Investigation of ZnO-decorated CNTs for UV Light Detection Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Samples and Devices Preparation
2.4. UV Irradiation
3. Results and Discussion
3.1. UV-Vis Absorption Analysis
3.2. Structural Characterization
3.3. Electrical Characterization & UV Sensing
- (i)
- Raman analysis shows an increase of the ID/IG intensity ratio, that can be associated with a larger disorder on the graphitic structure. This means that, in some way, the presence of ZnO is affecting the sp2 graphitic order;
- (ii)
- The optical bandgaps calculated for ZnO NPs and ZnO–CNT nanocomposites are different and, in particular, for the nanocomposite it is 0.24 eV lower than for the pure ZnO;
- (iii)
- SEM-TEM analyses show the anchoring of ZnO NPs on the CNTs and the proportionality of ZnO coverage with the ZnO concentration in the solution, until the CNTs are entirely covered;
- (iv)
- EELS analysis performed at the interface between the two nanostructures and at the free CNT surface shows a difference in the σ* peak of the C-K edge, indicating a change of the pure sp2 character of the CNT structure in contact with the ZnO NP, in agreement with Raman analysis;
- (v)
- The electrical response of the ZnO–CNT nanocomposite under UV irradiation indicates that the light absorption by the ZnO NP affects the CNT conductivity, and therefore, a charge transfer occurs between the nanostructures.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030. [Google Scholar] [CrossRef]
- Mei, W.; Lin, M.; Chen, C.; Yan, Y.; Lin, L. Low-temperature synthesis and sunlight-catalytic performance of flower-like hierarchical graphene oxide/ZnO macrosphere. J. Nanopart. Res. 2018, 20, 286–297. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Jacobs, C.B.; Maksov, A.B.; Muckley, E.S.; Collins, L.; Mahjouri-Samani, M.; Ievlev, A.; Rouleau, C.M.; Moon, J.; Graham, D.E.; Sumpter, B.G.; et al. UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 2017, 7, 6053. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Hamid, M.A.A.; Shamsudin, R.; Othman, N.K. Optoelectronics; Pyshkin, S.L., Ballato, J., Eds.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Safa, S. Enhanced UV-detection properties of carbon nanotube impregnated ZnO nanourchins. Optik 2015, 126, 2194–2198. [Google Scholar] [CrossRef]
- Li, J.; Fan, H.; Jia, X.; Yang, W.; Fang, P. Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route. Appl. Phys. A 2010, 98, 537–542. [Google Scholar] [CrossRef]
- Feng, P.; Wan, Q.; Wang, T.H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl. Phys. Lett. 2005, 87, 213111. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Yuliarto, B. Review—The Development of Gas Sensor Based on Carbon Nanotubes. J. Electrochem. Soc. 2016, 163, B97–B106. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, X.; Wang, Y.; Muhammad, S.; Huang, Y.; He, J. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures. Nanoscale 2012, 4, 2678–2684. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Yuliarto, B.; Nugraha; Dipojono, H.K. Multiwalled carbon nanotubes-zinc oxide nanocomposites as low temperature toluene gas sensor. Appl. Phys. A 2017, 123, 166. [Google Scholar] [CrossRef]
- Humayun, M.T.; Divan, R.; Stan, L.; Gupta, A.; Rosenmann, D.; Gundel, L.; Solomon, P.A.; Paprotny, I. ZnO functionalization of multiwalled carbon nanotubes for methane sensing at single parts per million concentration levels. J. Vac. Sci. Technol. B 2015, 33, FF01–FF06. [Google Scholar] [CrossRef]
- Jin, Z.; Zhou, Q.; Chen, Y.; Mao, P.; Li, H.; Liu, H.; Wang, J.; Li, Y. Graphdiyne: ZnO Nanocomposites for High-Performance UV Photodetectors. Adv. Mater. 2016, 28, 3697–3702. [Google Scholar] [CrossRef]
- Nie, B.; Hu, J.; Luo, L.; Xie, C.; Zeng, L.; Lv, P.; Li, F.; Jie, J.; Feng, M.; Wu, C.; et al. Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small 2013, 9, 2872–2879. [Google Scholar] [CrossRef]
- Lupan, O.; Schütt, F.; Postica, V.; Smazna, D.; Mishra, Y.K.; Adelung, R. Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study. Sci. Rep. 2017, 7, 14715. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Mirzaei, A.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Kim, S.S.; Kim, H.W. Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs. Appl. Surf. Sci. 2017, 413, 241–252. [Google Scholar] [CrossRef]
- Baldo, S.; Scuderi, V.; Tripodi, L.; La Magna, A.; Leonardi, S.G.; Donato, N.; Neri, G.; Filice, S.; Scalese, S. Defects and gas sensing properties of carbon nanotube-based devices. J. Sens. Sens. Syst. 2015, 4, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Baldo, S.; Buccheri, S.; Ballo, A.; Camarda, M.; La Magna, A.; Castagna, M.E.; Romano, A.; Iannazzo, D.; Di Raimondo, F.; Neri, G.; et al. Carbon nanotube-based sensing devices for human Arginase-1 detection. Sens. Bio-Sens. Res. 2016, 7, 168–173. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P., III. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Akir, S.; Hamdi, A.; Addad, A.; Coffinier, Y.; Boukherroub, R.; Omrani, A.D. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl. Surf. Sci. 2017, 400, 461–470. [Google Scholar] [CrossRef]
- Kakkar, R. Atomic and Molecular Spectroscopy: Basic Concepts and Applications, 1st ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015; pp. 399–402. [Google Scholar]
- D’Angelo, D.; Bongiorno, C.; Amato, M.; Deretzis, I.; La Magna, A.; Compagnini, G.; Spanò, S.F.; Scalese, S. Electron energy-loss spectra of graphene oxide for the determination of oxygen functionalities. Carbon 2015, 93, 1034–1041. [Google Scholar] [CrossRef]
- D’Angelo, D.; Bongiorno, C.; Amato, M.; Deretzis, I.; La Magna, A.; Fazio, E.; Scalese, S. Oxygen functionalities evolution in thermally treated graphene oxide featured by EELS and DFT calculations. J. Phys. Chem. C 2017, 121, 5408–5414. [Google Scholar] [CrossRef]
- Barry, T.I.; Stone, F.S. The Reactions of Oxygen at Dark and Irradiated Zinc Oxide Surface. Proceed. Royal Soc. A 1960, 255, 124–144. [Google Scholar]
- Chaudhary, D.; Singh, S.; Vankar, V.D.; Khare, N. ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J. Photochem. Photobiol. A Chem. 2018, 351, 154–161. [Google Scholar] [CrossRef]
- Gupta, V.; Saleh, T.A. Syntheses of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation. In Carbon Nanotubes—From Research to Applications, 1st ed.; Bianco, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 295–312. [Google Scholar]
ZnO Solutions | ZnO Concentration (μg/mL) | ZnO-CNTs Mixed Solutions | ZnO:CNTs Concentration (μg/mL) Ratio |
---|---|---|---|
Z11 | 11 | ZC11 | 11:1 |
Z4 | 4 | ZC4 | 4:1 |
Z2 | 2 | ZC2 | 2:1 |
Z1 | 1 | ZC1 | 1:1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscarino, S.; Filice, S.; Sciuto, A.; Libertino, S.; Scuderi, M.; Galati, C.; Scalese, S. Investigation of ZnO-decorated CNTs for UV Light Detection Applications. Nanomaterials 2019, 9, 1099. https://doi.org/10.3390/nano9081099
Boscarino S, Filice S, Sciuto A, Libertino S, Scuderi M, Galati C, Scalese S. Investigation of ZnO-decorated CNTs for UV Light Detection Applications. Nanomaterials. 2019; 9(8):1099. https://doi.org/10.3390/nano9081099
Chicago/Turabian StyleBoscarino, Stefano, Simona Filice, Antonella Sciuto, Sebania Libertino, Mario Scuderi, Clelia Galati, and Silvia Scalese. 2019. "Investigation of ZnO-decorated CNTs for UV Light Detection Applications" Nanomaterials 9, no. 8: 1099. https://doi.org/10.3390/nano9081099