Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = MP2 and B3LYP calculations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2226 KiB  
Article
Investigation of the Effect of C-Terminal Adjacent Phenylalanine Residues on Asparagine Deamidation by Quantum Chemical Calculations
by Koichi Kato, Haruka Asai, Tomoki Nakayoshi, Ayato Mizuno, Akifumi Oda and Yoshinobu Ishikawa
Int. J. Mol. Sci. 2025, 26(14), 6819; https://doi.org/10.3390/ijms26146819 - 16 Jul 2025
Viewed by 185
Abstract
The deamidation rate is relatively high for Asn residues with Phe as the C-terminal adjacent residue in γS-crystallin, which is one of the human crystalline lens proteins. However, peptide-based experiments indicated that bulky amino acid residues on the C-terminal side impaired Asn deamination. [...] Read more.
The deamidation rate is relatively high for Asn residues with Phe as the C-terminal adjacent residue in γS-crystallin, which is one of the human crystalline lens proteins. However, peptide-based experiments indicated that bulky amino acid residues on the C-terminal side impaired Asn deamination. In this study, we hypothesized that the side chain of Phe affects the Asn deamidation rate and investigated the succinimide formation process using quantum chemical calculations. The B3LYP density functional theory was used to obtain optimized geometries of energy minima and transition states, and MP2 and M06-2X calculations were used to obtain the single-point energy. Activation barriers and rate-determining step changed depending on the orientation of the Phe side chain. In pathways where an interaction occurred between the benzene ring and the amide group of the Asn residue, the activation barrier was lower than in pathways where this interaction did not occur. Since the aromatic ring is oriented toward the Asn side in experimentally determined structures of γS-crystallin, the above interaction is considered to enhance the Asn deamidation. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Graphical abstract

10 pages, 965 KiB  
Article
Molecular Structure and Internal Dynamics of 2-Hydroxyacetophenone by Free-Jet Absorption Millimeter-Wave Spectroscopy
by Salvatore Boi, Sonia Melandri, Luca Evangelisti and Assimo Maris
Molecules 2024, 29(24), 5842; https://doi.org/10.3390/molecules29245842 - 11 Dec 2024
Viewed by 859
Abstract
The rotational spectrum of 2-hydroxyacetophenone has been recorded and assigned for the first time using a Stark-modulated free-jet absorption millimeter-wave (FJ-AMMW) spectrometer in the 59.6–74.5 GHz frequency range. The most stable conformer has been detected and assigned: A = 2277.076(11), B [...] Read more.
The rotational spectrum of 2-hydroxyacetophenone has been recorded and assigned for the first time using a Stark-modulated free-jet absorption millimeter-wave (FJ-AMMW) spectrometer in the 59.6–74.5 GHz frequency range. The most stable conformer has been detected and assigned: A = 2277.076(11), B = 1212.113(5) and C = 795.278(5) MHz. It is characterized by a Cs symmetry where a strong hydrogen bond between the acetyl oxygen atom and the hydroxyl atom takes place. The transition lines show a fine structure due to the internal rotation of the methyl group, which allowed the determination of a V3 = 565.1(5) cm1 barrier. The corresponding tunneling splittings have been estimated to be 51 MHz. Calculations at the B3LYP-D3(BJ)/Def2-TZVP level underestimate the height of the barrier by about 156 cm1. This value decreases to 25 cm1 with MP2/aug-cc-pVTZ. Full article
Show Figures

Figure 1

13 pages, 2850 KiB  
Article
Thermodynamic Properties of Two Cinnamate Derivatives with Flavor and Fragrance Features
by Vera L. S. Freitas, Carlos A. O. Silva and Maria D. M. C. Ribeiro da Silva
Liquids 2024, 4(4), 689-701; https://doi.org/10.3390/liquids4040038 - 11 Oct 2024
Viewed by 1867
Abstract
The standard molar enthalpies of formation in the liquid phase for ethyl (E)-cinnamate and ethyl hydrocinnamate, two cinnamate derivatives with notable flavor and fragrance characteristics, were determined experimentally using combustion calorimetry in an oxygen atmosphere. To derive the gas-phase enthalpies of [...] Read more.
The standard molar enthalpies of formation in the liquid phase for ethyl (E)-cinnamate and ethyl hydrocinnamate, two cinnamate derivatives with notable flavor and fragrance characteristics, were determined experimentally using combustion calorimetry in an oxygen atmosphere. To derive the gas-phase enthalpies of formation for these derivatives, their enthalpies of vaporization were measured using a high-temperature Calvet microcalorimeter and the vacuum drop microcalorimetric technique. Additionally, a computational analysis employing the G3(MP2)//B3LYP composite method was conducted to calculate the gas-phase standard enthalpies of formation at T = 298.15 K for both compounds. These findings enabled a detailed assessment and analysis of the structural and energetic effects of the vinyl and ethane moieties between the phenyl and carboxylic groups in the studied compounds. Considering the structural features of ethyl (E)-cinnamate and ethyl hydrocinnamate, a gas-phase enthalpy of hydrogenation analysis was conducted to explore their energetic profiles more thoroughly. Full article
Show Figures

Figure 1

17 pages, 5810 KiB  
Article
Complexes of Hydrogen Peroxide, the Simplest Chiral Molecule, with L- and D-Serine Enantiomers and Their Clusters: MP2 and DFT Calculations
by Yurii A. Borisov, Sergey S. Kiselev, Mikhail I. Budnik and Lubov V. Snegur
Molecules 2024, 29(16), 3955; https://doi.org/10.3390/molecules29163955 - 21 Aug 2024
Viewed by 1305
Abstract
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it [...] Read more.
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it is crucial to investigate the formation of complexes between them, considering the role of molecular chirality. In this work, we report a theoretical study on the hydrogen peroxide enantiomers and their interactions with L- and S-serine and their clusters. We aimed to evaluate the non-covalent interactions between each hydrogen peroxide enantiomer and the L- and D-enantiomers of the non-essential amino acid serine and their clusters. First, the potential energy surfaces (PES) of transitions between enantiomers of the simplest chiral molecule, hydrogen peroxide, in the gas phase and in aqueous solution were studied using the Møller–Plesset theory method MP2/aug-cc-pVDZ. The activation energies of such transitions were calculated. The interactions of both hydrogen peroxide enantiomers (P and M) with L- and D-serine enantiomers were analyzed by density functional theory (DFT) with ωb97xd/6-311+G**, B3Lyp/6-311+G**, B3P86/6-311+G**, and M06/6-311+G** functionals. We found that both enantiomers of hydrogen peroxide bind more strongly to L-serine and its clusters than to D-serine, especially highlighting that the L form is the predominant natural form of this and other chiral amino acids. The optimized geometric parameters, interaction energies, and HOMO-LUMO energies for various complexes were estimated. Furthermore, circular dichroism (CD) spectra, which are optical chirality characteristics, were simulated for all the complexes under study. Full article
Show Figures

Figure 1

42 pages, 3564 KiB  
Article
Ab Initio Investigation of the Hydration of the Tetrahedral d0 Transition Metal Oxoanions NbO43−, TaO43−, CrO42−, MoO42−, WO42−, MnO4, TcO4, ReO4, and of FeO4, RuO4, and OsO4
by Barbara L. Goodall, Jane P. Ferguson and Cory C. Pye
Liquids 2024, 4(3), 539-580; https://doi.org/10.3390/liquids4030031 - 16 Aug 2024
Cited by 1 | Viewed by 2195
Abstract
The geometries and vibrational frequencies of various configurations of XO4m−(H2O)n, X = Fe, Ru, Os, m = 0; X = Mn, Tc, Re, m = 1; X = Cr, Mo, W, m = 2; and X [...] Read more.
The geometries and vibrational frequencies of various configurations of XO4m−(H2O)n, X = Fe, Ru, Os, m = 0; X = Mn, Tc, Re, m = 1; X = Cr, Mo, W, m = 2; and X = Nb, Ta, m = 3; n = 0–6 are calculated at various levels up to MP2/6-31+G* and B3LYP/6-31+G*. These properties are studied as a function of increasing cluster size. The experimental and theoretical bond distances and vibrational spectra are compared where available, and predictions are made where they are not. Full article
(This article belongs to the Special Issue Hydration of Ions in Aqueous Solution)
Show Figures

Figure 1

17 pages, 2092 KiB  
Article
Quantum-Chemistry Study of the Hydrolysis Reaction Profile in Borate Networks: A Benchmark
by Francesco Muniz-Miranda, Leonardo Occhi, Francesco Fontanive, Maria Cristina Menziani and Alfonso Pedone
Molecules 2024, 29(6), 1227; https://doi.org/10.3390/molecules29061227 - 9 Mar 2024
Cited by 1 | Viewed by 2658
Abstract
This investigation involved an ab initio and Density Functional Theory (DFT) analysis of the hydrolysis mechanism and energetics in a borate network. The focus was on understanding how water molecules interact with and disrupt the borate network, an area where the experimental data [...] Read more.
This investigation involved an ab initio and Density Functional Theory (DFT) analysis of the hydrolysis mechanism and energetics in a borate network. The focus was on understanding how water molecules interact with and disrupt the borate network, an area where the experimental data are scarce and unreliable. The modeled system consisted of two boron atoms, bridging oxygen atoms, and varying numbers of water molecules. This setup allows for an exploration of hydrolysis under different environmental conditions, including the presence of OH or H+ ions to simulate basic or acidic environments, respectively. Our investigation utilized both ab initio calculations at the MP2 and CCSD(T) levels and DFT with a range of exchange–correlation functionals. The findings indicate that the borate network is significantly more susceptible to hydrolysis in a basic environment, with respect to an acidic or to a neutral pH setting. The inclusion of explicit water molecules in the calculations can significantly affect the results, depending on the nature of the transition state. In fact, some transition states exhibited closed-ring configurations involving water and the boron–oxygen–boron network; in these cases, there were indeed more water molecules corresponding to lower energy barriers for the reaction, suggesting a crucial role of water in stabilizing the transition states. This study provides valuable insights into the hydrolysis process of borate networks, offering a detailed comparison between different computational approaches. The results demonstrate that the functionals B3LYP, PBE0, and wB97Xd closely approximated the reference MP2 and CCSD(T) calculated reaction pathways, both qualitatively in terms of the mechanism, and quantitatively in terms of the differences in the reaction barriers within the 0.1–0.2 eV interval for the most plausible reaction pathways. In addition, CAM-B3LYP also yielded acceptable results in all cases except for the most complicated pathway. These findings are useful for guiding further computational studies, including those employing machine learning approaches, and experimental investigations requiring accurate reference data for hydrolysis reactions in borate networks. Full article
(This article belongs to the Special Issue Multiconfigurational and DFT Methods Applied to Chemical Systems)
Show Figures

Figure 1

24 pages, 5567 KiB  
Article
Study of the Molecular Architectures of 2-(4-Chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic Acid Using Their Vibrational Spectra, Quantum Chemical Calculations and Molecular Docking with MMP-2 Receptor
by Mauricio Alcolea Palafox, Nataliya P. Belskaya and Irena P. Kostova
Pharmaceutics 2023, 15(12), 2686; https://doi.org/10.3390/pharmaceutics15122686 - 27 Nov 2023
Cited by 4 | Viewed by 2071
Abstract
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized [...] Read more.
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized by means of the B3LYP, M06-2X and MP2 quantum chemical methods, optimizing their monomer, cyclic dimer and stacking forms using the Gaussian16 program package. The molecular structure was found to be slightly out of plane. The good agreement between the IR and Raman bands experimentally observed in the solid state with those calculated theoretically confirms the synthesized structures. All of the bands were accurately assigned according to functional calculations (DFT) in the monomer and dimer forms, together with the polynomic scaling equation procedure (PSE). Therefore, the effect of the substituents on the triazole ring and the effect of the chlorine atom on the molecular structure and on the vibrational spectra were evaluated through comparison with its non-substituted form. Through molecular docking calculations, it was evaluated as to how molecule 1b interacts with few amino acids of the MMP-2 metalloproteinase receptor, using Sybyl-X 2.0 software. Thus, the relevance of triazole scaffolds in established hydrogen bond-type interactions was demonstrated. Full article
Show Figures

Figure 1

16 pages, 2889 KiB  
Article
Determination and Analysis of Thermodynamic Properties of Methyl Methylanthranilate Isomers
by Carlos A. O. Silva, Vera L. S. Freitas and Maria D. M. C. Ribeiro da Silva
Molecules 2023, 28(18), 6686; https://doi.org/10.3390/molecules28186686 - 18 Sep 2023
Cited by 2 | Viewed by 1806
Abstract
The enthalpies of formation in the gaseous phase of methyl 3-methylanthranilate and methyl 5-methylanthranilate were determined from experimental measurements of the corresponding standard energies of combustion, obtained from combustion calorimetry, and the standard enthalpies of vaporization and sublimation, obtained from Calvet microcalorimetry and [...] Read more.
The enthalpies of formation in the gaseous phase of methyl 3-methylanthranilate and methyl 5-methylanthranilate were determined from experimental measurements of the corresponding standard energies of combustion, obtained from combustion calorimetry, and the standard enthalpies of vaporization and sublimation, obtained from Calvet microcalorimetry and Knudsen mass-loss effusion. A computational study, using the G3(MP2)//B3LYP composite method, has also been performed for the calculation of the gas-phase standard enthalpies of formation of those two molecules at T = 298.15 K, as well as for the remaining isomers, methyl 4-methylanthranilate and methyl 6-methylanthranilate. The results have been used to evaluate and analyze the energetic effect of the methyl substituent in different positions of the ring. Full article
Show Figures

Figure 1

12 pages, 1534 KiB  
Article
Energetic Effects in Methyl- and Methoxy-Substituted Indanones: A Synergistic Experimental and Computational Study
by Ana L. R. Silva, Gastón P. León and Maria D. M. C. Ribeiro da Silva
Appl. Sci. 2023, 13(18), 10262; https://doi.org/10.3390/app131810262 - 13 Sep 2023
Cited by 1 | Viewed by 1526
Abstract
This experimental and computational study on the energetic properties of 2-methyl-, 3-methyl-, 4-methoxy- and 5-methoxy-indanones has been carried out using mostly calorimetric techniques and a suitable computational approach. The combustion and sublimation/vaporization enthalpies were determined via combustion calorimetry and Calvet microcalorimetry, respectively, allowing [...] Read more.
This experimental and computational study on the energetic properties of 2-methyl-, 3-methyl-, 4-methoxy- and 5-methoxy-indanones has been carried out using mostly calorimetric techniques and a suitable computational approach. The combustion and sublimation/vaporization enthalpies were determined via combustion calorimetry and Calvet microcalorimetry, respectively, allowing for the calculation of the standard molar enthalpies of formation in the gaseous phase. The enthalpy of sublimation of 5-methoxy-indanone was also derived via Knudsen effusion. Additionally, the gas-phase standard molar enthalpies of formation of these compounds were determined from high-level ab initio calculations at the G3(MP2)//B3LYP level of theory. The results obtained experimentally and through the computational approach are in good agreement. Thus, the gas-phase enthalpy of formation of 2-methylcyclopentanone was estimated with this approach. Moreover, the energetic effects associated with the presence of a methyl and methoxy group on the indanone core were analyzed, using the experimental values reported in this work. The presence of a methoxy group contributes to a decrease in the gas-phase enthalpy of formation, of about 153 kJ·mol−1, whereas in the case of a methyl group, the corresponding value is c.a. 35 kJ·mol−1. Finally, a quantitative analysis of the effects of delocalization of the electron density on the methyl-indanones was performed, using NBO calculations at the B3LYP/6-311+G(2df,2p) wave function. Full article
(This article belongs to the Special Issue Recent Trends in Biomass Materials)
Show Figures

Figure 1

23 pages, 37842 KiB  
Article
Peculiarities of the Spatial and Electronic Structure of 2-Aryl-1,2,3-Triazol-5-Carboxylic Acids and Their Salts on the Basis of Spectral Studies and DFT Calculations
by Mauricio Alcolea Palafox, Nataliya P. Belskaya and Irena P. Kostova
Int. J. Mol. Sci. 2023, 24(18), 14001; https://doi.org/10.3390/ijms241814001 - 12 Sep 2023
Cited by 5 | Viewed by 1714
Abstract
The molecular structure and vibrational spectra of six 1,2,3-triazoles-containing molecules with possible anticancer activity were investigated. For two of them, the optimized geometry was determined in the monomer, cyclic dimer and stacking forms using the B3LYP, M06-2X and MP2 methods implemented in the [...] Read more.
The molecular structure and vibrational spectra of six 1,2,3-triazoles-containing molecules with possible anticancer activity were investigated. For two of them, the optimized geometry was determined in the monomer, cyclic dimer and stacking forms using the B3LYP, M06-2X and MP2 methods implemented in the GAUSSIAN-16 program package. The effect of the para-substitution on the aryl ring was evaluated based on changes in the molecular structure and atomic charge distribution of the triazole ring. An increment in the positive N4 charge was linearly related to a decrease in both the aryl ring and the carboxylic group rotation, with respect to the triazole ring, and by contrast, to an increment in the pyrrolidine ring rotation. Anionic formation had a larger effect on the triazole ring structure than the electronic nature of the different substituents on the aryl ring. Several relationships were obtained that could facilitate the selection of substituents on the triazole ring for their further synthesis. The observed IR and Raman bands in the solid state of two of these compounds were accurately assigned according to monomer and dimer form calculations, together with the polynomic scaling equation procedure (PSE). The large red-shift of the C=O stretching mode indicates that strong H-bonds in the dimer form appear in the solid state through this group. Full article
(This article belongs to the Special Issue Rational Design and Synthesis of Bioactive Molecules)
Show Figures

Figure 1

17 pages, 1879 KiB  
Article
A Combined Experimental and Theoretical Study of ESR Hyperfine Coupling Constants for N,N,N’,N’-Tetrasubstituted p-Phenylenediamine Radical Cations
by Ronan Gleeson, Cecilie L. Andersen, Peter Rapta, Peter Machata, Jørn B. Christensen, Ole Hammerich and Stephan P. A. Sauer
Int. J. Mol. Sci. 2023, 24(4), 3447; https://doi.org/10.3390/ijms24043447 - 8 Feb 2023
Cited by 2 | Viewed by 2776
Abstract
A test set of N,N,N’,N’-tetrasubstituted p-phenylenediamines are experimentally explored using ESR (electron spin resonance) spectroscopy and analysed from a computational standpoint thereafter. This computational study aims to further aid structural characterisation by comparing experimental ESR hyperfine coupling constants (hfccs) with computed [...] Read more.
A test set of N,N,N’,N’-tetrasubstituted p-phenylenediamines are experimentally explored using ESR (electron spin resonance) spectroscopy and analysed from a computational standpoint thereafter. This computational study aims to further aid structural characterisation by comparing experimental ESR hyperfine coupling constants (hfccs) with computed values calculated using ESR-optimised “J-style” basis sets (6-31G(d,p)-J, 6-31G(d,p)-J, 6-311++G(d,p)-J, pcJ-1, pcJ-2 and cc-pVTZ-J) and hybrid-DFT functionals (B3LYP, PBE0, TPSSh, ωB97XD) as well as MP2. PBE0/6-31g(d,p)-J with a polarised continuum solvation model (PCM) correlated best with the experiment, giving an R2 value of 0.8926. A total of 98% of couplings were deemed satisfactory, with five couplings observed as outlier results, thus degrading correlation values significantly. A higher-level electronic structure method, namely MP2, was sought to improve outlier couplings, but only a minority of couples showed improvement, whilst the remaining majority of couplings were negatively degraded. Full article
(This article belongs to the Special Issue Recent Advances in Computational Studies of Natural Products)
Show Figures

Figure 1

15 pages, 2319 KiB  
Article
Modeling pKa of the Brønsted Bases as an Approach to the Gibbs Energy of the Proton in Acetonitrile
by Zoran Glasovac and Borislav Kovačević
Int. J. Mol. Sci. 2022, 23(18), 10576; https://doi.org/10.3390/ijms231810576 - 12 Sep 2022
Cited by 9 | Viewed by 2996
Abstract
A simple but efficient computational approach to calculate pKa in acetonitrile for a set of phosphorus, nitrogen, and carbon bases was established. A linear function that describes relations between the calculated ΔGa.sol(BH+) and pK [...] Read more.
A simple but efficient computational approach to calculate pKa in acetonitrile for a set of phosphorus, nitrogen, and carbon bases was established. A linear function that describes relations between the calculated ΔGa.sol(BH+) and pKa values was determined for each group of bases. The best model was obtained through the variations in the basis set, in the level of theory (density functionals or MP2), and in the continuum solvation model (IPCM, CPCM, or SMD). The combination of the IPCM/B3LYP/6-311+G(d,p) solvation approach with MP2/6-311+G(2df,p)//B3LYP/6-31G(d) gas-phase energies provided very good results for all three groups of bases with R2 values close to or above 0.99. Interestingly, the slopes and the intercepts of the obtained linear functions showed significant deviations from the theoretical values. We made a linear plot utilizing all the conducted calculations and all the structural variations and employed methods to prove the systematic nature of the intercept/slope dependence. The interpolation of the intercept to the ideal slope value enabled us to determine the Gibbs energy of the proton in acetonitrile, which amounted to −258.8 kcal mol−1. The obtained value was in excellent agreement with previously published results. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

18 pages, 2594 KiB  
Article
Conformational Structure, Infrared Spectra and Light-Induced Transformations of Thymol Isolated in Noble Gas Cryomatrices
by Antόnio Jorge Lopes Jesus, Cláudio M. Nunes and Igor Reva
Photochem 2022, 2(2), 405-422; https://doi.org/10.3390/photochem2020028 - 7 Jun 2022
Cited by 6 | Viewed by 2983
Abstract
The conformational space of the natural product thymol (2-isopropyl-5-methylphenol) was investigated using quantum chemical calculations at the B3LYP and MP2 levels, which revealed the existence of four types of conformers differing in the orientation of the isopropyl and hydroxyl groups. Thymol monomers were [...] Read more.
The conformational space of the natural product thymol (2-isopropyl-5-methylphenol) was investigated using quantum chemical calculations at the B3LYP and MP2 levels, which revealed the existence of four types of conformers differing in the orientation of the isopropyl and hydroxyl groups. Thymol monomers were isolated in noble gas (Ar and Xe) matrices (at 15 K) and characterized by IR spectroscopy. With the support of B3LYP harmonic vibrational calculations, the two most stable trans-OH-conformers, differing in the isopropyl orientation, were identified in the cryomatrices. The two less stable cis-OH conformers were not detected as they shall undergo fast tunneling to the most stable ones. Annealing experiments in a Xe matrix up to 75 K did not lead to any conversion between the two isolated conformers, which is in accordance with the significative energy barrier computed for rotamerization of the bulky isopropyl group (~24 kJ mol−1). Vibrational excitation promoted by broadband or by narrowband irradiation, at the 2ν(OH) frequencies of the isolated conformers, did not lead to any conversion either, which was interpreted in terms of a more efficient energy transfer to the hydroxyl rotamerization (associated with a lower energy barrier and a light H-atom) than to the isopropyl rotamerization coordinate. Broadband UV irradiation experiments (λ > 200 nm) led to a prompt transformation of matrix isolated thymol, with spectroscopic evidence suggesting the formation of isomeric alkyl-substituted cyclohexadienones, Dewar isomers and open-chain conjugated ketenes. The photochemical mechanism interpretation concords with that reported for analogous phenol derivatives. Full article
Show Figures

Figure 1

14 pages, 1158 KiB  
Article
Thermodynamic Stability of Fenclorim and Clopyralid
by Ana R. R. P. Almeida, Bruno D. A. Pinheiro, Ana I. M. C. Lobo Ferreira and Manuel J. S. Monte
Molecules 2022, 27(1), 39; https://doi.org/10.3390/molecules27010039 - 22 Dec 2021
Cited by 2 | Viewed by 2790
Abstract
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen [...] Read more.
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds. Full article
Show Figures

Figure 1

14 pages, 4856 KiB  
Article
Nonenzymatic Deamidation Mechanism on a Glutamine Residue with a C-Terminal Adjacent Glycine Residue: A Computational Mechanistic Study
by Haruka Asai, Koichi Kato, Tomoki Nakayoshi, Yoshinobu Ishikawa, Eiji Kurimoto, Akifumi Oda and Nobuyuki Fukuishi
AppliedChem 2021, 1(2), 142-155; https://doi.org/10.3390/appliedchem1020011 - 8 Dec 2021
Cited by 2 | Viewed by 5159
Abstract
The deamidation of glutamine (Gln) residues, which occurs non-enzymatically under physiological conditions, triggers protein denaturation and aggregation. Gln residues are deamidated via the cyclic glutarimide intermediates to l-α-, d-α-, l-β-, and d-β-glutamate residues. The production of these biologically uncommon [...] Read more.
The deamidation of glutamine (Gln) residues, which occurs non-enzymatically under physiological conditions, triggers protein denaturation and aggregation. Gln residues are deamidated via the cyclic glutarimide intermediates to l-α-, d-α-, l-β-, and d-β-glutamate residues. The production of these biologically uncommon amino acid residues is implicated in the pathogenesis of autoimmune diseases. The reaction rate of Gln deamidation is influenced by the C-terminal adjacent (N +1) residue and is highest in the Gln-glycine (Gly) sequence. Here, we investigated the effect of the (N + 1) Gly on the mechanism of Gln deamidation and the activation barrier using quantum chemical calculations. Energy-minima and transition-state geometries were optimized by the B3LYP density functional theory, and MP2 calculations were used to obtain the single-point energy. The calculated activation barrier (85.4 kJ mol−1) was sufficiently low for the reactions occurring under physiological conditions. Furthermore, the hydrogen bond formation between the catalytic ion and the main chain of Gly on the C-terminal side was suggested to accelerate Gln deamidation by stabilizing the transition state. Full article
(This article belongs to the Special Issue Feature Papers in AppliedChem)
Show Figures

Graphical abstract

Back to TopTop