error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (152)

Search Parameters:
Keywords = Maxwell fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1569 KB  
Article
Mechanical Characterization of Stick Insect Tarsal Attachment Fluid Using Atomic Force Microscopy (AFM)
by Martin Becker, Alexander E. Kovalev, Thies H. Büscher and Stanislav N. Gorb
Biomimetics 2026, 11(1), 42; https://doi.org/10.3390/biomimetics11010042 - 6 Jan 2026
Viewed by 16
Abstract
Most insects secrete special fluids from their tarsal pads which are essential for the function of their attachment systems. Previous studies investigated several physical and chemical characteristics of this pad fluid in different insect species. However, there is not much known about the [...] Read more.
Most insects secrete special fluids from their tarsal pads which are essential for the function of their attachment systems. Previous studies investigated several physical and chemical characteristics of this pad fluid in different insect species. However, there is not much known about the mechanical properties of fluid from smooth adhesive pads. In this study, we used the stress–relaxation nanoindentation method to examine the viscoelastic properties of pad fluid from Sungaya aeta. Force–displacement and stress–relaxation curves on single fluid droplets were recorded with an atomic force microscope (AFM) and analyzed using Johnson–Kendall–Roberts (JKR) and generalized Maxwell models for determination of effective elastic modulus (E), work of adhesion (Δγ) and dynamic viscosity (η). In addition, we used white light interferometry (WLI) to measure the maximal height of freshly acquired droplets. Our results revealed three different categories of droplets, which we named “almost inviscid”, “viscous” and “rigid”. They are presumably determined at the moment of secretion and retain their characteristics even for several days. The observed mechanical properties suggest a non-uniform composition of different droplets. These findings provide a basis for advancing our understanding about the requirements for adaptive adhesion-mediating fluids and, hence, aid in advancing technical solutions for soft or liquid temporal adhesives and gripping devices. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Graphical abstract

24 pages, 2190 KB  
Article
Improving Coating Stability Using Slip Conditions: An Analytical Approach to Curtain Coating
by Laraib Mehboob, Khadija Maqbool, Abdul Majeed Siddiqui and Zaheer Abbas
Lubricants 2026, 14(1), 11; https://doi.org/10.3390/lubricants14010011 - 27 Dec 2025
Viewed by 207
Abstract
Curtain deflector coating is a widely employed technique for producing thin, uniform films in numerous industrial applications. The flow dynamics in curtain coating become complex near the corner region due to the interaction of the moving substrate and the falling liquid curtain. In [...] Read more.
Curtain deflector coating is a widely employed technique for producing thin, uniform films in numerous industrial applications. The flow dynamics in curtain coating become complex near the corner region due to the interaction of the moving substrate and the falling liquid curtain. In this study, an analytical investigation is conducted for the steady, in-compressible, and creeping flow of a Maxwell fluid, under the Navier slip condition at the substrate. The mathematical model is derived from the conservation of mass and momentum representing the nonlinear system which is solved using the Langlois recursive technique in combination with the inverse method. The inclusion of the Navier slip boundary condition in this research makes it novel and remove the singularity which produce the unstable stresses at a sharp corner due to no slip, but the Navier slip gives a stable solution for the stresses at a sharp corner. The analysis demonstrates that substrate slip significantly reduces tangential stresses and enhances the stability of the coating flow. Residual error analysis is also performed to verify the accuracy and convergence of the analytical solutions. The results provide a deeper understanding of how slip effects can be utilized to improve coating uniformity and optimize the operational performance of curtain deflector coating systems. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials, 2nd Edition)
Show Figures

Figure 1

14 pages, 1557 KB  
Article
Enhanced Thermal Performance of Variable-Density Maxwell Nanofluid Flow over a Stretching Sheet Under Viscous Dissipation: A Maritime Technology Perspective
by A. M. Amer, Nourhan I. Ghoneim, Shadi Alghaffari, Mohammad E. Gommosani and Ahmed M. Megahed
Modelling 2025, 6(4), 134; https://doi.org/10.3390/modelling6040134 - 22 Oct 2025
Viewed by 604
Abstract
This scientific research examines the intricate dynamics of Maxwell nanofluid flow across a stretching surface with Stefan blowing impacts, with a particular focus on maritime thermal management applications. The analysis integrates multiple physical phenomena including magnetohydrodynamic forces, the energy dissipation phenomenon, and thermal [...] Read more.
This scientific research examines the intricate dynamics of Maxwell nanofluid flow across a stretching surface with Stefan blowing impacts, with a particular focus on maritime thermal management applications. The analysis integrates multiple physical phenomena including magnetohydrodynamic forces, the energy dissipation phenomenon, and thermal density variations within Darcy porous media. Special attention is given to Stefan blowing’s role in modifying thermal and mass transfer boundary layers. We derive an enhanced mathematical formulation that couples Maxwell fluid properties with nanoparticle transport under combined magnetic and density-gradient conditions. Computational results demonstrate the crucial influence of viscous heating and blowing intensity on thermal performance, with direct implications for naval cooling applications. The reduced governing equations form a nonlinear system that requires robust numerical treatment. We implemented the shooting technique to solve this system, verifying its precision through systematic comparison with established benchmark solutions. The close correspondence between results confirms both the method’s reliability and our implementation’s accuracy. The primary results of this study indicate that raising the Stefan blowing and density parameters causes notable changes in the temperature and concentration fields. The Stefan blowing parameter enhances both temperature and concentration near the wall by affecting thermal diffusion and nanoparticle distribution. In contrast, the density parameter reduces these values because of increased fluid resistance. Full article
Show Figures

Figure 1

16 pages, 398 KB  
Article
Exact Solutions for the Non-Isothermal Poiseuille Flow of a FENE-P Fluid
by Evgenii S. Baranovskii
Polymers 2025, 17(17), 2343; https://doi.org/10.3390/polym17172343 - 29 Aug 2025
Viewed by 954
Abstract
In the present article, we study a nonlinear mathematical model for the steady-state non-isothermal flow of a dilute solution of flexible polymer chains between two infinite horizontal plates. Both plates are assumed to be at rest and impermeable, while the flow is driven [...] Read more.
In the present article, we study a nonlinear mathematical model for the steady-state non-isothermal flow of a dilute solution of flexible polymer chains between two infinite horizontal plates. Both plates are assumed to be at rest and impermeable, while the flow is driven by a constant pressure gradient. The fluid rheology model used is FENE-P type. The flow energy dissipation (mechanical-to-thermal energy conversion) is taken into account by using the Rayleigh function in the heat transfer equation. On the channel walls, we use one-parameter Navier’s conditions, which include a wide class of flow regimes at solid boundaries: from no-slip to perfect slip. Moreover, we consider the case of threshold-type slip boundary conditions, which state the slipping occurs only when the magnitude of the shear stresses overcomes a certain threshold value. Closed-form exact solutions to the corresponding boundary value problems are obtained. These solutions represent explicit formulas for the calculation of the velocity field, the temperature distribution, the pressure, the extra stresses, and the configuration tensor. The results of the work favor better understanding and more accurate description of complex dynamics and energy transfer processes in FENE-P fluid flows. Full article
Show Figures

Figure 1

21 pages, 3238 KB  
Article
Development and Characterization of a Novel Erucyl Ultra-Long-Chain Gemini Surfactant
by Guiqiang Fei and Banghua Liu
Polymers 2025, 17(16), 2257; https://doi.org/10.3390/polym17162257 - 21 Aug 2025
Cited by 1 | Viewed by 779
Abstract
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and [...] Read more.
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and 1,3-bis(dimethylamino)propanediol, with an overall yield of 78.6%. FT-IR and 1H NMR characterization confirmed the presence of C22 ultra-long chains, cis double bonds, amide bonds, and quaternary ammonium headgroups in the product structure. Performance tests showed that EUCGS exhibited an extremely low critical micelle concentration (CMC = 0.018 mmol/L) and excellent ability to reduce surface tension (γCMC = 30.0 mN/m). Rheological property studies indicated that EUCGS solutions gradually exhibited significant non-Newtonian fluid characteristics with increasing concentration, and wormlike micelles with a network structure could self-assemble at a concentration of 1.0 mmol/L. Dynamic rheological tests revealed that the solutions showed typical Maxwell fluid behavior and significant shear-thinning properties, which originated from the orientation and disruption of the wormlike micelle network structure under shear stress. In the presence of 225 mmol/L NaCl, the apparent viscosity of a 20 mmol/L EUCGS solution increased from 86 mPa·s to 256 mPa·s. A temperature resistance evaluation showed that EUCGS solutions had a good temperature resistance at high shear rates and 100 °C. The performance evaluation of fracturing fluids indicates that the proppant settling rate (0.25 cm/min) of the EUCGS-FFS system at 90 °C is significantly superior to that of the conventional system. It features the low dosage and high efficiency of the breaker, with the final core damage rate being only 0.9%. The results demonstrate that the EUCGS achieves a synergistic optimization of high-efficiency interfacial activity, controllable rheological properties, and excellent thermal–salt stability through precise molecular structure design, providing a new material choice for the development of intelligent responsive clean fracturing fluids. Full article
Show Figures

Graphical abstract

31 pages, 13407 KB  
Article
Development of 6D Electromagnetic Actuation for Micro/Nanorobots in High Viscosity Fluids for Drug Delivery
by Maki K. Habib and Mostafa Abdelaziz
Technologies 2025, 13(5), 174; https://doi.org/10.3390/technologies13050174 - 27 Apr 2025
Viewed by 1060
Abstract
This research focuses on the development, design, implementation, and testing (with complete hardware and software integration) of a 6D Electromagnetic Actuation (EMA) system for the precise control and navigation of micro/nanorobots (MNRs) in high-viscosity fluids, addressing critical challenges in targeted drug delivery within [...] Read more.
This research focuses on the development, design, implementation, and testing (with complete hardware and software integration) of a 6D Electromagnetic Actuation (EMA) system for the precise control and navigation of micro/nanorobots (MNRs) in high-viscosity fluids, addressing critical challenges in targeted drug delivery within complex biological environments, such as blood vessels. The primary objective is to overcome limitations in the actuation efficiency, trajectory stability, and accurate path-tracking of MNRs. The EMA system utilizes three controllable orthogonal pairs of Helmholtz coils to generate uniform magnetic fields, which magnetize and steer MNRs in 3D for orientation. Another three controllable orthogonal pairs of Helmholtz coils generate uniform magnetic fields for the precise 3D orientation and steering of MNRs. Additionally, three orthogonal pairs of Maxwell coils generate uniform magnetic field gradients, enabling efficient propulsion in dynamic 3D fluidic environments in real time. This hardware configuration is complemented by three high-resolution digital microscopes that provide real-time visual feedback, enable the dynamic tracking of MNRs, and facilitate an effective closed-loop control mechanism. The implemented closed-loop control technique aimed to enhance trajectory accuracy, minimize deviations, and ensure the stable movement of MNRs along predefined paths. The system’s functionality, operation, and performance were tested and verified through various experiments, focusing on hardware, software integration, and the control algorithm. The experimental results show the developed system’s ability to activate MNRs of different sizes (1 mm and 0.5 mm) along selected desired trajectories. Additionally, the EMA system can stably position the MNR at any point within the 3D fluidic environment, effectively counteracting gravitational forces while adhering to established safety standards for electromagnetic exposure to ensure biocompatibility and regulatory compliance. Full article
(This article belongs to the Special Issue IoT-Enabling Technologies and Applications)
Show Figures

Figure 1

54 pages, 1932 KB  
Article
Fokker–Planck Model-Based Central Moment Lattice Boltzmann Method for Effective Simulations of Thermal Convective Flows
by William Schupbach and Kannan Premnath
Energies 2025, 18(8), 1890; https://doi.org/10.3390/en18081890 - 8 Apr 2025
Cited by 1 | Viewed by 887
Abstract
The Fokker–Planck (FP) equation represents the drift and diffusive processes in kinetic models. It can also be regarded as a model for the collision integral of the Boltzmann-type equation to represent thermo-hydrodynamic processes in fluids. The lattice Boltzmann method (LBM) is a drastically [...] Read more.
The Fokker–Planck (FP) equation represents the drift and diffusive processes in kinetic models. It can also be regarded as a model for the collision integral of the Boltzmann-type equation to represent thermo-hydrodynamic processes in fluids. The lattice Boltzmann method (LBM) is a drastically simplified discretization of the Boltzmann equation for simulating complex fluid motions and beyond. We construct new two FP-based LBMs, one for recovering the Navier–Stokes equations for fluid dynamics and the other for simulating the energy equation, where, in each case, the effect of collisions is represented as relaxations of different central moments to their respective attractors. Such attractors are obtained by matching the changes in various discrete central moments due to collision with the continuous central moments prescribed by the FP model. As such, the resulting central moment attractors depend on the lower-order moments and the diffusion tensor parameters, and significantly differ from those based on the Maxwell distribution. The diffusion tensor parameters for evolving higher moments in simulating fluid motions at relatively low viscosities are chosen based on a renormalization principle. Moreover, since the number of collision invariants of the FP-based LBMs for fluid motions and energy transport are different, the forms of the respective attractors are quite distinct. The use of such central moment formulations in modeling the collision step offers significant improvements in numerical stability, especially for simulations of thermal convective flows under a wide range of variations in the transport coefficients of the fluid. We develop new FP central moment LBMs for thermo-hydrodynamics in both two and three dimensions, and demonstrate the ability of our approach to simulate various cases involving thermal convective buoyancy-driven flows especially at high Rayleigh numbers with good quantitative accuracy. Moreover, we show significant improvements in the numerical stability of our FP central moment LBMs when compared to other existing central moment LBMs using the Maxwell distribution in achieving high Peclet numbers for mixed convection flows involving shear effects. Full article
(This article belongs to the Special Issue Numerical Heat Transfer and Fluid Flow 2024)
Show Figures

Figure 1

45 pages, 5094 KB  
Article
New Class of Complex Models of Materials with Piezoelectric Properties with Differential Constitutive Relations of Fractional Order: An Overview
by Katica R. (Stevanović) Hedrih
Fractal Fract. 2025, 9(3), 170; https://doi.org/10.3390/fractalfract9030170 - 11 Mar 2025
Cited by 3 | Viewed by 1085
Abstract
Rheological complex models of various elastoviscous and viscoelastic fractional-type substances with polarized piezoelectric properties are of interest due to the widespread use of viscoelastic–plastic bodies under loading. The word “overview” used in the title means and corresponds to the content of the manuscript [...] Read more.
Rheological complex models of various elastoviscous and viscoelastic fractional-type substances with polarized piezoelectric properties are of interest due to the widespread use of viscoelastic–plastic bodies under loading. The word “overview” used in the title means and corresponds to the content of the manuscript and aims to emphasize that it presents an overview of a new class of complex rheological models of the fractional type of ideal elastoviscous, as well as viscoelastic, materials with piezoelectric properties. Two new elementary rheological elements were introduced: a rheological basic Newton’s element of ideal fluid fractional type and a basic Faraday element of ideal elastic material with the property of polarization under mechanical loading and piezoelectric properties. By incorporating these newly introduced rheological elements into classical complex rheological models, a new class of complex rheological models of materials with piezoelectric properties described by differential fractional-order constitutive relations was obtained. A set of seven new complex rheological models of materials are presented with appropriate structural formulas. Differential constitutive relations of the fractional order, which contain differential operators of the fractional order, are composed. The seven new complex models describe the properties of ideal new materials, which can be elastoviscous solids or viscoelastic fluids. The purpose of the work is to make a theoretical contribution by introducing, designing, and presenting a new class of rheological complex models with appropriate differential constitutive relations of the fractional order. These theoretical results can be the basis for further scientific and applied research. It is especially important to point out the possibility that these models containing a Faraday element can be used to collect electrical energy for various purposes. Full article
Show Figures

Figure 1

17 pages, 6532 KB  
Article
GravelSens: A Smart Gravel Sensor for High-Resolution, Non-Destructive Monitoring of Clogging Dynamics
by Kaan Koca, Eckhard Schleicher, André Bieberle, Stefan Haun, Silke Wieprecht and Markus Noack
Sensors 2025, 25(2), 536; https://doi.org/10.3390/s25020536 - 17 Jan 2025
Cited by 2 | Viewed by 1380
Abstract
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for [...] Read more.
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores. The currents are then linked to the conductive component of fluid impedance. The measurement performance of the developed sensor is validated by applying the Maxwell Garnett and parallel models to sensor data and comparing the results to data obtained by gamma ray computed tomography (CT). GravelSens is tested and validated under varying filling conditions of different particle sizes ranging from sand to fine gravel. The close agreement between GravelSens and CT measurements indicates the technology’s applicability in sediment–water research while also suggesting its potential for other solid–liquid two-phase flows. This pore-scale measurement and visualization system offers the capability to monitor clogging and de-clogging dynamics within pore spaces up to 10,000 Hz, making it the first laboratory equipment capable of performing such in situ measurements without radiation. Thus, GravelSens is a major improvement over existing methods and holds promise for advancing the understanding of flow–sediment–ecology interactions. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 7779 KB  
Article
Enhanced Fluid Mixing in Microchannels Using Levitated Magnetic Microrobots: A Numerical Study
by Ali Anil Demircali, Abdurrahim Yilmaz and Huseyin Uvet
Micromachines 2025, 16(1), 52; https://doi.org/10.3390/mi16010052 - 31 Dec 2024
Cited by 1 | Viewed by 1917
Abstract
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within [...] Read more.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI). This index is tested under different conditions by leveraging the dynamics of the propeller robot, characterized by adjustable roll and pitch angles and varying levitation heights. The numerical simulations, conducted using COMSOL® (Finite Element Method, FEM) software, integrate Maxwell’s equations for magnetic field interaction with momentum and transport-diffusion equations to analyze fluid dynamics within the microchannel. Results indicate that the propeller robot can achieve an MI of up to 98.94% at a 150 μm levitation height and 1500 rpm propeller speed within 3 s. Additionally, the study examines the impact of propeller speed, Reynolds number, and robot length on mixing performance, providing comprehensive guidance for optimizing microscale fluid mixing in lab-on-a-chip applications. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering)
Show Figures

Figure 1

31 pages, 11738 KB  
Article
Computational Evaluation of Heat and Mass Transfer in Cylindrical Flow of Unsteady Fractional Maxwell Fluid Using Backpropagation Neural Networks and LMS
by Waqar Ul Hassan, Khurram Shabbir, Muhammad Imran Khan and Liliana Guran
Mathematics 2024, 12(23), 3654; https://doi.org/10.3390/math12233654 - 21 Nov 2024
Cited by 4 | Viewed by 1749
Abstract
Fractional calculus plays a pivotal role in modern scientific and engineering disciplines, providing more accurate solutions for complex fluid dynamics phenomena due to its non-locality and inherent memory characteristics. In this study, Caputo’s time fractional derivative operator approach is employed for heat and [...] Read more.
Fractional calculus plays a pivotal role in modern scientific and engineering disciplines, providing more accurate solutions for complex fluid dynamics phenomena due to its non-locality and inherent memory characteristics. In this study, Caputo’s time fractional derivative operator approach is employed for heat and mass transfer modeling in unsteady Maxwell fluid within a cylinder. Governing equations within a cylinder involve a system of coupled, nonlinear fractional partial differential equations (PDEs). A machine learning technique based on the Levenberg–Marquardt scheme with a backpropagation neural network (LMS-BPNN) is employed to evaluate the predicted solution of governing flow equations up to the required level of accuracy. The numerical data sheet is obtained using series solution approach Homotopy perturbation methods. The data sheet is divided into three portions i.e., 80% is used for training, 10% for validation, and 10% for testing. The mean-squared error (MSE), error histograms, correlation coefficient (R), and function fitting are computed to examine the effectiveness and consistency of the proposed machine learning technique i.e., LMS-BPNN. Moreover, additional error metrics, such as R-squared, residual plots, and confidence intervals, are incorporated to provide a more comprehensive evaluation of model accuracy. The comparison of predicted solutions with LMS-BPNN and an approximate series solution are compared and the goodness of fit is found. The momentum boundary layer became higher and higher as there was an enhancement in the value of Caputo, fractional order α = 0.5 to α = 0.9. Higher thermal boundary layer (TBL) profiles were observed with the rising value of the heat source. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics II)
Show Figures

Figure 1

28 pages, 30126 KB  
Article
Numerical Analysis of the Vehicle Damping Performance of a Magnetorheological Damper with an Additional Flow Energy Path
by Minje Kim, Seungin Yoo, Dongjin Yoon, Chanyoung Jin, Seongjae Won and Jinwook Lee
Appl. Sci. 2024, 14(22), 10575; https://doi.org/10.3390/app142210575 - 16 Nov 2024
Cited by 6 | Viewed by 2368
Abstract
Vehicles experience various frequency excitations from road surfaces. Recent research has focused on active dampers that adapt their damping forces according to these conditions. However, traditional magnetorheological (MR) dampers face a “block-up phenomenon” that limits their effectiveness. To address this, additional flow-type MR [...] Read more.
Vehicles experience various frequency excitations from road surfaces. Recent research has focused on active dampers that adapt their damping forces according to these conditions. However, traditional magnetorheological (MR) dampers face a “block-up phenomenon” that limits their effectiveness. To address this, additional flow-type MR dampers have been proposed, although revised designs are required to accommodate changes in damping force characteristics. This study investigates the damping performance of MR dampers with an additional flow path to enhance the vehicle ride quality. An optimization model was developed based on fluid dynamics equations and analyzed using electromagnetic simulations in ANSYS Maxwell software. Vibration analysis was conducted using AMESim by applying a sinusoidal road surface model with various frequencies. Results show that the optimized diameter of the additional flow path obtained from the analysis was 1.1 mm, and it was shown that the total damping force variation at low piston velocities decreased by approximately 56% compared to conventional MR dampers. Additionally, vibration analysis of the MR damper with the optimized additional flow path diameter revealed that at 30 km/h, 37.9% acceleration control was achievable, at 60 km/h, 18.7%, and at 90 km/h, 7.73%. This demonstrated the resolution of the block-up phenomenon through the additional flow path and confirmed that the vehicle with the applied damper could control a wider range of vehicle upper displacement, velocity, and acceleration compared to conventional vehicles. Full article
Show Figures

Figure 1

11 pages, 3450 KB  
Article
Numerical Investigation of the Fully Damped Wave-Type Magnetohydrodynamic Flow Problem
by Seda Demir and Harun Selvitopi
Mathematics 2024, 12(22), 3473; https://doi.org/10.3390/math12223473 - 7 Nov 2024
Cited by 1 | Viewed by 1180
Abstract
Magnetohydrodynamic (MHD) flow plays a crucial role in various applications, ranging from nuclear fusion devices to MHD pumps. The mathematical modeling of such flows involves convection–diffusion-type equations, with fluid velocity governed by the Navier–Stokes equations and the magnetic field determined by Maxwell’s equations [...] Read more.
Magnetohydrodynamic (MHD) flow plays a crucial role in various applications, ranging from nuclear fusion devices to MHD pumps. The mathematical modeling of such flows involves convection–diffusion-type equations, with fluid velocity governed by the Navier–Stokes equations and the magnetic field determined by Maxwell’s equations through Ohm’s law. Due to the complexity of these models, most studies on steady and unsteady MHD equations rely on numerical methods, as theoretical solutions are limited to specific cases. In this research, we propose a damped-wave-type mathematical model to describe fluid flow within a channel, taking into account both the velocity and magnetic field components. The model is solved numerically using the finite difference method for time discretization and the finite element method for spatial discretization. Numerical results are displayed graphically for different values of Hartmann numbers, and a detailed analysis and discussion of the solutions are provided. Full article
Show Figures

Figure 1

13 pages, 390 KB  
Article
Magnetohydrodynamic Analysis and Fast Calculation for Fractional Maxwell Fluid with Adjusted Dynamic Viscosity
by Yi Liu and Mochen Jiang
Magnetochemistry 2024, 10(10), 72; https://doi.org/10.3390/magnetochemistry10100072 - 29 Sep 2024
Cited by 4 | Viewed by 1414
Abstract
From the perspective of magnetohydrodynamics (MHD), the heat transfer properties of Maxwell fluids under MHD conditions with modified dynamic viscosity present complex challenges in numerical simulations. In this paper, we develop a time-fractional coupled model to characterize the heat transfer and MHD flow [...] Read more.
From the perspective of magnetohydrodynamics (MHD), the heat transfer properties of Maxwell fluids under MHD conditions with modified dynamic viscosity present complex challenges in numerical simulations. In this paper, we develop a time-fractional coupled model to characterize the heat transfer and MHD flow of Maxwell fluid with consideration of the Hall effect and Joule heating effect and incorporating a modified dynamic viscosity. The fractional coupled model is numerically solved based on the L1-algorithm and the spectral collocation method. We introduce a novel approach that integrates advanced algorithms with a fully discrete scheme, focusing particularly on the computational cost. Leveraging this approach, we aim to significantly enhance computational efficiency while ensuring accurate representation of the underlying physics. Through comprehensive numerical experiments, we explain the thermodynamic behavior in the MHD flow process and extensively examine the impact of various critical parameters on both MHD flow and heat transfer. We establish an analytical framework for the MHD flow and heat transfer processes, further investigate the influence of magnetic fields on heat transfer processes, and elucidate the mechanical behavior of fractional Maxwell fluids. Full article
(This article belongs to the Special Issue Advances in Multifunctional Magnetic Nanomaterial)
Show Figures

Figure 1

15 pages, 4863 KB  
Article
Enhanced Thermal and Mass Diffusion in Maxwell Nanofluid: A Fractional Brownian Motion Model
by Ming Shen, Yihong Liu, Qingan Yin, Hongmei Zhang and Hui Chen
Fractal Fract. 2024, 8(8), 491; https://doi.org/10.3390/fractalfract8080491 - 21 Aug 2024
Viewed by 1778
Abstract
This paper introduces fractional Brownian motion into the study of Maxwell nanofluids over a stretching surface. Nonlinear coupled spatial fractional-order energy and mass equations are established and solved numerically by the finite difference method with Newton’s iterative technique. The quantities of physical interest [...] Read more.
This paper introduces fractional Brownian motion into the study of Maxwell nanofluids over a stretching surface. Nonlinear coupled spatial fractional-order energy and mass equations are established and solved numerically by the finite difference method with Newton’s iterative technique. The quantities of physical interest are graphically presented and discussed in detail. It is found that the modified model with fractional Brownian motion is more capable of explaining the thermal conductivity enhancement. The results indicate that a reduction in the fractional parameter leads to thinner thermal and concentration boundary layers, accompanied by higher local Nusselt and Sherwood numbers. Consequently, the introduction of a fractional Brownian model not only enriches our comprehension of the thermal conductivity enhancement phenomenon but also amplifies the efficacy of heat and mass transfer within Maxwell nanofluids. This achievement demonstrates practical application potential in optimizing the efficiency of fluid heating and cooling processes, underscoring its importance in the realm of thermal management and energy conservation. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Back to TopTop