Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = MWCNT-ZnO nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3676 KiB  
Article
Electrochemical Determination of Doxorubicin in the Presence of Dacarbazine Using MWCNTs/ZnO Nanocomposite Modified Disposable Screen-Printed Electrode
by Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad and Zahra Dourandish
Biosensors 2025, 15(1), 60; https://doi.org/10.3390/bios15010060 - 17 Jan 2025
Cited by 4 | Viewed by 1337
Abstract
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite [...] Read more.
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine. To evaluate the electrochemical response of the MWCNTs/ZnO/SPCE towards doxorubicin, cyclic voltammetry (CV) was applied. The MWCNTs/ZnO nanocomposite showed a significant synergistic effect on the electrochemical response of the electrode for the redox reaction of doxorubicin. Also, the MWCNTs/ZnO/SPCE demonstrated an enhanced sensing platform for the quantification of doxorubicin, obtaining a detection limit (LOD) of 0.002 µM and a sensitivity of 0.0897 µA/µM, as determined by differential pulse voltammetry (DPV) within a linear range from 0.007 to 150.0 µM. Also, the MWCNTs/ZnO nanocomposite-modified SPCE showed high electrochemical activities towards the oxidation of doxorubicin and dacarbazine with peak-potential separation of 345 mV, which is sufficient for doxorubicin determination in the presence of dacarbazine. Also, the MWCNTs/ZnO nanocomposite-modified SPCE presented reproducible and stable responses to determine doxorubicin. Finally, the developed platform demonstrated a successful performance for doxorubicin and dacarbazine determination in real samples, with recovery in the range of 97.1% to 104.0% and relative standard deviation (RSD) from 1.8% to 3.5%. Full article
Show Figures

Figure 1

18 pages, 4283 KiB  
Article
A Machine Learning Assisted Non-Enzymatic Electrochemical Biosensor to Detect Urea Based on Multi-Walled Carbon Nanotube Functionalized with Copper Oxide Micro-Flowers
by Jitendra B. Zalke, Manish L. Bhaiyya, Pooja A. Jain, Devashree N. Sakharkar, Jayu Kalambe, Nitin P. Narkhede, Mangesh B. Thakre, Dinesh R. Rotake, Madhusudan B. Kulkarni and Shiv Govind Singh
Biosensors 2024, 14(10), 504; https://doi.org/10.3390/bios14100504 - 15 Oct 2024
Cited by 6 | Viewed by 2684
Abstract
Detecting urea is crucial for diagnosing related health conditions and ensuring timely medical intervention. The addition of machine learning (ML) technologies has completely changed the field of biochemical sensing, providing enhanced accuracy and reliability. In the present work, an ML-assisted screen-printed, flexible, electrochemical, [...] Read more.
Detecting urea is crucial for diagnosing related health conditions and ensuring timely medical intervention. The addition of machine learning (ML) technologies has completely changed the field of biochemical sensing, providing enhanced accuracy and reliability. In the present work, an ML-assisted screen-printed, flexible, electrochemical, non-enzymatic biosensor was proposed to quantify urea concentrations. For the detection of urea, the biosensor was modified with a multi-walled carbon nanotube-zinc oxide (MWCNT-ZnO) nanocomposite functionalized with copper oxide (CuO) micro-flowers (MFs). Further, the CuO-MFs were synthesized using a standard sol-gel approach, and the obtained particles were subjected to various characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Fourier transform infrared (FTIR) spectroscopy. The sensor’s performance for urea detection was evaluated by assessing the dependence of peak currents on analyte concentration using cyclic voltammetry (CV) at different scan rates of 50, 75, and 100 mV/s. The designed non-enzymatic biosensor showed an acceptable linear range of operation of 0.5–8 mM, and the limit of detection (LoD) observed was 78.479 nM, which is well aligned with the urea concentration found in human blood and exhibits a good sensitivity of 117.98 mA mM−1 cm−2. Additionally, different regression-based ML models were applied to determine CV parameters to predict urea concentrations experimentally. ML significantly improves the accuracy and reliability of screen-printed biosensors, enabling accurate predictions of urea levels. Finally, the combination of ML and biosensor design emphasizes not only the high sensitivity and accuracy of the sensor but also its potential for complex non-enzymatic urea detection applications. Future advancements in accurate biochemical sensing technologies are made possible by this strong and dependable methodology. Full article
(This article belongs to the Special Issue Advances in Biosensing and Bioanalysis Based on Nanozymes)
Show Figures

Figure 1

15 pages, 7286 KiB  
Article
Improvement of the Piezoresistive Behavior of Poly (vinylidene fluoride)/Carbon Nanotube Composites by the Addition of Inorganic Semiconductor Nanoparticles
by Müslüm Kaplan, Emre Alp, Beate Krause and Petra Pötschke
Materials 2024, 17(4), 774; https://doi.org/10.3390/ma17040774 - 6 Feb 2024
Cited by 4 | Viewed by 2086
Abstract
Conductive polymer composites (CPCs), obtained by incorporating conductive fillers into a polymer matrix, are suitable for producing strain sensors for structural health monitoring (SHM) in infrastructure. Here, the effect of the addition of inorganic semiconductor nanoparticles (INPs) to a poly (vinylidene fluoride) (PVDF) [...] Read more.
Conductive polymer composites (CPCs), obtained by incorporating conductive fillers into a polymer matrix, are suitable for producing strain sensors for structural health monitoring (SHM) in infrastructure. Here, the effect of the addition of inorganic semiconductor nanoparticles (INPs) to a poly (vinylidene fluoride) (PVDF) composite filled with multi-walled carbon nanotubes (MWCNTs) on the piezoresistive behavior is investigated. INPs with different morphologies and sizes are synthesized by a hydrothermal method. The added inorganic oxide semiconductors showed two distinct morphologies, including different phases. While particles with flower-like plate morphology contain phases of orth-ZnSnO3 and SnO, the cauliflower-like nanoparticles contain these metal oxides and ZnO. The nanoparticles are characterized by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), and the nanocomposites by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Cyclic tensile testing is applied to determine the strain-sensing behavior of PVDF/1 wt% MWCNT nanocomposites with 0–10 wt% inorganic nanoparticles. Compared to the PVDF/1 wt% MWCNT nanocomposite, the piezoresistive sensitivity is higher after the addition of both types of nanoparticles and increases with their amount. Thereby, nanoparticles with flower-like plate structures improve strain sensing behavior slightly more than nanoparticles with cauliflower-like structures. The thermogravimetric analysis results showed that the morphology of the semiconductor nanoparticles added to the PVDF/MWCNT matrix influences the changes in thermal properties. Full article
(This article belongs to the Special Issue Sensing and Monitoring Technologies in Composite Materials)
Show Figures

Graphical abstract

14 pages, 1834 KiB  
Article
Epoxy-Encapsulated ZnO–MWCNT Hybrid Nanocomposites with Enhanced Thermoelectric Performance for Low-Grade Heat-to-Power Conversion
by Margarita Volkova, Raitis Sondors, Elmars Spalva, Lasma Bugovecka, Artis Kons, Raimonds Meija and Jana Andzane
Polymers 2023, 15(23), 4540; https://doi.org/10.3390/polym15234540 - 26 Nov 2023
Cited by 2 | Viewed by 1325
Abstract
This work is devoted to the development of epoxy-encapsulated zinc oxide-multiwalled carbon nanotubes (ZnO–MWCNT) hybrid nanostructured composites and the investigation of their thermoelectric performance in relation to the content of MWCNTs in the composite. For the preparation of nanocomposites, self-assembling Zn nanostructured networks [...] Read more.
This work is devoted to the development of epoxy-encapsulated zinc oxide-multiwalled carbon nanotubes (ZnO–MWCNT) hybrid nanostructured composites and the investigation of their thermoelectric performance in relation to the content of MWCNTs in the composite. For the preparation of nanocomposites, self-assembling Zn nanostructured networks were coated with a layer of dispersed MWCNTs and subjected to thermal oxidation. The resulting ZnO–MWCNT hybrid nanostructured networks were encapsulated in commercially available epoxy adhesive. It was found that encapsulation of ZnO–MWCNT hybrid networks in epoxy adhesive resulted in a simultaneous decrease in their electrical resistance by a factor of 20–60 and an increase in the Seebeck coefficient by a factor of 3–15, depending on the MWCNT content. As a result, the thermoelectric power factor of the epoxy-encapsulated ZnO–MWCNTs hybrid networks exceeded that of non-encapsulated networks by more than 3–4 orders of magnitude. This effect was attributed to the ZnO–epoxy interface’s unique properties and to the MWCNTs’ contribution. The processes underlying such a significant improvement of the properties of ZnO–MWCNT hybrid nanostructured networks after encapsulation in epoxy adhesive are discussed. In addition, a two-leg thermoelectric generator composed of epoxy-encapsulated ZnO–MWCNT hybrid nanocomposite as n-type leg and polydimethylsiloxane-encapsulated CuO–MWCNT hybrid nanocomposite as p-type leg characterized at room temperatures showed better performance at temperature difference 30 °C compared with the similar devices, thus proving the potential of the developed nanocomposites for applications in domestic waste heat conversion devices. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 10932 KiB  
Article
Photoluminescence and Photocatalytic Properties of MWNTs Decorated with Fe-Doped ZnO Nanoparticles
by Adriana Popa, Maria Stefan, Sergiu Macavei, Laura Elena Muresan, Cristian Leostean, Cornelia Veronica Floare-Avram and Dana Toloman
Materials 2023, 16(7), 2858; https://doi.org/10.3390/ma16072858 - 3 Apr 2023
Cited by 6 | Viewed by 2762
Abstract
The present work reports the photoluminescence (PL) and photocatalytic properties of multi-walled carbon nanotubes (MWCNTs) decorated with Fe-doped ZnO nanoparticles. MWCNT:ZnO-Fe nanocomposite samples with weight ratios of 1:3, 1:5 and 1:10 were prepared using a facile synthesis method. The obtained crystalline phases were [...] Read more.
The present work reports the photoluminescence (PL) and photocatalytic properties of multi-walled carbon nanotubes (MWCNTs) decorated with Fe-doped ZnO nanoparticles. MWCNT:ZnO-Fe nanocomposite samples with weight ratios of 1:3, 1:5 and 1:10 were prepared using a facile synthesis method. The obtained crystalline phases were evidenced by X-ray diffraction (XRD). X-ray Photoelectron spectroscopy (XPS) revealed the presence of both 2+ and 3+ valence states of Fe ions in a ratio of approximately 0.5. The electron paramagnetic resonance EPR spectroscopy sustained the presence of Fe3+ ions in the ZnO lattice and evidenced oxygen vacancies. Transmission electron microscopy (TEM) images showed the attachment and distribution of Fe-doped ZnO nanoparticles along the nanotubes with a star-like shape. All of the samples exhibited absorption in the UV region, and the absorption edge was shifted toward a higher wavelength after the addition of MWCNT component. The photoluminescence emission spectra showed peaks in the UV and visible region. Visible emissions are a result of the presence of defects or impurity states in the material. All of the samples showed photocatalytic activity against the Rhodamine B (RhB) synthetic solution under UV irradiation. The best performance was obtained using the MWCNT:ZnO-Fe(1:5) nanocomposite samples, which exhibited a 96% degradation efficiency. The mechanism of photocatalytic activity was explained based on the reactive oxygen species generated by the nanocomposites under UV irradiation in correlation with the structural and optical information obtained in this study. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Devices)
Show Figures

Figure 1

13 pages, 59762 KiB  
Article
Photocatalytic Self-Cleaning PVDF Membrane Blended with MWCNT-ZnO Nanocomposites for RhB Removal
by Dana Toloman, Maria Stefan, Sergiu Macavei, Lucian Barbu-Tudoran and Adriana Popa
Coatings 2023, 13(3), 594; https://doi.org/10.3390/coatings13030594 - 10 Mar 2023
Cited by 13 | Viewed by 2797
Abstract
Polyvinylidene fluoride (PVDF) membranes blended with various amounts of MWCNT-ZnO (0.1%–3%) nanocomposites were prepared by the phase inversion method. The effect of nanocomposites blending on the membrane structural and morphological properties was investigated by XRD, FT-IR and SEM techniques. Contact angle measurement reveals [...] Read more.
Polyvinylidene fluoride (PVDF) membranes blended with various amounts of MWCNT-ZnO (0.1%–3%) nanocomposites were prepared by the phase inversion method. The effect of nanocomposites blending on the membrane structural and morphological properties was investigated by XRD, FT-IR and SEM techniques. Contact angle measurement reveals that the hydrophilicity of the membrane increases with the increase of nanocomposite content; a reduction of the contact angle from 103° for PVDF to 49° for hybrid membrane was obtained. An optimum amount of 0.5% of MWCNT-ZnO blended in a PVDF hybrid membrane assured 85% removal rate of RbB under UV light irradiation. It was observed that the pollutant removal occurs through the simultaneous action of two processes: adsorption and photocatalysis. By blending with MWCNT-ZnO nanoparticles, the PVDF membrane acquires photocatalytic properties which assure a self-cleaning property in the membrane, increasing its lifetime. Full article
(This article belongs to the Special Issue Polymer Films/Membranes: Structure, Properties, and Applications)
Show Figures

Figure 1

21 pages, 7807 KiB  
Article
MWCNTs-TiO2 Incorporated-Mg Composites to Improve the Mechanical, Corrosion and Biological Characteristics for Use in Biomedical Fields
by Mohammad Taher Amirzade-Iranaq, Mahdi Omidi, Hamid Reza Bakhsheshi-Rad, Abbas Saberi, Somayeh Abazari, Nadia Teymouri, Farid Naeimi, Claudia Sergi, Ahmad Fauzi Ismail, Safian Sharif and Filippo Berto
Materials 2023, 16(5), 1919; https://doi.org/10.3390/ma16051919 - 25 Feb 2023
Cited by 17 | Viewed by 2935
Abstract
This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When [...] Read more.
This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices. Full article
(This article belongs to the Special Issue Biomaterials and Implant Biocompatibility (Second Volume))
Show Figures

Figure 1

15 pages, 6543 KiB  
Article
Zinc Vanadate (Zn3V2O8) Immobilized Multiwall Carbon Nanotube (MWCNT) Heterojunction as an Efficient Photocatalyst for Visible Light Driven Hydrogen Production
by Fahad A. Alharthi, Alanood Sulaiman Ababtain, Hamdah S. Alanazi, Alanoud Abdullah Alshayiqi and Imran Hasan
Molecules 2023, 28(3), 1362; https://doi.org/10.3390/molecules28031362 - 31 Jan 2023
Cited by 18 | Viewed by 4069
Abstract
Z-scheme photocatalytic reaction is considered an effective strategy to promote the photogenerated electron-hole separation for significantly improving the efficiency of photocatalytic hydrogen precipitation from splitting water. In this study, a heterojunction nanocomposite material based on Zn3V2O8 (ZV) with [...] Read more.
Z-scheme photocatalytic reaction is considered an effective strategy to promote the photogenerated electron-hole separation for significantly improving the efficiency of photocatalytic hydrogen precipitation from splitting water. In this study, a heterojunction nanocomposite material based on Zn3V2O8 (ZV) with MWCNT was prepared by a hydrothermal process. The photocatalysts were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), UV-visible absorption spectroscopy, and transmission electron microscopy (TEM) to understand crystal structure, morphology, and optical properties. The efficiency of the samples was evaluated for the photocatalytic H2 production under visible solar radiation using water glycerol as a sacrificial reagent. The obtained results suggest that, between ZV and ZV@MWCNT, the latter shows higher efficiency for H2 production. The maximum H2 production efficiency was found to be 26.87 μmol g−1 h−1 for ZV and 99.55 μmol g−1 h−1 for ZV@MWCNT. The synergistic effect of MWCNT to ZV resulted in improving the efficiency of charges and light-absorbing capacity, resulting in enhanced H2 production in the heterojunction nanocomposite material. The nanocomposite was stable and highly efficient for H2 production of six or more cycles. Based on the outcomes of this study, it can be observed that forming the heterojunction of individual nano systems could result in more efficient material for H2 production under visible solar energy. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials for Energy and Environment Applications)
Show Figures

Figure 1

17 pages, 5114 KiB  
Article
Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye
by Tahani A. Alrebdi, Reham A. Rezk, Shoug M. Alghamdi, Hoda A. Ahmed, Fatemah H. Alkallas, Rami Adel Pashameah, Ayman M. Mostafa and Eman A. Mwafy
Membranes 2022, 12(9), 877; https://doi.org/10.3390/membranes12090877 - 11 Sep 2022
Cited by 17 | Viewed by 3180
Abstract
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs [...] Read more.
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed. Full article
(This article belongs to the Special Issue Recent Advances in Membrane Filtration and Purification Technologies)
Show Figures

Figure 1

29 pages, 21443 KiB  
Article
Wood Surface Modification with Hybrid Materials Based on Multi-Walled Carbon Nanotubes
by Madalina Elena David, Rodica-Mariana Ion, Ramona Marina Grigorescu, Lorena Iancu, Mariana Constantin, Raluca Maria Stirbescu and Anca Irina Gheboianu
Nanomaterials 2022, 12(12), 1990; https://doi.org/10.3390/nano12121990 - 9 Jun 2022
Cited by 8 | Viewed by 2663
Abstract
In this work, new treatments based on multi-walled carbon nanotubes (MWCNTs), MWCNTs decorated with zinc oxide (ZnO), MWCNTs decorated with hydroxyapatite (HAp) and MWCNTs decorated with silver (Ag) nanoparticles dispersed in PHBHV solution are proposed for improving sound oak wood properties. We hypothesize [...] Read more.
In this work, new treatments based on multi-walled carbon nanotubes (MWCNTs), MWCNTs decorated with zinc oxide (ZnO), MWCNTs decorated with hydroxyapatite (HAp) and MWCNTs decorated with silver (Ag) nanoparticles dispersed in PHBHV solution are proposed for improving sound oak wood properties. We hypothesize that the solutions containing decorated MWCNTs will be more efficient as wood consolidants, not only because of the improved mechanical properties of the treated wood but also because of the hydrophobic layer created on the wood surface. In order to test these hypotheses, the treatments’ potential was investigated by a number of complex methods, such as colorimetric parameter measurements, water absorption tests, mechanical tests, artificial aging and antifungal tests. The data confirm that the treated wood materials have moderate stability, and the color differences are not perceived with the naked eye. A significant improvement of the treated samples was observed by water absorption, humidity and mechanical tests compared to untreated wood. The best results were obtained for samples treated by brushing with solutions based on decorated CNTs, which confirms that a uniform and thicker layer is needed on the surface to ensure better protection. The wood behavior with accelerated aging revealed that the control sample degraded faster compared to the other treated samples. Antifungal tests showed that higher growth inhibition was obtained for samples treated with 0.2% MWCNTs_ZnO + PHBHV. Considering all of the obtained results, it can be concluded that the most effective treatment was MWCNTs_ZnO + PHBHV at a nanocomposite concentration of 0.2%, applied by brushing. Thus, wood protection against mold and fungi will be achieved, simultaneously ensuring improved mechanical strength and water barrier properties and therefore maintaining the structural integrity of sound oak wood over time. Full article
(This article belongs to the Special Issue Natural Polymer-Based Nanocomposites for Advanced Applications)
Show Figures

Figure 1

24 pages, 4891 KiB  
Review
Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications
by Tyser Allami, Ahmed Alamiery, Mohamed H. Nassir and Amir H. Kadhum
Polymers 2021, 13(15), 2467; https://doi.org/10.3390/polym13152467 - 27 Jul 2021
Cited by 49 | Viewed by 6598
Abstract
The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for [...] Read more.
The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU–polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU–clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg’s) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU–CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10−1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance. Full article
(This article belongs to the Special Issue Advanced Thermoplastic Polymers and Composites)
Show Figures

Figure 1

22 pages, 7203 KiB  
Article
Hybrid Materials Based on Multi-Walled Carbon Nanotubes and Nanoparticles with Antimicrobial Properties
by Madalina Elena David, Rodica-Mariana Ion, Ramona Marina Grigorescu, Lorena Iancu, Alina Maria Holban, Adrian Ionut Nicoara, Elvira Alexandrescu, Raluca Somoghi, Mihaela Ganciarov, Gabriel Vasilievici and Anca Irina Gheboianu
Nanomaterials 2021, 11(6), 1415; https://doi.org/10.3390/nano11061415 - 27 May 2021
Cited by 45 | Viewed by 5428
Abstract
In this study, multi-walled carbon nanotubes (MWCNTs) were decorated with different types of nanoparticles (NPs) in order to obtain hybrid materials with improved antimicrobial activity. Structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, environmental [...] Read more.
In this study, multi-walled carbon nanotubes (MWCNTs) were decorated with different types of nanoparticles (NPs) in order to obtain hybrid materials with improved antimicrobial activity. Structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy and the Brunauer–Emmett–Teller technique were used in order to investigate the decoration of the nanotubes with NPs. Analysis of the decorated nanotubes showed a narrow size distribution of NPs, 7–13 nm for the nanotubes decorated with zinc oxide (ZnO) NPs, 15–33 nm for the nanotubes decorated with silver (Ag) NPs and 20–35 nm for the nanotubes decorated with hydroxyapatite (HAp) NPs, respectively. The dispersion in water of the obtained nanomaterials was improved for all the decorated MWCNTs, as revealed by the relative absorbance variation in time of the water-dispersed nanomaterials. The obtained nanomaterials showed a good antimicrobial activity; however, the presence of the NPs on the surface of MWCNTs improved the nanocomposites’ activity. The presence of ZnO and Ag nanoparticles enhanced the antimicrobial properties of the material, in clinically relevant microbial strains. Our data proves that such composite nanomaterials are efficient antimicrobial agents, suitable for the therapy of severe infection and biofilms. Full article
(This article belongs to the Special Issue Antibacterial Applications of Nanomaterials)
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Carbon Nanotubes-Sponge Modified Electro Membrane Bioreactor (EMBR) and Their Prospects for Wastewater Treatment Applications
by Ali M. Almusawy, Riyad H. Al-Anbari, Qusay F. Alsalhy and Arshed Imad Al-Najar
Membranes 2020, 10(12), 433; https://doi.org/10.3390/membranes10120433 - 17 Dec 2020
Cited by 16 | Viewed by 3652
Abstract
A novel membrane bioreactor system utilizes Multi-Walled Carbon Nanotubes (MWCNTs) coated polyurethane sponge (PUs), an electrical field, and a nanocomposite membrane has been successfully designed to diminish membrane with fouling caused by activated sludge. The classical phase inversion was harnessed to prepare Zinc [...] Read more.
A novel membrane bioreactor system utilizes Multi-Walled Carbon Nanotubes (MWCNTs) coated polyurethane sponge (PUs), an electrical field, and a nanocomposite membrane has been successfully designed to diminish membrane with fouling caused by activated sludge. The classical phase inversion was harnessed to prepare Zinc Oxide/Polyphenylsulfone (ZnO/PPSU) nanocomposite membranes using 1.5 g of ZnO nanoparticles (NPs). The prepared nanocomposite membrane surface was fully characterized by a series of experimental tools, e.g., Scanning electron microscope (SEM), Atomic force microscopy (AFM), contact angle (CA), pore size, and pore size distribution. The testing procedure was performed through an Activated Sludge-Membrane Bioreactor (ASMBR) as a reference and results were compared with those obtained with nanotubes coated sponge–MBR (NSMBR) and nanotubes coated sponge-MBR in the presence of an electrical field (ENSMBR) system. Observed fouling reduction of the membrane has improved significantly and, thus, the overall long-term was increased by 190% compared with the control ASMBR configuration. The experimental results showcased that sponge-carbon nanotubes (CNTs) were capable of adsorbing activated sludge and other contaminants to minimize the membrane fouling. At a dosage of 0.3 mg/mL CNT and 2 mg/mL of SDBS, the sponge-CNT was capable of eliminating nitrogen and phosphorus by 81% and >90%, respectively. Full article
(This article belongs to the Special Issue Design and Development of Membrane Bioreactors)
Show Figures

Graphical abstract

19 pages, 5394 KiB  
Article
Two-Step Solvothermal Synthesis of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2O4)@C-MWCNTs Hybrid with Enhanced Low Frequency Microwave Absorbing Performance
by Pengfei Yin, Limin Zhang, Hongjing Wu, Xing Feng, Jian Wang, Hanbing Rao, Yanying Wang, Jianwu Dai and Yuting Tang
Nanomaterials 2019, 9(11), 1601; https://doi.org/10.3390/nano9111601 - 11 Nov 2019
Cited by 17 | Viewed by 3213
Abstract
In this study, the quaternary hybrid of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2O4)@C-MWCNTs with high-performance in low frequency electromagnetic absorption was synthesized via a facile two-step solvothermal synthesis method. The physicochemical properties [...] Read more.
In this study, the quaternary hybrid of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2O4)@C-MWCNTs with high-performance in low frequency electromagnetic absorption was synthesized via a facile two-step solvothermal synthesis method. The physicochemical properties as well as electromagnetic parameters and microwave absorption performance were characterized by XRD, SEM, TEM, RS, TGA, and VNA, respectively. The results indicate a nuclear-shell morphology of this hybrid for amorphous carbon coated on the surface of Zn0.5Co0.5Fe2O4 and Mn0.5Ni0.5Fe2O4 mixed polycrystalline ferrites. In addition, the MWCNTs synchronously enwind in the nuclear-shell NPs to form a special cross-linking structure. The outstanding low frequency microwave absorption property is attributed to the synergistic effect of dielectric and magnetic loss, better impedance matching condition, and excellent attenuation characteristics of the as-prepared paramagnetic quaternary hybrid. Maximum RL of −35.14 dB at 0.56 GHz with an effective absorption bandwidth in the range of 0.27–1.01 GHz can be obtained with thickness of 5 mm. This hybrid exhibits superior low frequency microwave absorption properties compared with other ferrite-carbon nanocomposites. This investigation provides a new route to prepare suitable candidates for the absorption of electromagnetic waves in a low frequency band on account of its good performance and simple preparation process. Full article
Show Figures

Figure 1

12 pages, 2893 KiB  
Article
Investigation of ZnO-decorated CNTs for UV Light Detection Applications
by Stefano Boscarino, Simona Filice, Antonella Sciuto, Sebania Libertino, Mario Scuderi, Clelia Galati and Silvia Scalese
Nanomaterials 2019, 9(8), 1099; https://doi.org/10.3390/nano9081099 - 31 Jul 2019
Cited by 34 | Viewed by 4862
Abstract
Multi-walled carbon nanotubes (CNTs) decorated with zinc oxide nanoparticles (ZnO NPs) were prepared in isopropanol solution by a simple, room-temperature process and characterized from structural, morphological, electronic, and optical points of view. A strong interaction between ZnO and CNTs is fully confirmed by [...] Read more.
Multi-walled carbon nanotubes (CNTs) decorated with zinc oxide nanoparticles (ZnO NPs) were prepared in isopropanol solution by a simple, room-temperature process and characterized from structural, morphological, electronic, and optical points of view. A strong interaction between ZnO and CNTs is fully confirmed by all the characterization techniques. ZnO-CNTs nanocomposites, with different weight ratios, were deposited as a dense layer between two electrodes, in order to investigate the electrical behaviour. In particular, the electrical response of the nanocomposite layers to UV light irradiation was recorded for a fixed voltage: As the device is exposed to the UV lamp, a sharp current drop takes place and then an increase is observed as the irradiation is stopped. The effect can be explained by adsorption and desorption phenomena taking place on the ZnO nanoparticle surface under irradiation and by charge transfer between ZnO and CNTs, thanks to the strong interaction between the two nanomaterials. The nanocomposite material shows good sensitivity and fast response to UV irradiation. Room temperature and low-cost processes used for the device preparation combined with room temperature and low voltage operational conditions make this methodology very promising for large scale UV detectors applications. Full article
Show Figures

Figure 1

Back to TopTop