypes and genetic structure over time, producing distinct individuals with specialized traits, within the populations, commonly defined as biotypes. Biotypes are commonly found to have better fitness in the new environment and, in the case of aphids, the most commonly studied system for biotypes, have the ability to successfully infest previously resistant host plants and new species of host plants. Although a large number of studies have explored biotypes, the concept for defining biotypes varies among scientists, as we lack a consistency in estimating biotype behavior and their variation within and between biotypes. The concept of biotypes is even more complicated in aphid species (Aphidoidea), as they undergo parthenogenetic reproduction, making it difficult to understand the source of variation or quantify gene flow. In this review, we aim to illuminate the concept of biotype and how it has been used in the study of aphids. We intend to further elaborate and document the existence of aphid biotypes using sugarcane aphid (Melanaphis sacchari) as a model to understand their differences, level of variation, evolution, and significance in pest management. Full article
(This article belongs to the Special Issue Plant-Insect-Microbe Interactions and Diversity)
15 pages, 2440 KB  
Article
Revealing Differential Expression of Phytohormones in Sorghum in Response to Aphid Attack Using the Metabolomics Approach
by Jian Huang, Kumar Shrestha and Yinghua Huang
Int. J. Mol. Sci. 2022, 23(22), 13782; https://doi.org/10.3390/ijms232213782 - 9 Nov 2022
Cited by 21 | Viewed by 3143
Abstract
Sorghum (Sorghum bicolor) is an important multipurpose crop grown worldwide, but like many other crops, it is often threatened by insect pests. Sugarcane aphid (SCA, Melanaphis sacchari Zehntner), for example, is one of the most severe pests in sorghum, which causes [...] Read more.
Sorghum (Sorghum bicolor) is an important multipurpose crop grown worldwide, but like many other crops, it is often threatened by insect pests. Sugarcane aphid (SCA, Melanaphis sacchari Zehntner), for example, is one of the most severe pests in sorghum, which causes plant damage and yield loss. The main objective of this study was to assess the effect of phytohormones on host plant resistance to aphid attack. Two sorghum genotypes, BTx623 (susceptible) and Tx2783 (resistant), were selected for a comparative analysis of differential expression of a group of phytohormones in response to aphid infestation. The quantification of phytohormones through LC-MS demonstrated higher levels of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and auxins in the resistant genotype infested with SCA. The PCA plot supports the strong differential responses between resistant and susceptible genotypes, indicating a positive correlation between JA and ABA and a negative correlation between SA and auxins. Similarly, RT-PCR results of the phytohormones-related marker genes showed higher expression in the resistant genotype compared to the susceptible one. Furthermore, to corroborate the role of phytohormones in plant defense, the susceptible genotype was treated with SA, JA, and ABA. The exogenous application of SA and JA + ABA significantly reduced plant mortality, aphid number, and damage in the susceptible genotype, suggesting a strong correlation between phytohormones and plant survival. Our findings indicate that phytohormones play positive roles in plant defense against aphids and provide new insights into the molecular mechanisms operating in plants for self-protection. These findings could also stimulate further research into the mystery about the regulation of phytohormone production during plant interaction with aphids. Full article
(This article belongs to the Special Issue Plant Response to Insects and Microbes)
Show Figures

Figure 1

12 pages, 1512 KB  
Article
Planting Date and Hybrid Affect Sugarcane Aphid Infestation, Yield, and Water Use Efficiency in Dryland Grain Sorghum
by Zane Jenkins, Sushil Thapa, Jourdan M. Bell, Kirk E. Jessup, Brock C. Blaser, Bob A. Stewart and Qingwu Xue
Agronomy 2022, 12(9), 2033; https://doi.org/10.3390/agronomy12092033 - 26 Aug 2022
Viewed by 2070
Abstract
Grain sorghum (Sorghum bicolor L.) is a major dryland crop in the Texas High Plains. Currently, drought and infestation by the sugarcane aphid (SCA, Melanaphis sacchari) are the two major challenges to grain sorghum production in the area. A 2-year field [...] Read more.
Grain sorghum (Sorghum bicolor L.) is a major dryland crop in the Texas High Plains. Currently, drought and infestation by the sugarcane aphid (SCA, Melanaphis sacchari) are the two major challenges to grain sorghum production in the area. A 2-year field study was conducted to investigate the effect of planting date (PD) and hybrid selection on yield, evapotranspiration (ET), water use efficiency (WUE), and SCA infestation. Five sorghum hybrids (86P20, SP-31A15, AG1201, AG1203, and DKS37-07) were grown on two planting dates (PD1—early May; PD2—late June) under dryland conditions. Insecticides were not used. There were significant differences in grain yield, WUE, evapotranspiration (ET), and SCA population between two PDs and among hybrids. For PD1, SCA infestation occurred after sorghum reached physiological maturity in 2017. Although SCA infestation was observed during late grain filling in 2018, SCA populations were low and did not affect yield. For PD2, SCA was present before anthesis in both years and significantly affected grain yield. Even with heavy SCA infestation in PD2, the grain yield was higher in PD2 than in PD1 due to timely precipitation. Among hybrids, AG1203, 86P20 and DK37-07 performed better with higher yield and less SCA infestation in PD2. Grain yield was more related to seeds per plant than to kernel weight and harvest index. Full article
Show Figures

Figure 1

12 pages, 687 KB  
Article
Parasitoids and Predators of the Invasive Aphid Melanaphis sorghi Found in Sorghum and Non-Crop Vegetation of the Sorghum Agroecosystem
by Ashleigh M. Faris, Michael J. Brewer and Norman C. Elliott
Insects 2022, 13(7), 606; https://doi.org/10.3390/insects13070606 - 6 Jul 2022
Cited by 11 | Viewed by 2386
Abstract
Melanaphis sorghi (Theobald) (sorghum aphid), (=Melanaphis sacchari Zehntner) (Hemiptera: Aphididae), is an invasive pest of Sorghum bicolor (L.) in North America. Over 19 species of predators and parasitoids have been found to prey on M. sorghi. Natural enemies may reside in [...] Read more.
Melanaphis sorghi (Theobald) (sorghum aphid), (=Melanaphis sacchari Zehntner) (Hemiptera: Aphididae), is an invasive pest of Sorghum bicolor (L.) in North America. Over 19 species of predators and parasitoids have been found to prey on M. sorghi. Natural enemies may reside in vegetation such as sorghum in cultivation (in-season) and persist after harvest (off-season), in Johnson grass (Sorghum halepense) (L.) and riparian areas consisting of shrubs and grasses, including Johnson grass. The objective was to assess the ability of these vegetation types to harbor M. sorghi natural enemies during and between annual grain sorghum production. Predator diversity was greatest in riparian vegetation in-season, with twelve species detected across seven families, and four orders of insects. Six lady beetle (Coleoptera: Coccinellidae) species were abundant in-season, and Cycloneda sanguinea (L.) persisted at relatively high abundance off-season. Parasitoid diversity was more limited (two primary parasitoids and one hyperparasitoid detected) with the primary parasitoids commonly detected. Aphelinus nigritus (Howard) (Hymenoptera: Aphelinidae), accounted for 85% and 57% of parasitoids in- and off-season, respectively. Aphelinus nigritus abundance was steady across the annual sorghum season in all vegetation types. Results from this study will inform land-management strategies on how diverse vegetations can play a role in the biological control of M. sorghi. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

8 pages, 822 KB  
Article
Melanaphis sorghi (Hemiptera: Aphididae) Clonal Diversity in the United States and Brazil
by Karen Harris-Shultz, John Scott Armstrong, Geraldo Carvalho, Jurandir Pereira Segundo and Xinzhi Ni
Insects 2022, 13(5), 416; https://doi.org/10.3390/insects13050416 - 28 Apr 2022
Cited by 16 | Viewed by 2917
Abstract
Melanaphis sorghi (Hemiptera: Aphididae), are an economically important pest to sorghum in the Americas. Previous studies have found that a super-clone that belongs to multilocus lineage (MLL)-F predominated in the U.S. from 2013 to 2018 and uses multiple hosts besides sorghum. In contrast, [...] Read more.
Melanaphis sorghi (Hemiptera: Aphididae), are an economically important pest to sorghum in the Americas. Previous studies have found that a super-clone that belongs to multilocus lineage (MLL)-F predominated in the U.S. from 2013 to 2018 and uses multiple hosts besides sorghum. In contrast, previous studies found that aphids in South America belong to MLL-C, but these studies only examined aphids collected from sugarcane. In this study we sought to determine if the superclone persisted in the U.S. in 2019–2020 and to determine the MLL of aphids found on sorghum in the largest country in South America, Brazil. Melanaphis spp. samples (121) were collected from the U.S. in 2019–2020 and Brazil in 2020 and were genotyped with 8–9 Melanaphis spp. microsatellite markers. Genotyping results showed that all samples from the U.S. in 2019 and Brazil in 2020 had alleles identical to the predominant superclone. Of the 52 samples collected in the U.S. in 2020, 50 samples were identical to the predominant super-clone (multilocus lineage-F; M. sorghi), while two samples from Texas differed from the super-clone by a single allele. The results demonstrated that the super-clone remains in the U.S. on sorghum, Johnsongrass, and giant miscanthus and is also present on sorghum within Brazil. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

14 pages, 9859 KB  
Article
Effect of Sugarcane Cultivars Infected with Sugarcane Yellow Leaf Virus (ScYLV) on Feeding Behavior and Biological Performance of Melanaphis sacchari (Hemiptera: Aphididae)
by Luiz Eduardo Tilhaqui Bertasello, Michele Carmo-Sousa, Nathalie K. Prado Maluta, Luciana Rossini Pinto, João R. Spotti Lopes and Marcos Cesar Gonçalves
Plants 2021, 10(10), 2122; https://doi.org/10.3390/plants10102122 - 6 Oct 2021
Cited by 9 | Viewed by 2866
Abstract
Sugarcane yellow leaf virus (ScYLV), Polerovirus, Luteoviridae, is one of the main viruses that infect sugarcane worldwide. The virus is transmitted by the aphid Melanaphis sacchari in a persistent, circulative manner. To better understand the interactions between ScYLV, sugarcane genotypes and [...] Read more.
Sugarcane yellow leaf virus (ScYLV), Polerovirus, Luteoviridae, is one of the main viruses that infect sugarcane worldwide. The virus is transmitted by the aphid Melanaphis sacchari in a persistent, circulative manner. To better understand the interactions between ScYLV, sugarcane genotypes and M. sacchari, we explored the effect of sugarcane cultivars on the feeding behavior and biological performance of the vector. The number of nymphs, adults, winged, total number of aphids and dead aphids was assayed, and an electrical penetration graph (EPG) was used to monitor the stylet activities. Multivariate analysis showed changes in the vector’s behavior and biology on cultivars, identifying specific groups of resistance. In the cultivar 7569, only 5.5% of the insects were able to stay longer on sustained phloem ingestion, while in the other seven cultivars these values varied from 20% to 60%. M. sacchari showed low phloem activities in cultivars 7569 and Bio266. Overall, cultivar 7569 showed the worst biological performance of aphids, with the insects presenting mechanical difficulties for feeding and a shorter duration of the phloem period, and thus being considered the most resistant. We conclude that ScYLV virus infection in different sugarcane cultivars induced specific changes in the host plant, modifying the behavior of its main vector, which may favor or impair virus transmission. Full article
(This article belongs to the Special Issue Insect Vector-Borne Plant Diseases)
Show Figures

Figure 1

18 pages, 3209 KB  
Article
Comparative Transcriptome Analysis Reveals Genetic Mechanisms of Sugarcane Aphid Resistance in Grain Sorghum
by Desalegn D. Serba, Xiaoxi Meng, James Schnable, Elfadil Bashir, J. P. Michaud, P. V. Vara Prasad and Ramasamy Perumal
Int. J. Mol. Sci. 2021, 22(13), 7129; https://doi.org/10.3390/ijms22137129 - 1 Jul 2021
Cited by 18 | Viewed by 4960
Abstract
The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance [...] Read more.
The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants. Full article
(This article belongs to the Special Issue Plant Cell and Organism Development 2.0)
Show Figures

Figure 1

15 pages, 2226 KB  
Review
Hemipteran Pests of Sugarcane in North America
by Blake E. Wilson
Insects 2019, 10(4), 107; https://doi.org/10.3390/insects10040107 - 14 Apr 2019
Cited by 16 | Viewed by 7824
Abstract
Piercing-sucking herbivores (Insecta: Hemiptera) represent one of the greatest threats to agricultural production worldwide. Hemipteran pests directly injure plants as well as vector disease-causing plant pathogens. Production of sugarcane (Saccharum spp.) in North America is impacted by a complex of Hemiptera including [...] Read more.
Piercing-sucking herbivores (Insecta: Hemiptera) represent one of the greatest threats to agricultural production worldwide. Hemipteran pests directly injure plants as well as vector disease-causing plant pathogens. Production of sugarcane (Saccharum spp.) in North America is impacted by a complex of Hemiptera including the sugarcane aphid, Melanaphis sacchari Zehntner (Aphididae); yellow sugarcane aphid, Sipha flava (Forbes) (Aphididae); West Indian canefly, Saccharosydne saccharivora (Westwood) (Delphacidae); sugarcane delphacid, Perkinsiella saccharicida Kirkaldy (Delphacidae); and sugarcane lace bug, Leptodictya tabida (Herric-Schaeffer) (Tingidae). None of these pests is consistently damaging to large amounts of sugarcane acreage, but regional outbreaks are common. The biology, ecology, and pest management of these insects are discussed with emphasis on North America sugarcane production. Full article
(This article belongs to the Special Issue Ecology and Pest Management of Sugarcane Insects)
Show Figures

Figure 1

Back to TopTop