Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = MRLs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1730 KiB  
Article
Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables
by Milica Lučić and Antonije Onjia
J. Xenobiot. 2025, 15(4), 125; https://doi.org/10.3390/jox15040125 - 3 Aug 2025
Viewed by 135
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in [...] Read more.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability. Full article
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 313
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 193
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment
by Bożena Łozowicka, Piotr Kaczyński, Magdalena Jankowska, Ewa Rutkowska, Piotr Iwaniuk, Rafał Konecki, Weronika Rogowska, Aida Zhagyparova, Damira Absatarova, Stanisław Łuniewski, Marcin Pietkun and Izabela Hrynko
Foods 2025, 14(14), 2528; https://doi.org/10.3390/foods14142528 - 18 Jul 2025
Viewed by 409
Abstract
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples [...] Read more.
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples of fruits and vegetables. A unified multi-analytical protocol was used composed of primary–secondary amine/graphitized carbon black/magnesium sulfate to purify samples with diversified profile of interfering substances. Moreover, the obtained analytical data were used to evaluate the critical acute health risk in subpopulations of children and adults within European limits criteria. Out of 550 pesticides analyzed, 38 and 69 compounds were noted in 58.6% of fruits and 44.2% of vegetables, respectively. Acetamiprid (14.1% of all detections) and captan (11.3%) occurred the most frequently in fruits, while pendimethalin (10.6%) and azoxystrobin (8.6%) occurred the most frequently in vegetables. A total of 28% of vegetable and 43% of fruit samples were multiresidues with up to 13 pesticides in dill, reaching a final concentration of 0.562 mg kg−1. Maximum residue level (MRL) was exceeded in 7.9% of fruits and 7.3% of vegetables, up to 7900% MRL for chlorpyrifos in dill (0.79 mg kg−1). Notably, 8 out of 38 pesticides found in fruits (21%; 1.2% for carbendazim) and 24 out of 69 compounds in vegetables (35%, 7.4% for chlorpyrifos) were not approved in the EU. Concentrations of pesticides exceeding MRL were used to assess acute health risk for children and adults. Moreover, the incidence of acute health risk was proved for children consuming parsnip with linuron (156%). In other cases, it was below 100%, indicating that Polish food is safe. The work provides reliable and representative scientific data on the contamination of fruits and vegetables with pesticides. It highlights the importance of legislative changes to avoid the occurrence of not approved pesticides in the EU, increasing food and health safety. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

37 pages, 397 KiB  
Article
Food Safety in the European Union: A Comparative Assessment Based on RASFF Notifications, Pesticide Residues, and Food Waste Indicators
by Radosław Wolniak and Wiesław Wes Grebski
Foods 2025, 14(14), 2501; https://doi.org/10.3390/foods14142501 - 17 Jul 2025
Viewed by 562
Abstract
Guaranteeing food safety in the European Union (EU) is a continuing issue affected by diverse national traditions, regulatory power, and consumer culture. Despite the presence of a harmonized regulatory context, there continues to be variability in performance among the 27 member states. This [...] Read more.
Guaranteeing food safety in the European Union (EU) is a continuing issue affected by diverse national traditions, regulatory power, and consumer culture. Despite the presence of a harmonized regulatory context, there continues to be variability in performance among the 27 member states. This study gives an extensive comparative evaluation of EU food safety based on three indicators: Rapid Alert System for Food and Feed (RASFF) alerts, pesticide maximum-residue-limit (MRL) violation, and per capita food loss. Fuzzy TOPSIS, K-means clustering, and scenario-based sensitivity tests are used to give an extensive appraisal of the performance of member states. Alarming differences are quoted as findings of significance. The highest number of RASFF notifications (212) and percentage of pesticide MRL non-compliance (1.5%) were reported in 2022 by Bulgaria, whereas the lowest values were reported by Estonia and Lithuania—15–20 RASFF notifications and less than 0.6% MRL violation rates. A statistically significant correlation (r = 0.72, p < 0.001) between pesticide MRL violation and food safety warnings was confirmed in favor of pesticide regulation as the optimal predictor of food safety warnings. On the other hand, food loss did not significantly affect safety measures but indicated very high variation (from 76 kg/capita per year in Croatia to 142 kg/capita per year in Greece). These findings suggest that while food loss remains an environmental problem, pesticide control is more central to the protection of food safety. Targeted policy is what the research necessitates: intervention and stricter enforcement in low-income countries, and diffusion of best practice from successful states. The composite approach adds to EU food safety policy discourse through the combination of performance indicators and targeted regulatory emphasis. Full article
(This article belongs to the Section Food Quality and Safety)
27 pages, 6541 KiB  
Article
Multi-Object-Based Efficient Traffic Signal Optimization Framework via Traffic Flow Analysis and Intensity Estimation Using UCB-MRL-CSFL
by Zainab Saadoon Naser, Hend Marouane and Ahmed Fakhfakh
Vehicles 2025, 7(3), 72; https://doi.org/10.3390/vehicles7030072 - 11 Jul 2025
Viewed by 426
Abstract
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other [...] Read more.
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other non-monitored road users, degrading traffic signal optimization (TSO). Therefore, this framework proposes a multi-object-based traffic flow analysis and intensity estimation model for efficient TSO using Upper Confidence Bound Multi-agent Reinforcement Learning Cubic Spline Fuzzy Logic (UCB-MRL-CSFL). Initially, the real-time traffic videos undergo frame conversion and redundant frame removal, followed by preprocessing. Then, the lanes are detected; further, the objects are detected using Temporal Context You Only Look Once (TC-YOLO). Now, the object counting in each lane is carried out using the Cumulative Vehicle Motion Kalman Filter (CVMKF), followed by queue detection using Vehicle Density Mapping (VDM). Next, the traffic flow is analyzed by Feature Variant Optical Flow (FVOF), followed by traffic intensity estimation. Now, based on the siren flashlight colors, emergency vehicles are separated. Lastly, UCB-MRL-CSFL optimizes the Traffic Signals (TSs) based on the separated emergency vehicle, pedestrian information, and traffic intensity. Therefore, the proposed framework outperforms the other conventional methodologies for TSO by considering pedestrians, cyclists, and so on, with higher computational efficiency (94.45%). Full article
Show Figures

Figure 1

17 pages, 7749 KiB  
Article
Dihydroartemisinin Alleviates the Symptoms of a Mouse Model of Systemic Lupus Erythematosus Through Regulating Splenic T/B-Cell Heterogeneity
by Haihong Qin, Xiaohua Zhu, Xiao Liu, Yilun Wang, Jun Liang, Hao Wu and Jinfeng Wu
Curr. Issues Mol. Biol. 2025, 47(7), 528; https://doi.org/10.3390/cimb47070528 - 9 Jul 2025
Viewed by 349
Abstract
Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with significant therapeutic challenges. Recent studies suggest that dihydroartemisinin (DHA), a traditional Chinese medicine known for its anti-malarial properties, may be beneficial for SLE treatment, although its precise mechanism remains unclear. This [...] Read more.
Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with significant therapeutic challenges. Recent studies suggest that dihydroartemisinin (DHA), a traditional Chinese medicine known for its anti-malarial properties, may be beneficial for SLE treatment, although its precise mechanism remains unclear. This study aimed to investigate the effects of DHA on the cellular composition and molecular events of splenic T cells and B cells in MRL/lpr mice, a widely used SLE model. Methods: T cells and B cells isolated from the spleens of three DHA-treated mice and three control mice underwent single-cell RNA sequencing (scRNA-seq) using the 10× Genomics Chromium system. Comprehensive analyses included cell clustering, signaling pathway enrichment, pseudotime trajectory analysis, and cellular communication assessment using unbiased computational methods. Results: DHA treatment significantly reduced kidney inflammation and altered the proportions of splenic T cells and B cells, particularly decreasing plasma cells. Molecular profiling of effector CD4+ T cells showed a significant reduction in several inflammation-related signaling pathways in DHA-treated mice. Cellular communication analysis indicated altered interactions between effector CD4+ T cells and B cells in MRL/lpr mice after DHA treatment. Conclusions: Our findings reveal changes in cellular composition and signaling pathways in splenic T cells and B cells of MRL/lpr mice following DHA treatment. DHA may inhibit B-cell differentiation into plasma cells by modulating effector CD4+ T cells, potentially through the regulation of HIF1α and ligand–receptor interactions, enhancing our understanding of DHA’s mechanisms in SLE treatment. Full article
(This article belongs to the Special Issue Molecular Biology in Drug Design and Precision Therapy)
Show Figures

Figure 1

12 pages, 1407 KiB  
Article
Morpholine’s Effects on the Repair Strength of a Saliva-Contaminated CAD/CAM Resin-Based Composite Mended with Resin Composite
by Awiruth Klaisiri, Tool Sriamporn, Nantawan Krajangta and Niyom Thamrongananskul
J. Compos. Sci. 2025, 9(7), 345; https://doi.org/10.3390/jcs9070345 - 2 Jul 2025
Viewed by 655
Abstract
The objective of this study was to evaluate the effect of morpholine on saliva-contaminated resin-based composite (RBC)-CAD/CAM material repaired with resin composite. Fifty RBC-CAD/CAM materials were fabricated and assigned to five groups and surface-treated with saliva, phosphoric acid (PHR), morpholine (MRL), and a [...] Read more.
The objective of this study was to evaluate the effect of morpholine on saliva-contaminated resin-based composite (RBC)-CAD/CAM material repaired with resin composite. Fifty RBC-CAD/CAM materials were fabricated and assigned to five groups and surface-treated with saliva, phosphoric acid (PHR), morpholine (MRL), and a universal adhesive agent (Scotchbond universal plus, SCP) based on the following techniques: group 1, saliva; group 2, SCP; group 3, saliva + SCP; group 4, saliva + PHR + SCP; and group 5, saliva + MRL + SCP. An ultradent model was placed on the specimen center, and then the resin composite was pressed and light-cured for 20 s. A mechanical testing device was used to evaluate the samples’ shear bond strength (SBS) scores. The debonded specimen areas were inspected under a stereomicroscope to identify the failure mechanisms. The data were analyzed using one-way ANOVA, and the significance level (p < 0.05) was set with Tukey’s test. The highest SBS values were in groups 2, 4 and 5, with values of 21.43 ± 1.93, 20.93 ± 1.46, and 22.02 ± 1.77 MPa, respectively. However, they were not statistically different (p > 0.05). Group 1 had the lowest SBS value by a significant amount (1.88 ± 1.01 MPa). All specimens in group 1 showed adhesive failures. Moreover, groups 2–5 found cohesive and mixed failures. In conclusion, morpholine and phosphoric acid effectively enhance bond strength. These results indicate that alternative surface modifications with morpholine for saliva-contaminated RBC-CAD/CAM materials can significantly improve the outcome. Full article
Show Figures

Figure 1

31 pages, 3799 KiB  
Article
Pesticide Surveillance in Fruits and Vegetables from Romanian Supply: A Data-Driven Approach
by Diana Ionela Popescu (Stegarus), Ana-Maria Nasture, Violeta-Carolina Niculescu, Corina Mihaela Oprita (Cioara) and Nicoleta Anca Șuțan (Ionescu)
J. Xenobiot. 2025, 15(4), 104; https://doi.org/10.3390/jox15040104 - 2 Jul 2025
Viewed by 715
Abstract
The evolution of global agriculture encourages the extensive use of pesticides although significant concerns regarding their impact on human health and the environment must be considered. The present paper highlights the presence and concentrations of various pesticide residues in fruits and vegetables available [...] Read more.
The evolution of global agriculture encourages the extensive use of pesticides although significant concerns regarding their impact on human health and the environment must be considered. The present paper highlights the presence and concentrations of various pesticide residues in fruits and vegetables available on Romanian markets. A total of 74 pesticide compounds authorized for agricultural use were identified and quantified in 620 randomly selected samples spanning a wide range of horticultural products by employing the QuEChERS extraction method and liquid chromatography–mass spectrometry (LC-MS/MS). The most often detected pesticides comprised boscalid and azoxystrobin, present in 42% and 37% of apple and strawberry samples, respectively, with mean concentrations of 0.12 mg/kg and 0.09 mg/kg. In cucumbers and tomatoes, difenoconazole and acetamiprid were predominant, detected in 35% and 40% of samples, with average residue amounts of 0.08 mg/kg and 0.07 mg/kg, respectively. Statistical analysis, achieved with Python 3.13.2, the pandas library (alongside descriptive statistics), and ANOVA, revealed significant variations in residue levels based on the product type and geographic origin. Boscalid and azoxystrobin were commonly encountered in apples and strawberries while difenoconazole and acetamiprid predominated in cucumbers and tomatoes. Even though the majority of pesticide residues conformed to EU maximum residue limits (MRLs), about 6% of samples, generally from imported products, displayed some residue concentrations approaching critical thresholds, with the highest exceedance observed for chlorpyrifos and lambda-cyhalothrin at concentrations of up to 0.25 mg/kg. This research provides a comprehensive overview of pesticide residues prevalence in Romania’s fresh product supply while, at the same time, supporting consumer awareness initiatives and evidencing the critical demand for continuous monitoring and strengthened regulatory frameworks for food safety. Full article
Show Figures

Graphical abstract

21 pages, 1520 KiB  
Article
Pharmacokinetics, Pharmacodynamics and Depletion of Florfenicol Applied in White Leg Shrimp (Litopenaeus vannamei) Aquaculture and Impact on Shrimp Hepatopancreas Histology
by Thi Kim Duyen Huynh, Quoc Thinh Nguyen, Marie-Louise Scippo, Thi Hoang Oanh Dang, Mathias Devreese, Caroline Douny, Siska Croubels, Quoc Viet Le and Minh Phu Tran
Fishes 2025, 10(7), 318; https://doi.org/10.3390/fishes10070318 - 2 Jul 2025
Viewed by 441
Abstract
Florfenicol (FF) is one of the common antimicrobials used to control bacterial disease in shrimp aquaculture. This study aimed to determine the pharmacokinetics (PK) parameters of FF in white leg shrimp plasma, hepatopancreas and muscle as well as its residue depletion in shrimp [...] Read more.
Florfenicol (FF) is one of the common antimicrobials used to control bacterial disease in shrimp aquaculture. This study aimed to determine the pharmacokinetics (PK) parameters of FF in white leg shrimp plasma, hepatopancreas and muscle as well as its residue depletion in shrimp muscle and the impact on shrimp hepatopancreas histology during and after FF medication. In the PK experiment, shrimp were fed once at 10 mg FF/kg body weight (bw) via oral in-feed administration to determine PK parameters in plasma, hepatopancreas and muscle. The maximum concentration (Cmax) of 60.56 μg/L in plasma was observed after 1.77 h (Tmax). In muscle, a Cmax of 11.76 μg/kg was attained after 0.20 h, while in hepatopancreas, the Cmax was higher (386.92 μg/kg) and was rapidly obtained (Tmax = 0.19 h). The Cmax values in shrimp plasma were below the minimum inhibitory concentration (MIC) against Vibrio parahaemolyticus, known to cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. Therefore, it can be concluded that to ensure the effectiveness of this treatment, the dose should be higher than 10 mg FF/kg bw. FF depletion in white leg shrimp muscle and its histological impact on hepatopancreas were determined after feeding FF-medicated feed once-a-day or twice-a-day for 3 consecutive days with a dose of 10 mg FF/kg bw. The residues in shrimp muscle were rapidly eliminated and fell below the limit of quantification at 24 h after stopping medication. The withdrawal time of FF in shrimp muscle was 27.9 degree-days (2 days at 26.5 °C) according to the maximum residue limit (MRL) of 100 µg/kg set by the European Commission and Korean Ministry and when feeding FF twice-a-day for 3 days. The results from histological analysis showed that there was no negative effect on shrimp hepatopancreas after stopping medication in both once- and twice-a-day treatments. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

20 pages, 3290 KiB  
Article
The Impact of High Urban Temperatures on Pesticide Residues Accumulation in Vegetables Grown in the Greater Accra Metropolitan Area of Ghana
by Joyce Kumah, Eric Kofi Doe, Benedicta Yayra Fosu-Mensah, Benjamin Denkyira Ofori, Millicent A. S. Kwawu, Ebenezer Boahen, Doreen Larkailey Lartey, Sampson D. D. P. Dordaa and Christopher Gordon
J. Xenobiot. 2025, 15(4), 103; https://doi.org/10.3390/jox15040103 - 2 Jul 2025
Viewed by 781
Abstract
This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with [...] Read more.
This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with 66 farmers across three land surface temperatures: low (Atomic, n = 22), moderate (Ashaiman, n = 22), and high (Korle-Bu, n = 22). Pesticide residue concentrations were assessed using an ANOVA to examine spatial variations across sites. The results indicate a strong correlation between high land surface temperatures and pesticide residue accumulation, with lettuce recording significantly (p < 0.05) higher PR levels than cabbage. Several pesticides, including carbendazim (CBZ), Imidacloprid (IMI), Thiamethoxam (TMX), and Chlorpyrifos (CHL), exceeded the maximum residue limits (MRLs) set by the World Health Organization (WHO) and the European Union (EU) at moderate and high-temperature sites. carbendazim was the dominant pesticide detected, with a concentration of 19.0 mg/kg in lettuce, which far exceeded its maximum residue limit (MRL) of 0.10 mg/kg across all study sites. Statistical analyses (PERMANOVA) confirmed that land surface temperatures and pesticide types significantly influenced the PR concentrations. Public health risk assessments indicate that children are more vulnerable to pesticide exposure than adults. The toxicity hazard quotient (THQ) for organophosphate pesticides, particularly CHL and Dimethoate (DMT), exceeded safe thresholds at moderate and high-temperature sites. Full article
Show Figures

Graphical abstract

13 pages, 404 KiB  
Article
Occurrence of Aflatoxin M1 in Milk Consumed in Tirana, Albania, and Health Risk Assessment in Different Population Groups
by Andrin Tahiri, Josif Risto, Lorena Mato, Alma Cani and Dritan Topi
Toxins 2025, 17(7), 315; https://doi.org/10.3390/toxins17070315 - 21 Jun 2025
Viewed by 501
Abstract
This study evaluated the prevalence of aflatoxin M1 (AFM1) in milk marketed in Tirana, Albania, along with dietary exposure and associated potential health risks. The World Health Organization has categorized Albania in cluster G02 of GEMS/FOOD, highlighting that milk is a staple in [...] Read more.
This study evaluated the prevalence of aflatoxin M1 (AFM1) in milk marketed in Tirana, Albania, along with dietary exposure and associated potential health risks. The World Health Organization has categorized Albania in cluster G02 of GEMS/FOOD, highlighting that milk is a staple in the Albanian diet, which points to a possible health risk. A total of 141 milk samples, comprising both Ultra-High Temperature (UHT) and pasteurized types, were collected from local markets in Tirana and analyzed from March 2023 to February 2024. The determination of AFM1 levels was carried out using High-Pressure Liquid Chromatography with a Fluorescence Detector (HPLC-FLD), a precise and dependable technique for identifying and measuring aflatoxins in food products. Aflatoxin M1 was found in 62.4% of the milk samples, with 26.2% surpassing the European Union’s maximum residue levels (MRL). The mean AFM1 concentrations were 58.8 ± 95.8 ng/kg, reaching a maximum level of 399.0 ng/kg. The Estimated Daily Intake (EDI) for various groups—toddlers, children, adolescents, and adults—was determined to be 2.161, 1.297, 0.519, and 0.370 ng/kg of body weight per day, respectively. The Hazard Index (HI), derived from the AFM1 exposure for four population groups, was 10.81 (toddlers), 6.48 (children), 2.59 (adolescents), and 1.85 (adults). The Margin of Exposure (MoE) was 1.85, 3.08, 7.71, and 10.81, respectively. The incidence of hepatocellular carcinoma (HCC) per 100,000 people in the four groups was 0.034, 0.021, 0.008, and 0.006, respectively. The study is the first comprehensive evaluation of AFM1 prevalence, highlighting the potential risks associated with milk consumption, as milk is a dietary staple in Albanian households. It addresses a critical public health concern regarding aflatoxin M1 (AFM1) contamination in milk consumed in Tirana, Albania, by highlighting the need for ongoing monitoring, regulatory measures, and educational outreach to enhance food safety and safeguard public health in Albania, as well as in other regions facing similar concerns. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

21 pages, 793 KiB  
Article
Development and Validation of LC–MS/MS and IC–HRMS Methods for Highly Polar Pesticide Detection in Honeybees: A Multicenter Study for the Determination of Pesticides in Honeybees to Support Pollinators and Environmental Protection
by Tommaso Pacini, Emanuela Verdini, Serenella Orsini, Katia Russo, Tabita Mauti, Mara Gasparini, Marialuisa Borgia, Barbara Angelone, Teresa D’Amore and Ivan Pecorelli
J. Xenobiot. 2025, 15(4), 95; https://doi.org/10.3390/jox15040095 - 20 Jun 2025
Cited by 1 | Viewed by 518
Abstract
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for [...] Read more.
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for pesticides in food and the environment. This study presents the development and validation of two complementary analytical methods (LC–MS/MS and IC–HRMS) for highly polar pesticide (HPP) detection and quantification in bee matrices. Both methods were validated according to document SANTE/11312/2021 v2. LC–MS/MS was validated with a limit of quantification (LOQ) of 0.005 mg/kg for all the analytes. Repeatability at 0.005, 0.010, 0.020, and 0.100 mg/kg showed RSDr from 1.6% to 19.7% and recoveries between 70% and 119%. Interlaboratory precision at 0.020 mg/kg across two labs showed RSDR from 5.5% to 13.6%, with recoveries between 91% and 103%. The IC–HRMS method achieved LOQs of 0.01 mg/kg (glufosinate, N-acetyl glufosinate, MPPA, glyphosate, N-acetyl glyphosate, N-acetyl AMPA) and 0.1 mg/kg (fosetyl, phosphonic acid, AMPA), with mean recoveries in repeatability conditions from 84% to 114% and RSDr from 2% to 14%. Intralaboratory precision showed mean recoveries from 87% to 119%, with RSDwR values between 10% and 18%. These methods enable accurate monitoring of HPP contamination, supporting risk assessment and sustainable agriculture. Full article
Show Figures

Graphical abstract

18 pages, 1320 KiB  
Article
Withdrawal Time Estimation and Dietary Risk Assessment of Sulfamethoxazole in GIFT Tilapia (GIFT Oreochromis niloticus) After Oral Administration
by Xinyue Wang, Ruiqi Fan, Saisai Wang, Yuanyuan Ren, Xin Zhang, Yingchun Mu, Sudong Xia, Xiaoyu Wang and Bo Cheng
Vet. Sci. 2025, 12(6), 598; https://doi.org/10.3390/vetsci12060598 - 18 Jun 2025
Viewed by 409
Abstract
Sulfamethoxazole (SMZ), a widely used broad-spectrum antibiotic in aquaculture, lacks comprehensive research on its residual elimination kinetics in tilapia. This study investigated SMZ residue depletion, withdrawal periods, and dietary risks in 1-year-old GIFT tilapia (Genetically Improved Farmed Tilapia Oreochromis niloticus) weighing 500 [...] Read more.
Sulfamethoxazole (SMZ), a widely used broad-spectrum antibiotic in aquaculture, lacks comprehensive research on its residual elimination kinetics in tilapia. This study investigated SMZ residue depletion, withdrawal periods, and dietary risks in 1-year-old GIFT tilapia (Genetically Improved Farmed Tilapia Oreochromis niloticus) weighing 500 ± 50 g, following oral gavage administration of a loading dose (200 mg/kg BW on day 1) and then 100 mg/kg BW daily for 6 more days, at 22 ± 2 °C. Tissue samples (plasma, muscle, skin, liver, kidney, gill, and remaining tissues) were collected from five fish per time point at intervals from 0.33 to 30 days post-administration, with SMZ residues quantified via HPLC-MS/MS. Results revealed peak SMZ concentrations at 0.33 days (8 h), ordered as liver > skin > plasma > kidney > remaining tissues > gill > muscle. Muscle residues fell below the maximum residue limit (MRL, 100 μg/kg) by day 3, while skin required 10 days. Kidney residues dropped below the limit of detection (LOD) earliest (16 days), followed by muscle, gill, and remaining tissues (25 days), whereas plasma, liver, and skin retained detectable levels until day 30. Elimination equations for SMZ across tissues exhibited first-order kinetics. Based on the specific conditions of this study, a minimum 11-day withdrawal period is recommended for edible tissues (muscle + skin) after SMZ administration. Hazard quotient (HQ) values for all tissues remained below the safety threshold (HQ = 1), indicating low dietary risk. These findings support SMZ use standardization in tilapia aquaculture to ensure food safety compliance. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

22 pages, 5391 KiB  
Article
Combined Network Pharmacology, Transcriptomics and Metabolomics Strategies Reveal the Mechanism of Action of Lang Chuang Wan to Ameliorate Lupus Nephritis in MRL/lpr Mice
by Cuicui Li, Guoxin Ji, Xinru Zhang, Hang Yu, Zhimeng Li, Bo Yang, Zhuangzhuang Yao, Shilei Wang, Tongwei Jiang and Shumin Wang
Pharmaceuticals 2025, 18(6), 916; https://doi.org/10.3390/ph18060916 - 18 Jun 2025
Viewed by 507
Abstract
Background: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism [...] Read more.
Background: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism of action have not been elucidated. To address this, we aim to analyze LCW’s chemical components and clarify its mechanisms in treating LN. Methods: We utilized ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) to analyze the components of LCW and assessed its effects on MRL/lpr mice through ELISA, H&E staining, Masson’s trichrome staining, and IgG immunofluorescence. Then, we further explored the mechanisms of action through network pharmacology, transcriptomics, and metabolomics, and validated with Western blot. Results: LCW contained 1303 chemical components, primarily flavonoids and terpenoids. It significantly improved kidney pathology and normalized levels of serum ANA, anti-dsDNA, anti-Sm, C3, C4, Cr, BUN, IL-6, IL-10, IL-17, TNF-α, and urinary protein (UP) in MRL/lpr mice. Network pharmacology, transcriptomics, and metabolomics indicated that LCW’s therapeutic effect on LN involved the PI3K/AKT pathway, confirmed by Western blot showing LCW’s suppression of the PI3K/AKT/mTOR pathway. Conclusions: LCW alleviates pathological symptoms in MRL/lpr mice by inhibiting the PI3K/AKT/mTOR signaling pathway, providing insights into its therapeutic mechanisms for lupus nephritis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop