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Abstract: Insect species are subjected to disparate selection pressure due to various biotic and abiotic
stresses. Management practices including the heavy use of chemical insecticides and introduction
of insect-resistant plant cultivars have been found to accelerate these processes. Clearly, natural
selection coupled with human intervention have led to insect adaptations that alter phenotypes
and genetic structure over time, producing distinct individuals with specialized traits, within the
populations, commonly defined as biotypes. Biotypes are commonly found to have better fitness in
the new environment and, in the case of aphids, the most commonly studied system for biotypes,
have the ability to successfully infest previously resistant host plants and new species of host plants.
Although a large number of studies have explored biotypes, the concept for defining biotypes
varies among scientists, as we lack a consistency in estimating biotype behavior and their variation
within and between biotypes. The concept of biotypes is even more complicated in aphid species
(Aphidoidea), as they undergo parthenogenetic reproduction, making it difficult to understand the
source of variation or quantify gene flow. In this review, we aim to illuminate the concept of biotype
and how it has been used in the study of aphids. We intend to further elaborate and document the
existence of aphid biotypes using sugarcane aphid (Melanaphis sacchari) as a model to understand
their differences, level of variation, evolution, and significance in pest management.
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1. Background

Insects are the most diverse group of organisms and have broad genetic variability
that allows them to adapt to a wide array of less-than-ideal conditions, including their
host plants, host animals and habitats [1]. Insect species feeding on different host plants
experience different microclimatic conditions, presence of predators and natural enemies,
variation in nutrient compositions, primary and secondary host plant metabolites, and
different forms of plant defenses that consequently expose them to divergent selection [2–6].
In addition, insect species are also vulnerable to abiotic stresses, such as sudden fluctuation
in temperature and humidity, compounded by the scarcity of food sources. Management
strategies such as the development of insect-resistant plant varieties and application of
various insecticides and pesticides in agroecosystems may add to the intensity of selection
pressure [7]. Consequently, these selection pressures and divergent selection in insects lead
to ecological adaptations [3,8,9], leading to phenotypic and genotypic differences among
populations [9]. Although these differences have been observed and studied in many insect
species, this is predominantly observed within and among different species of aphids.

2. Aphids

About 5000 species of aphids (class Insecta, order Hemiptera) have been described,
and they form one of the largest, most geographically widespread, and economically im-
portant insects around the globe [10,11]. Aphids are plant sap feeders, and they suck sap
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from the phloem by inserting their stylets on plant parts such as stems, leaves, panicles,
and roots. During the process, they also inject toxic saliva into the plants, which causes leaf
discoloration and leads to tissue death [12]. Aphids also secrete a sticky substance called
honeydew that favors the growth of black sooty mold that impairs photosynthesis, plant
growth, and may ultimately kill plants [13,14]. Besides direct damage through feeding,
aphids also transmit a suite of viral diseases. Some of the common aphid-vectored diseases
include maize dwarf mosaic virus, cucumber mosaic virus, potato leaf roll virus, barley
yellow dwarf virus, potato virus Y, banana bunchy top virus, carrot mottle virus, lettuce
necrotic yellow virus and sugarcane mosaic virus [15–17]. All these traits have contributed
to aphids, considered one of the most devastating pest groups of the major agricultural
crops all over the world. Aphids have the dynamic ability to change into different forms
(morphs) throughout their lifetime, which may specialize in feeding, reproduction, dis-
persal, and survival [18]. The reproductive methods of aphids may vary even within the
same species. They can reproduce asexually and form clones or reproduce sexually and
produce eggs. They can combine these two methods of reproduction and may alternate
between cyclical and obligate parthenogenesis [18,19]. Under certain conditions, such
as extreme weather, scarcity of food and attack by natural enemies, aphids can produce
winged or wingless males, which leads to sexual reproduction [20]. Cyclical partheno-
genesis, where they can alternate between asexual and sexual reproduction, is the most
common mode of reproduction among many aphid species [19,20]. Aphids also have a
unique and interesting reproductive phenomenon referred to as telescoping of generations,
where a female viviparous aphid has a daughter developing inside her, and that daughter
has a parthenogenetic daughter developing inside her [19,21]. These varied methods of
reproduction highlight the great reproductive potential that aphids have in comparison to
other than animals [10,22].

Integrated pest management (IPM) has been considered the most sustainable way for
combining and integrating various aspects of plant protection against aphids. IPM prior-
itizes physical, cultural, and biological control methods, with chemical control methods
as the last resort [23,24]. Under IPM for aphids, host plant resistance has been established
as the most practical solution. However, the colossal diversity, adaptable body structure,
high fecundity, short generation time and innate plasticity of aphid species gradually over-
whelm the resistance in cultivars by evolving new forms with increased ability to severely
infest and damage previously known resistant host cultivars [1,25,26]. These new and
distinct forms of insects isolated by host preferences, not yet considered a new species, are
commonly referred to as biotypes [27–29].

3. The Concept of Biotype

Benjamin Walsh (1864) [30] was the first entomologist who incorporated evolutionary
concepts in his studies and recognized insect populations that are morphologically similar
but having different biological traits and named them “phytophagic varieties.” He found
that 15 similar species of gall wasps differed primarily in their preference for varied
species of willow plants. Cholodkovsky (1908) [31] used the term “biological species” for
populations of adelgids who differed from each other in their biological activity. In 1951,
Painter published a book [32], Insect Resistance in Crop Plants, where he freely interchanged
biotype with biological strains and races. Since then, entomologists and applied biologists
have recognized different races and strains among insects, and many definitions on biotypes
have been discussed. Some of the major ones are identified in Table 1.
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Table 1. Commonly used definitions of biotypes.

S.N. Biotype Concept Reference

1. Biotypes are the populations that can reproduce and survive on cultivars developed
for resistance to a particular insect or can resist insecticides. [33]

2.

Biotype is a taxonomic concept mostly used by non-taxonomists and has been defined
as consisting of all individuals of equal genotype. Biotypes are recognized by a

biological function rather than by morphological characters. In practice, a biotype
contains those individuals performing whatever biological feat interests the observer

and thus may contain one or more races or strains.

[34]

3.
Biotype is an individual or a population whose phenotype is determined by the
interaction between plants having different genes for resistance and the larvae’s

ability or inability to survive on and stunt the plant.
[35]

4.
Biotype of insects are individuals or populations that are distinguished from the rest

of its species by criteria other than morphology, for example, a difference in
parasite ability.

[36]

5.
Diverse biological differences have been used to designate populations as biotypes.

They are (a) nongenetic polyphenisms, (b) polymorphic or polygenic variation within
populations, (c) geographic races, (d) host races, and (e) species.

[37]

6.

Biotype is an intraspecific category referring to insect populations of similar genetic
composition for a biological attribute. The biotype populations may be partially and
temporarily sympatric, allopatric, or parapatric with other compatible populations,

but differ in one or more biological attributes.

[1]

7.

The concept of biotypes, strain, and host race: “strain designates a population arising
from a single collection or clonal individual; biotype is a category designating shared
phenotypic traits; host race is a biotype that is better adapted to a specific host than

are other biotypes.”

[38]

8. Biotypes are populations within an arthropod species that differ in their ability to
utilize a particular trait in a particular plant genotype. [39]

Clearly, these definitions designate biotypes based on their biological characteristics
and differential performance on their host plants. However, Downie (2010) [40] criticized
the previous definitions listed in Table 1, emphasizing that the definitions are too basic
and confusing. He further stated that race and species terms denote meaningful meaning
of biotype and would be more appropriate to use and understand. Variations in views
about biotype among scientists cannot be ignored, as the definitions are not unified and
the meaning itself is not consistent either within or between biotypes. This confusion
might have come up since a greater number of biotypes are seen in aphid species, which
reproduce almost exclusively by parthenogenesis, and do not obey the gene for gene
relationship/principle that many scientists have used as a basic explanation for evolution of
insect biotypes [7,37]. Though complex and complicated in nature, the existence of variation
in factors that influence host choice within an insect population for various parameters
cannot be ignored, and different populations with varied factors that influence host choice
cannot just simply be labeled as races, clones, or species. Hence, the term biotype has
served the purpose of defining the variations among different populations of arthropod
species and that differentially affect their life history traits and host plant response.

Some parameters used in identifying biotypes are host preference, virulence, genetic
composition, reproductive behavior, physiological response to biotic and abiotic condi-
tions, disease vector capabilities, migration patterns, pheromone differences and insecticide
resistance [34,41,42], and in a few cases morphological variations [1,43–45]. However,
insect virulence on a particular host plant is a common parameter implicated in identi-
fying insect biotypes [46]. This biotype concept has been universally used to describe
the differences among populations of insect species, mainly aphids. As discussed above,
other factors include the continuous use of insect-resistant plant varieties, the change in
morphological behavior and phenotype of insects, which may be due to various genetic
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and/environmental factors, or both might have led to the evolution of biotypes. Failure to
recognize an existing biotype of an insect may also lead to the evolution of a more virulent
biotype. Furthermore, to complicate the evolution of biotypes, the parasitic or mutualistic
relationship of an insect pest with its endosymbiont has been found to spawn the variation
and interdependence between and within species [47–50]. Natural enemies of herbivores,
especially predators, may also be a causal factor in generating variation and change of host
plant range. Thus, multitrophic interlinkages between host plant, herbivore, endosymbiont,
predator, and other environmental factors and interference of various natural processes by
human beings also contribute to initiate variation, and thus formation of biotypes.

4. Importance of Studying Insect Biotypes

Studying biotypes is of prime importance for insect pest management involving re-
sistance management and manipulating host attraction traits. It has been found critical to
incorporate the biotype concept in designing integrated pest management strategies involv-
ing host-plant resistance and biological control [1,51]. Insect populations with avirulent-
dominant genes can be strategically released in populations with virulent-recessive genes,
which might result in insect control by the production of biotypes with dominant genes
for avirulence after a few generations [52–54]. For example; Foster and Gallun (1973) [52]
studied two biotypes of Hessian flies (Mayetiola destructor)—Great Plains (GP) biotype and
biotype B—which were released on a wheat cultivar susceptible to biotype B, but resistant
to the GP biotype. The results from both greenhouse and field studies suggesting that the
population of biotype B was completely suppressed. Thus, biotypes can be considered
when deploying a strategy for genetic control of insects. Boller and Prokopy (1976) [55]
proposed the possibility of biological control of the European cherry fruit fly (Rhagoletis
cerasi) by using and releasing their incompatible biotypes into the population of compatible
ones. Knowledge of biotypes helps entomologists and plant breeders study diverse genetic
and phenotypic plasticity in insects, quantify the effects of gene flow, and develop new
insect-resistant crop varieties [56]. For example, new resistant cultivars of wheat against the
Hessian fly (Mayetiola destructor) have been developed by using this analysis, as Hessian fly
biotypes can differentiate resistant genes in different wheat varieties [52]. Further, two bio-
types of brown plant hopper (Nilaparvata lugens) have been selected for by rearing them on
resistant rice varieties, and are deployed in identifying brown plant hopper-resistant vari-
eties of rice [1]. Multiple studies have been conducted on aphid biotypes, and subsequently
that information has become handy in breeding programs and used to generate aphid-
resistant plant cultivars. Comprehending aphid biotypes and considering their response to
insecticides can also guide the use, formulation, and production of insecticides [42]. Clearly,
the study of biotypes enhances our knowledge on evolution, evolutionary divergence in
organism and speciation [1,37].

Biotypes have been identified and studied in several insect orders [7,27,32,37,43,57].
Initially, biotypes were listed into 36 arthropod species belonging to 17 families of 6 orders,
with aphids contributing almost half to this list [1]. This biotype list was later updated and
about 50 arthropod species belonging to 20 families from 7 orders have been documented
to exist as biotypes [7,57]. Even with this update, about 50% of described biotypes are of
aphids [7,11,39], making it the most important and interesting group to explore biotypes
in detail.

5. Aphid Biotypes

The concept of biotype apropos of aphids was first reviewed by [34], and he suggested
that the term biotype in the case of aphids was synonymous with clone, as they are
the individuals of same/similar genotypes. Aphids are mostly host specialized and are
specific to one or two related plant species [58]. It is for this reason that aphids are
referred to as ecological specialists [3,59]. For example, Ferrari et al. (2006) [60], found
that pea aphid (Acyrthosiphon pisum) populations collected from alfalfa and red clover
differed genetically and showed preference for the plant from which they were collected.
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Nibouche et al. (2015) [61] showed that different populations of sugarcane aphids had their
genetic structure linked to their respective host plants. For example, the study compared
four main isofemale lineages of sugarcane aphids, where Ms11 lineage was found mainly
on sugarcane, Ms15 lineage was exclusively found on sorghum and Ms16 lineage were
found on both sorghum (Ms16sorghum) and sugarcane (Ms16sugarcane). Furthermore, host
transfer experiments showed both Ms16sorghum and Ms16sugarcane had fitness tradeoffs
on alternate host plants. Aphids have characteristic features that may vary, resulting in
different morphs. Aphids have alate and apterous forms, oviparous and viviparous forms,
and different combinations of these forms where each form or morph has its own ecological
function and are distinct in their response to various environmental factors [62]. In cotton
aphid (Aphis gossypii), it has been found that a single individual can produce offspring
with four different and distinct phenotypes—normal light green apterous aphid, normal
dark green apterous aphid, dwarf yellow apterous aphid and alate aphid—as a response
to the change in its environment and type and quality of host plants [63–67]. Thus, the
inherent phenotypic plasticity, host-associated genetic divergence, underlying plasticity
in gene expression [68], and the ability to thrive in diverse environmental and geographic
locations promotes the faster development of biotypes in aphids than any other insect
groups [10,19,69–72].

Harrington (1943) [73] was the first to document the occurrence of biotype in aphid
species. His study indicated the occurrence of four biotypes (referred to as physiological
races) of pea aphid, which differed from one another significantly in size and virulence in
the United States. Later, biotypes of the pea aphid were described, showing differences in
morphology [74,75], life cycle [76,77], host plant preferences [77–79], growth rates [77,80]
and nutrition [77]. Cartier and Painter (1956) [81] worked on corn leaf aphid (Rhopalosi-
phum maidis) and documented the differential reaction of two biotypes of corn leaf aphid
to resistant and susceptible varieties of sorghum. Later, Painter and Pathak (1962) [82]
proposed four biotypes of corn leaf aphid based on their reproduction on different plants
and plant reaction to aphid feeding. This was revised again by Wilde and Feese (1973) [83],
who documented a fifth biotype of corn leaf aphid that differed significantly from those
previously observed based on its ability to attack a plant species that had been consid-
ered resistant and its ability to reproduce well at higher temperatures. Nielson and Don
(1974) [84] studied four biotypes of spotted alfalfa aphid (Therioaphis maculata) on different
varieties of alfalfa with varying resistance to different biotypes. In the case of greenbugs
or wheat aphids (Schizaphis graminum), more than 10 biotypes have been reported, four of
which are highly damaging [85–87].

Many aphid biotypes have been discovered and studied based on their behavior and
characteristics on new or previously resistant host plant species or varieties, suggesting
that a change in feeding preference and/or behavior will produce a new biotype. Saxena
and Chada (1971) [86] studied two greenbug biotypes and found that they have differences
in their ability to penetrate the plant tissue. They found that biotype A could penetrate
its stylet up to the phloem, while biotype B ended its stylet penetration in the mesophyll
parenchyma and could not reach the phloem tissue. Campbell et al. (1982) [88] suggested
that the differential feeding behavior of greenbug biotypes on different resistant and sus-
ceptible varieties of sorghum might be because of the difference in chemical constituents of
phloem between them. It has also been suggested that resistant host plants produce defen-
sive chemical substances in response to the aphid stylet penetration [84,89,90]. Another,
similar, study conducted by Montllor et al. (1983) [91] on two greenbug biotypes found
that they differed in time spent on phloem feeding, fecundity, longevity, post reproductive
life, development time and larger size when monitored on a sorghum variety that was
previously known for having resistance against greenbug [88,92–94]. Kim et al. (2008) [94]
confirmed two distinct soyabean aphid biotypes for the first time based on their unique
virulence patterns on soybean genotypes.
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In most cases, aphid biotypes have been known to evolve to break the host plant
resistance and changing or expanding their host range. It is estimated that there are
26 aphid species known to have biotypes now. Aphid species with their respective host
plants, number of known biotypes and the basis of classification are documented in Table 2.

Table 2. Detailed documentation of aphid biotypes across various host plants.

S.N. Aphid Species Common Name Crop # of
Biotypes Biotypes Based on References

1 Acyrthosiphon
kondoi (Shinji) Blue alfalfa aphid Lucerne (Medicago sativa) 2 Virulence [7,95]

2 Acyrthosiphon
pisum (Harris) Pea aphid

Lucerne (Medicago sativa),
dyer’s whin (Genista

inctoria), winged broom (G.
sagittalis), common sainfoin
(Onobrychis viciifolia), white

clover (Trifolium repens),
broad beans (Vicia faba) and
horseshoe vetch (Hippocrepis

comosa)

15

Genetic divergence and
differential association
with endosymbionts,

virulence, body size, body
color, differential survival

rate, reproduction,
mortality, virus

transmission

[7,73,76,79,80,96,97]

3
Amphorophora

agathonica
(Hottes)

Large raspberry
Aphid Red raspberry (Rubus idaeus) 6 Colonizing ability on host

plant and virulence [98,99]

4 Amphorophora
idaei (Born)

Large raspberry
aphid Red raspberry (Rubus idaeus) 5 Genetic variation and

virulence [100,101]

5 Amphorophora rubi
(Kalt.) Raspberry aphid Red raspberry (Rubus idaeus) 4 Virulence and difference

in reproductive rate [1,102–106]

6
Aphis craccivora

(Koch)
Cowpea aphid

Cowpea (Vigna unguiculata) 2 Host plant preference,
virulence

[1,7,107–110]Groundnut (Arachis
hypogaea) 2 Differential ability to

transmit viral strain

Bush sitao (Vigna
unguiculata sesquipedalis) 5 Host preference, virulence

7 Aphis fabae
(Scopoli) Bean aphid Broad bean (Vicia faba) 2 Host preference,

phenotypic plasticity [7,111,112]

8 Aphis glycine
(Matsumura) Soybean aphid Soybean (Glycine max) 4

Virulence (ability to
colonize on resistant

plants)
[94,113–115]

9 Aphis gossypii
(Glover)

Cotton or melon
aphid

Cotton (Gossypium
spp.)cucumber (Cucumis

sativus) and melon (Cucumis
melo)

2
Host plant based genetic

differentiation, host
preference

[71,116–118]

10 Aphis nasturtii
(Kaltenbach) Buckthorn aphid Potato (Solanum tuberosum) 2 [1,7]

11 Aulacorthum solani
(Kaltenbach) Foxglove aphid Potato (Solanum tuberosum) 2 Difference in host use [1,7,119]

12
Brevicoryne

brassicae
(Linnaeus)

Cabbage aphid Vegetables 2 Virulence [120,121]

13
Chaetosiphon

fragaefolii
(Cockerell)

Strawberry aphid Strawberry (Fragaria
ananassa) 2 Host plant preference and

aphid probing behavior [1,7,122]

14 Diuraphis noxia
(Kurdjumov)

Russian wheat
aphid Wheat (Triticum spp.) 10 Virulence [123–129]

15 Dysaphis devecta Rosy leaf-curling
apple aphid Apple (Malus spp.) 3 Virulence [130]
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Table 2. Cont.

S.N. Aphid Species Common Name Crop # of
Biotypes Biotypes Based on References

16
Dysaphis

plantaginea
(Passerini)

Rosy apple aphid Apple (Malus spp.) 3 Virulence [131]

17
Eriosoma
lanigerum

(Hausmann)

Wooly apple
aphid Apple (Malus spp.) 3 Virulence and Life history

traits [132–135]

18
Macrosiphum

euphorbiae
(Thomas)

Potato aphid

Tomato (Solanum
lycopersicum ) and Hairy

nightshade (Solanum
sarrachoides)

2 Virulence and host
preference [136,137]

19 Melanaphis
sacchari Sugarcane Aphid

Sugarcane (Saccharum
officinarum), sorghum

(Sorghum bicolor),
Johnsongrass (Sorghum

halepense), Columbus grass
(Sorghum almum)

6 Micro-locus lineages and
host preference [61,138,139]

20 Myzus persicae
(Sulzer)

Green peach
aphid

Tobacco (Nicotiana tabacum),
cabbage (Brassica oleracea var.

capitata), peach (Prunus
persica), potato (Solanum

tuberosum) and sugar beet
(Beta vulgaris)

3

Body color, life history
traits, host plant

preference and insecticide
resistance,

[1,140]

21 Nasonovia
ribisnigri (Mosley) Lettuce leaf aphid Lettuce (Lactuca sativa) 2 Virulence [7,141–143]

22 Rhopalosiphum
maidis (Fitch) Corn leaf aphid

Barley (Hordeum vulgare ),
corn (Zea mays), sorghum

(Sorghum bicolor)
5

Differential reproduction,
host plant response and

virulence
[81–83,144]

23
Schizaphis
graminum
(Rondani)

Greenbug or
wheat aphid

Barley (Hordeum vulgare),
wheat (Triticum spp.), oats

(Avena sativa), sorghum
(Sorghum bicolor)

11 Virulence, a few
morphological differences [7,85,87,145–152]

24 Sitobion avenae
(Fabricius)

English grain
aphid Wheat (Triticum spp.) 6 Virulence, life history

traits, body color [72,153]

25
Therioaphis

maculata
(Buckton)

Spotted alfalfa
aphid Lucerne (Medicago sativa) 6

Biological activity and
response to

organophosphate
insecticides.

[33,154,155]

26
Therioaphis trifolii

F. maculata
(Buckton)

Spotted alfalfa
aphid

Alfalfa (Medicago sativa),
clover (Trifolium spp.) 2

Host plant based genetic
differentiation, host

preference
[1,7,156–159]

6. Molecular Advances in Aphid Biotype Studies

Molecular methods have been well employed to study the biotypes in aphids. Aphids
mainly undergo a parthenogenetic form of reproduction, due to which their gene flow
is restricted, and are usually observed to have low genetic diversity. Most research find-
ings show that the genetic divergence of aphid biotypes is linked to their host plants.
This has also been studied as host-associated genetic makeup among aphid biotypes and
host-associated genetic divergence between aphid biotypes. Microsatellite analyses, DNA
markers, transcriptome profiling and analyses, and different mitochondrial sequences
are commonly used to identify different biotypes of different aphids. Sunnucks et al.
(1997) [157] studied different populations of the spotted alfalfa aphid (Therioaphis trifolii
F. maculata) collected from lucerne and subclover using RAPD-PCR techniques and mito-
chondrial DNA genetic markers. The result showed that there were significant differences
in the genetic makeup of the spotted alfalfa aphid, where aphids collected from lucerne
and subclover had different genetic makeup. The study concluded that these aphids are
different host-associated biotypes of spotted alfalfa aphid and thus had host plant-based
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genetic differentiation. Similarly, using mitochondrial DNA sequences, host-adapted races
of wheat aphid or greenbug (Schizaphis graminum) were confirmed and three different
clades noted in a study conducted by Anstead et al. (2002) [160]. Wang et al. (2016) [71]
found different mitochondrial sequences in two biotypes of cotton aphid (Aphis gossypii)
where cotton aphids collected from cotton plant had a different five single-nucleotide
polymorphisms when compared to the cotton aphids collected from cucumber plant, and
further, they named the same aphid species cotton biotype and cucumber biotype based
on their host plant specialization. Similarly, five genetic lineages, named Burk, C, Ivo,
Auber and PsP4 of cotton aphids were observed using microsatellite markers and the lin-
eages found to be host-specialized [161]. Simon et al. (2003) [162] studied the genetic
differentiation of different populations of pea aphid (Acyrthosiphon pisum) collected from
pea, clover, and alfalfa plants by using allozyme and microsatellite markers and found
that the aphid populations collected from different host plants were genetically divergent.
Frantz et al. (2006) [163] conducted population genetic analyses on pea aphids collected
from different pea, faba bean, red clover, and alfalfa where they observed three genetic
clusters of pea aphid, and one from pea and faba bean, another from red clover and the
third one from alfalfa. These results clearly indicate host-associated genetic difference
in pea aphid biotypes. Genetic analysis of different biotypes of large raspberry aphid
(Amphorophora idaei) has shown high genetic variability within and between its five bio-
types [101]. Furthermore, Wang et al. (2019) [72] studied genetic differentiation of different
populations of English grain aphid (Sitobion avenae) collected from different wheat and
barley plants using microsatellite markers. The study found that the populations collected
from barley had higher genetic diversity than the populations collected from wheat. The
results also showed low genetic differentiation among the populations from different geo-
graphic locations and hence provided an important insight to consider plant factors to be
of relatively higher importance than geographical factors for stimulating genetic differenti-
ation in aphid biotypes. In addition, the populations in different geographical locations
having few or no phenotypic variations and some genetic variations are sometimes referred
to as ecotypes [37].

7. Ecotypes and their Differences from Biotypes

Ecotypes are individuals or group of individuals of the same species that live in
similar habitats, but different geographical regions or localities. They are also referred
to as ecological races. Ecotypes may share similar morphology and behavior, but still
consist of distinct populations [37]. While they have some genetic variation, they can
breed among themselves, but do not do so because of geographical barriers. For example,
sugarcane aphid biotypes are categorized as having different multiloci lineages (MLLs).
Biotype MLL-A is found in East and West Africa, MLL-B in Australia, MLL-C in a wide
region covering South America, the Caribbean, East Africa and the Indian Ocean, and other
biotypes in another region [138]. Here, MLL-A, MLL-B and MLL-C represent different SCA
biotypes. However, MLL-C found in South America and West Africa are the same biotype
but can be called ecotypes as they are in different environmental conditions prevalent in
the different continents. Diverse environmental components can be held accountable for
determining ecotypes from among the biotypes of a species [164]. Over a prolonged period
of evolution, the phenotypic differences among the biotypes may get genetically fixed and
may also give rise to ecotypes. Some parameters useful in differentiating biotypes and
ecotypes of insect species are described in Table 3.
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Table 3. Commonly used parameters to differentiate biotypes and ecotypes.

Parameters Biotypes Ecotypes

Found in Same or different geographical
locations Different geographical locations

Breeding Cannot breed among themselves Can breed among themselves

Genetic variation
High (except for insects who
reproduce mainly by
parthenogenesis like aphids)

Low

Morphological variation May or may not be present Present

Variations due to Mostly plant factors and to some
extent environmental factors

Exclusively by environmental
factors

Sugarcane Aphid (Melanaphis sacchari) and Sorghum (Sorghum bicolor)

Sorghum (Sorghum bicolor (L.) Moench) is a multipurpose crop grown for its food, fod-
der and fuel production and is rich in nutrients and bioactive phenolic compounds. Sorghum
is also a nutrient-use efficient crop with high water and nitrogen use efficiencies and can
further tolerate drought and elevated temperatures [5,90,165,166]. However, sorghum is
also susceptible to various insect pests, and are a major target of aphids [167–170]. The
most common aphid species feeding on sorghum are Schizaphis graminum (the previously
mentioned greenbug), Rhopalosiphum maidis (corn leaf aphid), Sipha flava (yellow sugarcane
aphid), and Melanaphis sacchari (sugarcane aphid) [90].

Melanaphis sacchari, the sugarcane aphid is tiny, soft-bodied, with a gray, tan, or
yellow body color. It belongs to the order Hemiptera, suborder Sternorrhyncha, super-
family Aphidoidea, and family Aphididae. They are globally distributed, and its host
plant includes members of Poaceae family, including sugarcane, sorghum, rice, millet,
corn, and wild grasses [171]. The sugarcane aphid has distinct dark-black cornicles,
tarsi, and antennae, which distinguish it from other aphids. However, the feeding in-
jury on sorghum appears similar to corn leaf aphid [172]. In the United States, M. sacchari
was first reported in 1877 in Florida [173,174] and in 1999 in Louisiana on sugarcane
(Saccharum officinarum L.) [175,176]. An outbreak of M. sacchari in sorghum was first re-
ported near Beaumont, Texas in 2013 [172,177–179]. By the end of 2013, it was reported
from 38 counties from four states—Texas, Louisiana, Mississippi, and Oklahoma [172] and
has subsequently expanded its geographic range to 20 states [138]. Among aphids, M.
sacchari sucks copious amounts of sap from plant tissue and produces enormous amounts
of honeydew, which favors growth of sooty mold on plants [171,172,179]. The black sooty
mold coats the leaf surface, due to which the leaves cannot receive adequate sunlight, and
this impairs photosynthesis. The reduced photosynthetic capacity can lead to stunting
in plants and can ultimately cause significant yield losses [180,181]. In addition, it also
vectors diseases including sugarcane yellow leaf virus [182]. Since 2014, sorghum fields in
Louisiana and Mississippi have been reported to be 100% infested with M. sacchari, cost-
ing approximately $10 million for aphid control alone [178] and yield loss on susceptible
sorghum hybrids can reach up to 60% [183]. During 2014 and 2015, M. sacchari caused an
estimated loss of $64.53/ac primarily by increased production costs as well as reduced
sorghum yields in the Rio Grande Valley, Texas [179].

For a very long time, M. sacchari had contrasting feeding behavior and host choice
in different continents. M. sacchari was not considered a pest of sugarcane and was a
serious pest of sorghum in Africa and Asia over a long period of time [184], which is
opposite to what we observed in North America. In recent times, M. sacchari seems to
have extended its host choice and feeding behavior within the same geographical region.
The question, therefore, lies in whether this change in feeding behavior is due to the
emergence of a new biotype of M. sacchari or the introduction of new genotypes of sorghum
from Asia or Africa [138] or a combination of both. Genetic diversity has been examined
worldwide for M. sacchari, and several multiloci lineages (MLL), including MLL-A, MLL-



Diversity 2023, 15, 186 10 of 17

B, MLL-C, MLL-D, MLL-E, and MLL-F, have been identified [185]. Genotypic analysis
using microsatellite markers suggested that MLL-F has been the lineage associated with
the widespread outbreak of M. sacchari in the United States since 2013 [61,138,186]. In
Brazil, lopes da Silva et al. (2014) [187] showed that an aphid clonal lineage collected
from sugarcane exhibited higher demographic parameters in terms of longer reproductive
period, higher fecundity, and greater longevity of the aphid on sorghum than on sugarcane.
In 2019, host plant specialization studies among M. sacchari by Paudyal et al. [188] found
that in the US, there exist two different host-specific biotypes where M. sacchari collected
on sugarcane belonged to the multilocus lineage MLL-D, and M. sacchari collected from
sorghum and Columbus grass belonged to MLL-F. Collectively, data from these studies
indicate that there are host-associated genotypes of M. sacchari in the US, and should be
explored further.

8. Conclusions and Future Directions

Collectively, studies on biotype and their emergence point out that the principle of
biotype evolution relies on natural selection and human-mediated interference by ma-
nipulating the genome of host plants. They are coevolved with host plants, herbivores,
parasitoids, and their endosymbionts over time. Biotypes are derived from the survivors
of resistant cultivars and other various biotic and abiotic stresses. A plant’s resistance to
pests is made vulnerable and threatened by the emergence of a new biotype. Based on our
literature survey and synthesis, another consideration for a biotype definition could be:
“Biotypes are the individuals and/or populations of insect species that demonstrate distinct
characteristics and behavior influenced by the spatial and temporal variation of host plant
species, biotic and abiotic factors, and human interventions.” As new biotypes emerge,
research about their similarities and differences inform the use of improved methods to
produce healthy plants and ensure their sustainability. To progress the study of biotypes
and their evolution ultimately leads to the question on how to disentangle the role of host
plant among other biotic and abiotic factors that influence biotypes. Ultimately, as new
biotypes emerge, the affected plants also adapt and evolve as a countermeasure, as ob-
served in various crop species. The continuous use of resistant cultivars and heterogeneous
methods applied to control pests also leads to the rise in biotypes and should be the basis
and the subject of more research on them.

Insect management programs that incorporate host plant resistance are imperative and
strategic in future pest control. To implement and make these strategies effective, there is a
need to understand plant–insect interactions at both ecological and mechanistic levels. An
effective surveillance program can also be developed to assess the gene mutation or popu-
lation migration in pests/aphids that would provide results that could be used to improve
strategies in growing stronger and resilient plants. An important feature of this surveillance
program would include more time spent gathering data on insects from (PCR) techniques
and DNA probes [1]. These efforts can be used as a springboard for further investigation of
biotypes in the future. The electrical penetration graph (EPG) technique (which assesses the
feeding behavior of sap-sucking insects), PCR techniques (which can discriminate trivial
differences in DNA between individual insects) and the development of molecular markers
can better enable biotype identification and differentiation. This differentiation is important
to implement biological control approaches to correctly match the right pest control agent
with the right host biotype. For example., Wang et al. (2020) [189] studied defense-related
genes of two biotypes of cereal aphid (Sitobion avenae), which indicated that the expression
of these genes was plastic and related to the original and alternative host plants. Thus,
study of host plant association and associated defensive genes of aphids might provide
important insight into the adaptive evolution and differentiation mechanism of different
biotypes on different host plants.
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To decrease the potential development and/or outbreak of new insect biotype on new
or previously resistant host plants, there is a need for the development of various short and
long-term strategies. Plant breeding for insect-resistant cultivars should focus on broaden-
ing the genetic makeup for resistance in plants and thus diversifying the genetic base in
terms of both major and minor genes. Gene pyramiding for resistance can be brought into
effective use if thoroughly tested and evaluated for its efficacy. Also, horizontal resistance
can be more effective and durable than single-gene resistance [39]. These abovementioned
mechanisms of plant resistance might lower the probability of development of new biotype
that is more virulent and robust than a previously existing biotype.

To conclude, the continuous use of resistant plant varieties along with the incremental
use of chemical pesticides has caused the emergence of more virulent aphid biotypes. We
should continue to study and quantify the phenotypic changes through life-history traits
and correlate these with genetic diversity among aphid populations, which can contribute
to a better understanding of aphid population dynamics and pest status and thus will be
useful in implementing various pest management strategies, even with the emergence of
more biotypes in future.
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