Pesticide Surveillance in Fruits and Vegetables from Romanian Supply: A Data-Driven Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extraction and Cleanup Procedure
2.3. LC-MS/MS Analysis
2.4. Data Processing and Analysis
3. Results and Discussion
3.1. Pesticides Identification and Quantification by LC-MS/MS
3.2. Multi-Level Hierarchical Representation and Analysis of Variance (ANOVA) for the LC-MS/MS Data
3.3. Integration of Python Analytics with LC-MS/MS Data and Elucidation of Contamination Patterns
4. Conclusions
5. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QuEChERS | Quick, Easy, Cheap, Effective, Rugged, Safe |
LC-MS/MS | liquid chromatography–tandem mass spectrometry |
MRLs | maximum residue limits |
EU | European Union |
CODEX | Codex Alimentarius Commission |
GCB | graphitized carbon black |
FAO | Food and Agriculture Organization of the United Nations |
WHO | World Health Organization |
UNEP | United Nations Environment Programme |
SDG | Sustainable Development Goal |
HPLC | high-performance liquid chromatography |
ESI | electrospray ionization |
TPP | triphenyl phosphate |
PSA | primary secondary amine |
SPE | solid-phase extraction |
DSPE | dispersive solid-phase extraction |
EDA | Exploratory Data Analysis |
ANOVA | analysis of variance |
Sum_sq | sum of squares |
SDHIs | succinate dehydrogenase inhibitors |
ATP | adenosine triphosphate |
p,p’DDT | p,p′-dichlorodiphenyltrichloroethane |
EFSA | European Food Safety Authority |
ROS | reactive oxygen species |
EPA | U.S. Environmental Protection Agency |
LC50 | median lethal concentration |
RNA | ribonucleic acid |
IPM | integrated pest management |
RfD | reference dose |
MOEs | margins of exposure |
References
- Chandrasekaran, M.; Paramasivan, M. Plant Growth-Promoting Bacterial (PGPB) Mediated Degradation of Hazardous Pesticides: A Review. Int. Biodeterior. Biodegrad. 2024, 190, 105769. [Google Scholar] [CrossRef]
- Sarker, A.; Nandi, R.; Kim, J.-E.; Islam, T. Remediation of Chemical Pesticides from Contaminated Sites through Potential Microorganisms and Their Functional Enzymes: Prospects and Challenges. Environ. Technol. Innov. 2021, 23, 101777. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Singh, N. Pesticide Use and Application: An Indian Scenario. J. Hazard. Mater. 2009, 165, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Chakraborty, S.; Bhattacharjee, C.; Chowdhury, R. Biosorption of Lead Ions (Pb2+) from Simulated Wastewater Using Residual Biomass of Microalgae. Desalination Water Treat. 2016, 57, 4576–4586. [Google Scholar] [CrossRef]
- Narayanan, M.; Devarayan, K.; Verma, M.; Selvaraj, M.; Ghramh, H.A.; Kandasamy, S. Assessing the Ecological Impact of Pesticides/Herbicides on Algal Communities: A Comprehensive Review. Aquat. Toxicol. 2024, 268, 106851. [Google Scholar] [CrossRef]
- Fayaz, T.; Rana, S.S.; Goyal, E.; Ratha, S.K.; Renuka, N. Harnessing the Potential of Microalgae-Based Systems for Mitigating Pesticide Pollution and Its Impact on Their Metabolism. J. Environ. Manag. 2024, 357, 120723. [Google Scholar] [CrossRef]
- Tison, L.; Beaumelle, L.; Monceau, K.; Thiéry, D. Transfer and Bioaccumulation of Pesticides in Terrestrial Arthropods and Food Webs: State of Knowledge and Perspectives for Research. Chemosphere 2024, 357, 142036. [Google Scholar] [CrossRef]
- FAO. Pesticides Use and Trade 1990–2022; FAOSTAT Analytical Briefs: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z. Assessing Pesticides in the Atmosphere: A Global Study on Pollution, Human Health Effects, Monitoring Network and Regulatory Performance. Environ. Int. 2024, 187, 108653. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Yang, G.; Wang, Y.; Liu, F.; Chen, C. A Review of Cumulative Risk Assessment of Multiple Pesticide Residues in Food: Current Status, Approaches and Future Perspectives. Trends Food Sci. Technol. 2024, 144, 104340. [Google Scholar] [CrossRef]
- Poornima, W.V.D.S.; Liyanaarachchi, G.V.V.; Somasiri, H.P.P.S.; Hewajulige, I.G.N.; Tan, D.K.Y. Fresh Fruit and Vegetable Safety Concerns in Sri Lanka; Review of Pesticide Contamination. J. Food Compos. Anal. 2024, 128, 106004. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Medina Pastor, P. The 2021 European Union Report on Pesticide Residues in Food. EFSA J. 2023, 21, e07939. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Food and Agriculture Organization of the United Nations. Pesticide Residues in Food 2023: Joint FAO/WHO Meeting on Pesticide Residues. Evaluation Part II–Toxicological; World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent Progress in Immunosensors for Pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides Impacts on Human Health and the Environment with Their Mechanisms of Action and Possible Countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef] [PubMed]
- Einsiedel, D.; Welk, S.-L.; Zujko, N.; Pfeifer, Y.; Krupitzer, C. Investigating the Correlation of Analytical Data on Pesticide Residues in Fruits and Vegetables with Local Climatic Condition. Environ. Res. 2024, 252, 118743. [Google Scholar] [CrossRef]
- Hamadache, M.; Benkortbi, O.; Hanini, S.; Amrane, A.; Khaouane, L.; Si Moussa, C. A Quantitative Structure Activity Relationship for Acute Oral Toxicity of Pesticides on Rats: Validation, Domain of Application and Prediction. J. Hazard. Mater. 2016, 303, 28–40. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- National Sanitary Veterinary and Food Safety Authority (ANSVSA). Summary Report on the Monitoring of Pesticide Residues in Food in Romania. 2008. Available online: https://www.ansvsa.ro/download/pesticide/pesticide_monitorizare/2008-Romania-pesticide-monitoring-summary.pdf (accessed on 22 June 2025).
- Yang, R.; Liu, Z.; Chen, H.; Zhang, X.; El-Mesery, H.S.; Lu, W.; Dai, X.; Xu, R. Technology Empowering to Safeguard Agricultural Products: A Review of Innovative Approaches toward Pesticide Residue Monitoring. Microchem. J. 2025, 213, 113693. [Google Scholar] [CrossRef]
- Minuț, M.; Roșca, M.; Hlihor, R.-M.; Cozma, P.; Gavrilescu, M. Modelling of Health Risk Associated with the Intake of Pesticides from Romanian Fruits and Vegetables. Sustainability 2020, 12, 10035. [Google Scholar] [CrossRef]
- Deveci, B.; Golge, O.; Kabak, B. Quantification of 363 Pesticides in Leafy Vegetables (Dill, Rocket and Parsley) in the Turkey Market by Using QuEChERS with LC-MS/MS and GC-MS/MS. Foods 2023, 12, 1034. [Google Scholar] [CrossRef]
- García-Vara, M.; Postigo, C.; Palma, P.; Bleda, M.J.; López de Alda, M. QuEChERS-Based Analytical Methods Developed for LC-MS/MS Multiresidue Determination of Pesticides in Representative Crop Fatty Matrices: Olives and Sunflower Seeds. Food Chem. 2022, 386, 132558. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.S.; Boira, J.P.; Iglesias, M.A.; Moragues, A.; Marco, M.P. Analysis of 181 Pesticides with Multi-Residue Method by LC–MS/MS and GC–MS/MS in Flowers, Leaves and Tree Trunks and the Results of Catalan Production from 2014 to 2021. Food Anal. Methods 2023, 16, 239–251. [Google Scholar] [CrossRef]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE/11312/2021 Version 2; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- World Health Organization. WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 19th ed.; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Python Software Foundation. Python, version 3.13.3; Python Software Foundation: Beaverton, OR, USA. Available online: https://www.python.org/ (accessed on 26 May 2025).
- The Matplotlib Development Team. Matplotlib, version 3.10.0; Matplotlib Development Team: Austin, TX, USA. Available online: https://matplotlib.org/ (accessed on 26 May 2025).
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Wisniewski, F.; Martins, E. An Integrative Review on the Analysis of Pesticide Multiresidues in Sweet Pepper Samples Using the QuEChERS Method and Chromatographic Techniques. Braz. J. Anal. Chem. 2022, 9, 16–44. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Marchese, E.; Medina Pastor, P. The 2023 European Union Report on Pesticide Residues in Food. EFSA J. 2025, 23, e9398. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Pesticide Residues Dashboards. Available online: https://www.efsa.europa.eu/en/data-report/pesticide-residues-dashboards (accessed on 22 June 2025).
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Codex Alimentarius Commission: Procedural Manual, 27th ed.; FAO: Rome, Italy, 2019. [Google Scholar]
- U.S. Environmental Protection Agency. EPA Pesticide Chemical Search Portal. Available online: https://ordspub.epa.gov/ords/pesticides/f?p=chemicalsearch:1 (accessed on 26 May 2025).
- Rasmussen, R.R.; Søndergaard, A.B.; Bøknæs, N.; Cederberg, T.L.; Sloth, J.J.; Granby, K. Effects of Industrial Processing on Essential Elements and Regulated and Emerging Contaminant Levels in Seafood. Food Chem. Toxicol. 2017, 104, 85–94. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Álvarez, F.; Arena, M.; Auteri, D.; Leite, S.B.; Binaglia, M.; Castoldi, A.F.; Chiusolo, A.; Colagiorgi, A.; Colas, M.; et al. Peer Review of the Pesticide Risk Assessment of the Active Substance Pyrimethanil. EFSA J. 2024, 22, e8998. [Google Scholar] [CrossRef]
- Grosssteiner, I.; Mienne, A.; Lucas, L.; L-Yvonnet, P.; Trenteseaux, C.; Fontaine, K.; Sarda, X. Cumulative Risk Assessment with Pesticides in the Framework of MRL Setting. EFSA J. 2023, 21, e211009. [Google Scholar] [CrossRef]
- FAO; WHO. Report 2021—Pesticide Residues in Food—Joint FAO/WHO Meeting on Pesticide Residues; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2022; ISBN 978-92-5-135632-6. [Google Scholar]
- European Food Safety Authority (EFSA); Dujardin, B.; Horváth, Z.; Reich, H.; Costanzo, V. Use and Underlying Principles of the EFSA Pesticide Residue Intake Model (PRIMo), Revision 4. EFSA J. 2024, 21, 8990E. [Google Scholar] [CrossRef]
- El-Sheikh, E.-S.A.; Li, D.; Hamed, I.; Ashour, M.-B.; Hammock, B.D. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023, 12, 1936. [Google Scholar] [CrossRef]
- Cropp-Kohlligian, B.; Mercado, M.; Morton, T.G.; Van Deusen, B.A. Difenoconazole: Human Health Risk Assessment for Proposed New Foliar Uses on All Members of Vegetable Root Subgroup 1A and Vegetable Leaves of Root and Tuber Group 2, and Establishment of a Tolerance with No U.S. Registration in/on Imported Tea; U.S. Environmental Protection Agency: Washington, DC, USA, 2019.
- De Rop, J.; Senaeve, D.; Jacxsens, L.; Houbraken, M.; Van Klaveren, J.; Spanoghe, P. Cumulative Probabilistic Risk Assessment of Triazole Pesticides in Belgium from 2011–2014. Food Addit. Contam. Part A 2019, 36, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae 2022, 8, 612. [Google Scholar] [CrossRef]
- Sprinkle, R.H.; Payne-Sturges, D.C. Mixture Toxicity, Cumulative Risk, and Environmental Justice in United States Federal Policy, 1980–2016: Why, with Much Known, Was Little Done? Environ. Health 2021, 20, 104. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Hexythiazox; Pesticide Tolerances. Fed. Regist. 2017, 82, 50084–50089. [Google Scholar]
- Parlakidis, P.; Adamidis, G.; Alexoudis, C.; Pythoglou, P.; Papadopoulos, S.; Vryzas, Z. Adjuvant Effects on Pyraclostrobin and Boscalid Residues, Systemic Movement, and Dietary Risk in Garlic under Field Conditions. Agriculture 2023, 13, 1636. [Google Scholar] [CrossRef]
- Kocaman, A.Y.; Topaktaş, M. In Vitro Evaluation of the Genotoxicity of Acetamiprid in Human Peripheral Blood Lymphocytes. Environ. Mol. Mutagen. 2007, 48, 483–490. [Google Scholar] [CrossRef]
- Annabi, E.; Ben Salem, I.; Abid-Essefi, S. Acetamiprid, a Neonicotinoid Insecticide, Induced Cytotoxicity and Genotoxicity in PC12 Cells. Toxicol. Mech. Methods 2019, 29, 580–586. [Google Scholar] [CrossRef]
- Abdelrahman, R.E.; Hassan, M.S.; Ibrahim, M.A.; Morgan, A.M. Mechanistic Insights into Acetamiprid-Induced Genotoxicity on the Myocardium and Potential Ameliorative Role of Resveratrol. Environ. Toxicol. Pharmacol. 2024, 110, 104526. [Google Scholar] [CrossRef]
- Lewandowska-Wosik, A.; Chudzińska, E.M.; Wojnicka-Półtorak, A. Genotoxic Effects of Sub-Lethal Doses of Nicotine and Acetamiprid in Neuroblasts of Drosophila melanogaster and Drosophila suzukii. Ecotoxicol. Environ. Saf. 2024, 280, 116585. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2022/1324 of 29 July 2022 Amending Annexes II and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Aclonifen, Boscalid, Cow Milk, Etofenprox, Ferric Pyrophosphate, L-Cysteine, Lambda-Cyhalothrin, Maleic Hydrazide, Mefentrifluconazole, Sodium 5-Nitroguaiacolate, Sodium o-Nitrophenolate, Sodium p-Nitrophenolate and Triclopyr in or on Certain Products. Off. J. Eur. Union 2022, L 200, 25–32. [Google Scholar]
- Carbone, M.; Mathieu, B.; Vandensande, Y.; Gallez, B. Impact of Exposure to Pyraclostrobin and to a Pyraclostrobin/Boscalid Mixture on the Mitochondrial Function of Human Hepatocytes. Molecules 2023, 28, 7013. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Qi, S.; Wang, Z.; Magnuson, J.T.; Volz, D.C.; Schlenk, D.; Jiang, J.; Wang, C. Environmentally Relevant Concentrations of Boscalid Exposure Affects the Neurobehavioral Response of Zebrafish by Disrupting Visual and Nervous Systems. J. Hazard. Mater. 2021, 404, 124083. [Google Scholar] [CrossRef] [PubMed]
- Simon-Delso, N.; San Martin, G.; Bruneau, E.; Hautier, L. Time-to-Death Approach to Reveal Chronic and Cumulative Toxicity of a Fungicide for Honeybees Not Revealed with the Standard Ten-Day Test. Sci. Rep. 2018, 8, 7241. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Cogley, T.; Ozturk, C.; DeGrandi-Hoffman, G.; Smith, B.H.; Kaftanoglu, O.; Fewell, J.H.; Harrison, J.F. The Active Ingredients of a Mitotoxic Fungicide Negatively Affect Pollen Consumption and Worker Survival in Laboratory-Reared Honey Bees (Apis mellifera). Ecotoxicol. Environ. Saf. 2021, 226, 112841. [Google Scholar] [CrossRef]
- Rodrigues, E.T.; Lopes, I.; Pardal, M.Â. Occurrence, Fate and Effects of Azoxystrobin in Aquatic Ecosystems: A Review. Environ. Int. 2013, 53, 18–28. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; et al. Peer Review of the Pesticide Risk Assessment of the Active Substance Methoxyfenozide. EFSA J. 2017, 15, e04978. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Pesticide Fact Sheet: Azoxystrobin; Report No. PC-128810; Office of Prevention, Pesticides and Toxic Substances: Washington, DC, USA, 1997.
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The Strobilurin Fungicides. Pest Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef]
- Hu, W.; Liu, C.-W.; Jiménez, J.A.; McCoy, E.S.; Hsiao, Y.-C.; Lin, W.; Engel, S.M.; Lu, K.; Zylka, M.J. Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice. Environ. Health Perspect. 2022, 130, 027013. [Google Scholar] [CrossRef]
- Chen, R.; Liu, T.; Deng, D.; Huang, L.; Min, M.; Xiao, X. Review: Progress towards Research on the Toxicology of Pyrimethanil. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 283, 109940. [Google Scholar] [CrossRef]
- Malhat, F.; Saber, E.-S.; Shokr, S.A.S.; Eissa, F. Analysis of Pesticide Residues in Imported Apples across Egyptian Markets: Origin Country Compliance and Potential Health Risks. Food Control 2025, 178, 111458. [Google Scholar] [CrossRef]
- Ferrer, I.; García-Reyes, J.F.; Mezcua, M.; Thurman, E.M.; Fernández-Alba, A.R. Multi-Residue Pesticide Analysis in Fruits and Vegetables by Liquid Chromatography–Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2005, 1082, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.-T.; Wu, R.-L.; Li, C.-L.; Wang, C.-N.; Li, Y.-L.; Xu, F.-L. Experimental Study on Photodegradation and Leaching of Typical Pesticides in Greenhouse Soil from Shouguang, Shandong Province, East China. Ecol. Process 2024, 13, 23. [Google Scholar] [CrossRef]
- Mergia, M.T.; Weldemariam, E.D.; Eklo, O.M.; Yimer, G.T. Pesticide Residue Levels in Surface Water, Using a Passive Sampler and in the Sediment along the Littoral Zone of Lake Ziway at Selected Sites. SN Appl. Sci. 2022, 4, 83. [Google Scholar] [CrossRef]
- Linhart, C.; Panzacchi, S.; Belpoggi, F.; Clausing, P.; Zaller, J.G.; Hertoge, K. Year-Round Pesticide Contamination of Public Sites near Intensively Managed Agricultural Areas in South Tyrol. Environ. Sci. Eur. 2021, 33, 1. [Google Scholar] [CrossRef]
- Mesnage, R.; Bernay, B.; Séralini, G.-E. Ethoxylated Adjuvants of Glyphosate-Based Herbicides Are Active Principles of Human Cell Toxicity. Toxicology 2013, 313, 122–128. [Google Scholar] [CrossRef]
- Ahmed, F.S.; Helmy, Y.S.; Helmy, W.S. Toxicity and Biochemical Impact of Methoxyfenozide/Spinetoram Mixture on Susceptible and Methoxyfenozide-Selected Strains of Spodoptera littoralis (Lepidoptera: Noctuidae). Sci. Rep. 2022, 12, 6974. [Google Scholar] [CrossRef]
- Singh, M.; Mersie, W. Metalaxyl Toxicity to Citrus with or without Herbicides. Weed Technol. 1993, 7, 511–514. [Google Scholar] [CrossRef]
No. | Compound | Elemental Composition | Molar Mass | Retention Time (min) | LOQ (mg/kg) | Precision (RSDR %) | Recovery (%) |
---|---|---|---|---|---|---|---|
Extremely hazardous (Class Ia) technical-grade active ingredients in pesticides according to WHO [27] | |||||||
1 | Aldicarb | C7H14N2O2S | 190.3 | 8.08 | 0.01 | 6.7516 | 100.00 |
2 | Oxamyl | C7H13N3O3S | 219.3 | 4.94 | 0.01 | 5.2186 | 99.42 |
Highly hazardous (Class Ib) technical-grade active ingredients in pesticides according to WHO [27] | |||||||
3 | 3-Hydroxy-carbofuran | C12H15NO4 | 237.2 | 6.84 | 0.005 | 10.6947 | 104.17 |
4 | Carbofuran | C12H15NO3 | 221.3 | 9.4 | 0.005 | 7.7903 | 96.42 |
5 | Fenamiphos | C13H22NO3PS | 303.4 | 13.12 | 0.01 | 7.2163 | 94.75 |
6 | Formetanate | C11H15N3O2 | 221.2 | 4.23 | 0.01 | 7.5405 | 98.50 |
7 | Methiocarb | C11H15NO2S | 225.3 | 11.84 | 0.01 | 8.187 | 98.92 |
8 | Methomyl | C5H10N2O2S | 162.2 | 5.11 | 0.01 | 11.3992 | 97.92 |
9 | Monocrotophos | C7H14NO5P | 223.2 | 5.79 | 0.01 | 5.9667 | 98.08 |
10 | Omethoate | C5H12NO4PS | 213.2 | 3.48 | 0.01 | 4.0786 | 87.80 |
11 | Oxydemeton-methyl | C6H15O4PS2 | 246.3 | 5.43 | 0.01 | 8.8753 | 88.00 |
Moderately hazardous (Class II) technical-grade active ingredients in pesticides according to WHO [27] | |||||||
12 | Acephate | C4H10NO3PS | 183.2 | 2.66 | 0.01 | 7.3129 | 84.42 |
13 | Acetamiprid | C10H11ClN4 | 222.7 | 7.59 | 0.01 | 10.692 | 98.83 |
14 | Carbaryl | C12H11NO2 | 201.2 | 9.89 | 0.01 | 5.5741 | 96.75 |
15 | Clothianidin | C6N5H8SO2Cl | 249.6 | 6.52 | 0.01 | 6.4352 | 94.42 |
16 | Cymoxanil | C7H10N4O3 | 198.2 | 7.16 | 0.01 | 7.8863 | 99.25 |
17 | Cyproconazole (sum of isomers) | C15H18ClN3O | 291.8 | 12.42 | 0.01 | 17.1248 | 94.08 |
18 | Difenoconazole | C19H17Cl2N3O3 | 406.3 | 14.3 | 0.01 | 11.9048 | 89.92 |
19 | Dimethoate | C5H12NO3PS2 | 229.3 | 6.55 | 0.01 | 6.5329 | 92.58 |
20 | Fenpyroximate | C24H27N3O4 | 421.49 | 421.49 | 0.01 | 10.4407 | 98.42 |
21 | Flutriafol | C16H13F2N3O | 301.3 | 10.65 | 0.01 | 6.8064 | 93.50 |
22 | Imazalil | C14H14Cl2N2O | 297.2 | 10.84 | 0.01 | 14.5156 | 94.33 |
23 | Imidacloprid | C9H10ClN5O2 | 255.7 | 6.82 | 0.01 | 4.8454 | 96.25 |
24 | Indoxacarb | C22H17ClF3N3O7 | 527.84 | 14.15 | 0.01 | 10.6131 | 104.25 |
25 | Isoprothiolane | C12H18O4S2 | 290.4 | 12.43 | 0.01 | 11.2825 | 99.92 |
26 | Metalaxyl | C15H21NO4 | 279.3 | 11.19 | 0.01 | 14.3713 | 97.33 |
27 | Oxadixyl | C14H18N2O4 | 278.4 | 9.13 | 0.01 | 12.5 | 96.08 |
28 | Paclobutrazol | C15H20ClN3O | 293.8 | 12.02 | 0.01 | 8.5577 | 100.92 |
29 | Pirimicarb | C11H18N4O2 | 238.3 | 8.75 | 0.01 | 8.6874 | 96.25 |
30 | Tebufenpyrad | C18H24ClN3O | 333.9 | 14.76 | 0.01 | 6.1509 | 100.00 |
31 | Thiacloprid | C10H9ClN4S | 252.7 | 8.35 | 0.01 | 6.2416 | 92.50 |
32 | Thiamethoxam | C8H10ClN5O3S | 291.7 | 5.59 | 0.01 | 5.3174 | 91.17 |
33 | Thiodicarb | C10H18N4O4S3 | 354.5 | 11.27 | 0.01 | 7.8327 | 102.67 |
34 | Triadimefon | C14H16ClN3O2 | 293.8 | 12.41 | 0.01 | 11.5317 | 95.75 |
Slightly hazardous (Class III) technical-grade active ingredients in pesticides according to WHO [27] | |||||||
35 | Bupirimate | C13H24N4O3S | 316.4 | 12.85 | 0.01 | 12.8778 | 103.92 |
36 | Buprofezin | C16H23N3OS | 305.4 | 14.7 | 0.01 | 7.5534 | 102.83 |
37 | Clofentezine | C14H8Cl2N4 | 303.1 | 13.88 | 0.01 | 7.4513 | 102.50 |
38 | Cyprodinil | C14H15N3 | 225.3 | 12.88 | 0.01 | 13.7595 | 93.17 |
39 | Diflubenzuron | C14H9ClF2N2O2 | 310.7 | 12.84 | 0.01 | 13.0973 | 103.33 |
40 | Dimethomorph (sum of isomers) | C21H22ClNO4 | 387.9 | 12.39 | 0.01 | 10.0078 | 102.92 |
41 | Fenamidone | C17H17N3OS | 311.4 | 11.79 | 0.01 | 4.0587 | 110.42 |
42 | Flufenoxuron | C21H11ClF6N2O3 | 488.8 | 15.26 | 0.01 | 7.5466 | 97.75 |
43 | Hexaconazole | C14H17Cl2N3O | 314.2 | 13.58 | 0.01 | 10.3533 | 95.25 |
44 | Linuron | C9H10Cl2N2O2 | 249.1 | 11.57 | 0.01 | 10.8634 | 98.50 |
45 | Lufenurone (sum of isomers) | C17H8Cl2F8N2O3 | 511.15 | 15.05 | 0.01 | 4.0473 | 104.58 |
46 | Penconazole | C13H15Cl2N3 | 284.2 | 13.45 | 0.01 | 9.3743 | 99.50 |
47 | Propargite | C19H26O4S | 350.5 | 15.37 | 0.01 | 7.9044 | 102.58 |
48 | Prothioconazole (sum of isomers) | C14H15Cl2N3OS | 344.3 | 13.71 | 0.01 | 8.2491 | 105.33 |
49 | Pyrimethanil | C12H13N3 | 199.3 | 11.06 | 0.01 | 7.3721 | 91.75 |
50 | Tau-fluvalinate | C26H22ClF3N2O3 | 502.9 | 16.07 | 0.01 | 5.796 | 94.50 |
51 | Terbuthylazine | C9H16ClN5 | 229.7 | 12.03 | 0.01 | 6.1566 | 95.75 |
Technical-grade active ingredients of pesticides unlikely to present acute hazard in normal use according to WHO [27] | |||||||
52 | Azoxystrobin | C22H17N3O5 | 403.4 | 12.17 | 0.01 | 9.874 | 97.67 |
53 | Boscalid | C18H12Cl2N2O | 343.2 | 12.05 | 0.01 | 8.9444 | 95.25 |
54 | Carbendazim | C9H9N3O2 | 191.1 | 5.48 | 0.01 | 13.9739 | 89.67 |
55 | Diethofencarb | C14H21NO4 | 267.3 | 11.64 | 0.01 | 12.4197 | 104.75 |
56 | Etofenprox | C25H28O3 | 376.5 | 16.5 | 0.01 | 5.7503 | 103.25 |
57 | Fenhexamid | C14H17Cl2NO2 | 302.2 | 12.52 | 0.01 | 18.0704 | 78,00 |
58 | Fenoxycarb | C17H19NO4 | 301.4 | 13.09 | 0.01 | 9.0561 | 97.00 |
59 | Hexythiazox | C17H21ClN2O2S | 352.9 | 14.98 | 0.01 | 7.0232 | 99.50 |
60 | Iprovalicarb | C18H28N2O3 | 320.4 | 12.51 | 0.01 | 10.1103 | 102.75 |
61 | Mandipropamid | C23H22ClNO4 | 411.9 | 12.19 | 0.01 | 5.1845 | 92.17 |
62 | Mepanipyrim | C16H8Cl2FN5O | 223.3 | 12.64 | 0.01 | 12.8706 | 98.94 |
63 | Pyriproxyfen | C20H19NO3 | 321.4 | 14.93 | 0.01 | 5.1281 | 102.42 |
64 | Tebufenozide | C22H28N2O2 | 352.5 | 13.16 | 0.01 | 8.6746 | 102.08 |
65 | Thiophanate-methyl | C12H14N4O4S2 | 342.3 | 9.21 | 0.01 | 5.6517 | 97.58 |
66 | Trifloxystrobin | C20H19F3N2O4 | 408.4 | 14.28 | 0.01 | 8.6409 | 101.00 |
67 | Triflumuron | C15H10ClF3N2O3 | 358.7 | 13.64 | 0.01 | 8.0693 | 94.53 |
Not classified by WHO [27] | |||||||
68 | Aldicarb sulfone | C7H14N2O4S | 222.3 | 8.07 | 0.01 | 4.8834 | 100.67 |
69 | Aldicarb sulfoxide | C7H14N2O3S | 206.3 | 4.22 | 0.01 | 6.3513 | 100.67 |
70 | Epoxiconazole | C17H13ClFN3O | 329.8 | 13.03 | 0.01 | 13.0611 | 98.92 |
71 | Fluquinconazole | C16H8Cl2FN5O | 376.2 | 12.59 | 0.01 | 15.0897 | 98.67 |
72 | Methiocarb-Sulfoxide | C11H15NO3S | 241.3 | 7.39 | 0.01 | 9.2582 | 93.33 |
73 | Methoxyfenozide | C22H28N2O3 | 368.5 | 12.45 | 0.01 | 9.0269 | 102.58 |
74 | Pyraclostrobin | C19H18ClN3O4 | 387.8 | 13.84 | 0.01 | 8.0628 | 91.00 |
Index | Sum sq | df | F | PR(>F) |
---|---|---|---|---|
Vegetables | ||||
C(Continent) | 0.00024 | 2 | 0.012 | 0.911 |
C(Pesticide) | 0.59878 | 25 | 2.511 | 0.061 |
C(Continent):C(Pesticide) | 0.40530 | 50 | 0.850 | 0.712 |
Residual | 1.37328 | 144 | – | – |
Fruits | ||||
C(Continent) | 0.35979 | 5 | 0.236 | 1.000 |
C(Pesticide) | 0.00013 | 41 | <0.001 | 0.789 |
C(Continent):C(Pesticide) | 74.52770 | 205 | 1.194 | 0.105 |
Residual | 301.32443 | 990 | – | – |
Pesticide | Outlier_Count in Fruits | Outlier_Count in Vegetables |
---|---|---|
Acetamiprid | 12 | 4 |
Azoxystrobin | 13 | - |
Boscalid | 6 | 3 |
Buprofezin | 1 | - |
Carbendazim | 2 | - |
Cyprodinil | 2 | - |
Difenoconazole | 5 | 2 |
Dimethoate | 1 | - |
Dimethomorph (sum of isomers) | 1 | - |
Hexythiazox | 1 | - |
Imazalil | 2 | - |
Imidacloprid | 2 | 1 |
Propiconazole (sum of isomers) | 1 | - |
Pyraclostrobin | 3 | 1 |
Pyrimethanil | 8 | 1 |
Pyriproxyfen | 6 | 1 |
Tebufenpyrad | 1 | - |
Thiacloprid | 1 | - |
Thiophanate-Methyl | 1 | - |
Trifloxystrobin | 2 | - |
Methoxyfenozide | - | 1 |
Indoxacarb | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, D.I.; Nasture, A.-M.; Niculescu, V.-C.; Oprita, C.M.; Șuțan, N.A. Pesticide Surveillance in Fruits and Vegetables from Romanian Supply: A Data-Driven Approach. J. Xenobiot. 2025, 15, 104. https://doi.org/10.3390/jox15040104
Popescu DI, Nasture A-M, Niculescu V-C, Oprita CM, Șuțan NA. Pesticide Surveillance in Fruits and Vegetables from Romanian Supply: A Data-Driven Approach. Journal of Xenobiotics. 2025; 15(4):104. https://doi.org/10.3390/jox15040104
Chicago/Turabian StylePopescu (Stegarus), Diana Ionela, Ana-Maria Nasture, Violeta-Carolina Niculescu, Corina Mihaela Oprita (Cioara), and Nicoleta Anca Șuțan (Ionescu). 2025. "Pesticide Surveillance in Fruits and Vegetables from Romanian Supply: A Data-Driven Approach" Journal of Xenobiotics 15, no. 4: 104. https://doi.org/10.3390/jox15040104
APA StylePopescu, D. I., Nasture, A.-M., Niculescu, V.-C., Oprita, C. M., & Șuțan, N. A. (2025). Pesticide Surveillance in Fruits and Vegetables from Romanian Supply: A Data-Driven Approach. Journal of Xenobiotics, 15(4), 104. https://doi.org/10.3390/jox15040104