Advances in Multifunctional Magnetic Nanomaterial

A special issue of Magnetochemistry (ISSN 2312-7481).

Deadline for manuscript submissions: 30 October 2026 | Viewed by 2178

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2. Laboratory of Magnetic Nanostructure Characterization, Technology and Applications (MagnaCharta), CIRI-AUTH, 57001 Thessaloniki, Greece
Interests: magnetic nanoparticles synthesis; magnetic hyperthermia; structural characterization technics; magnetic characterization technics; 3D printing technologies
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Multifunctional magnetic nanomaterials have fascinated scientists for the last decades and are now heavily utilized in biomedical sciences and engineering. The current Special Issue of Magnetochemistry, “Advances in Multifunctional Magnetic Nanomaterial” aims at publishing a collection of studies in the form of articles, reviews, letters, communications explaining developments in the properties of magnetic nanomaterials that may play a crucial role in magnetic hyperthermia, magnetic resonance imaging, biomedicine, data storage, nanofluids, catalysis, target-specific targeting, optical filters, cation sensors, magnetically tunable electronics, waste water management, etc. Research contributions illustrating the recent achievements in all aspects of fabrication and physical modeling of various magnetic nanomaterials are also particularly welcome.

Dr. Antonios Makridis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Magnetochemistry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetic hyperthermia
  • magnetic nanoparticles
  • superparamagnetism
  • SPIONs
  • magnetic nanocarriers
  • biomagnetic materials
  • complex magnetic dxides
  • multiferroics
  • magnetic materials for energy applications
  • magnetocalorics
  • magnetic-driven functionality and multifunctionality magnetic sensors and actuators
  • magnetomechanical effects
  • functional nanomagnetics
  • magnetic hybrid nanomaterials
  • nanomagnetism
  • nanostructural characterization schemes
  • combinatory properties
  • multimodal diagnosis
  • cancer therapy
  • theranostics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 1515 KB  
Article
Numerical Simulation of Low-Frequency Magnetic Fields and Gradients for Magnetomechanical Applications
by Nikolaos Maniotis and Antonios Makridis
Magnetochemistry 2025, 11(12), 111; https://doi.org/10.3390/magnetochemistry11120111 - 13 Dec 2025
Viewed by 179
Abstract
This study aims to identify optimal parameters for the clinical implementation of magnetic fields in therapeutic contexts, with a particular focus on in vitro magneto-mechanical actuation in biological systems. This approach relies on the transduction of magnetic energy into mechanical stress at low [...] Read more.
This study aims to identify optimal parameters for the clinical implementation of magnetic fields in therapeutic contexts, with a particular focus on in vitro magneto-mechanical actuation in biological systems. This approach relies on the transduction of magnetic energy into mechanical stress at low frequencies (<<100 Hz). Accordingly, the investigation centers on evaluating the magnetic field gradients responsible for initiating the motion of intracellular magnetic nanoparticles and the resulting mechanical forces acting upon them. To achieve this, a novel, custom-built, and highly adaptable three-dimensional turntable system was designed, calibrated, and implemented. This apparatus allows the generation of magnetic fields with precisely tunable amplitude and frequency, enabling controlled activation of magneto-mechanical mechanisms. In vitro experiments using this device facilitated the exposure of cancer cells to well-characterized magnetic fields, thereby inducing mechanical stimulation in the presence of nanoparticles distributed within intracellular or extracellular environments. Quantitative measurements of magnetic field intensities were performed, providing estimations of the forces exerted by magnetic nanoparticles with diverse physical characteristics (phase, size, and shape) under varying magnetic field gradients. Full article
(This article belongs to the Special Issue Advances in Multifunctional Magnetic Nanomaterial)
Show Figures

Figure 1

13 pages, 390 KB  
Article
Magnetohydrodynamic Analysis and Fast Calculation for Fractional Maxwell Fluid with Adjusted Dynamic Viscosity
by Yi Liu and Mochen Jiang
Magnetochemistry 2024, 10(10), 72; https://doi.org/10.3390/magnetochemistry10100072 - 29 Sep 2024
Cited by 4 | Viewed by 1395
Abstract
From the perspective of magnetohydrodynamics (MHD), the heat transfer properties of Maxwell fluids under MHD conditions with modified dynamic viscosity present complex challenges in numerical simulations. In this paper, we develop a time-fractional coupled model to characterize the heat transfer and MHD flow [...] Read more.
From the perspective of magnetohydrodynamics (MHD), the heat transfer properties of Maxwell fluids under MHD conditions with modified dynamic viscosity present complex challenges in numerical simulations. In this paper, we develop a time-fractional coupled model to characterize the heat transfer and MHD flow of Maxwell fluid with consideration of the Hall effect and Joule heating effect and incorporating a modified dynamic viscosity. The fractional coupled model is numerically solved based on the L1-algorithm and the spectral collocation method. We introduce a novel approach that integrates advanced algorithms with a fully discrete scheme, focusing particularly on the computational cost. Leveraging this approach, we aim to significantly enhance computational efficiency while ensuring accurate representation of the underlying physics. Through comprehensive numerical experiments, we explain the thermodynamic behavior in the MHD flow process and extensively examine the impact of various critical parameters on both MHD flow and heat transfer. We establish an analytical framework for the MHD flow and heat transfer processes, further investigate the influence of magnetic fields on heat transfer processes, and elucidate the mechanical behavior of fractional Maxwell fluids. Full article
(This article belongs to the Special Issue Advances in Multifunctional Magnetic Nanomaterial)
Show Figures

Figure 1

Back to TopTop