Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = MCM-41-SO3H

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3923 KB  
Article
Silver-Functionalized Ionic Liquid@MCM-41 Adsorbents for C2H4/C2H6 Separation
by Yelin Yang, Zongxu Wang, Dan Li, Mengyu Ren, Defu Chen and Haifeng Dong
Separations 2026, 13(1), 28; https://doi.org/10.3390/separations13010028 - 13 Jan 2026
Viewed by 193
Abstract
Ionic liquids (ILs) have attracted considerable attention for light olefin separation owing to their negligible vapor pressure, excellent thermal stability, and tunable molecular structures. However, their intrinsically high viscosity severely restricts gas diffusion, leading to poor mass-transfer efficiency and limited separation performance in [...] Read more.
Ionic liquids (ILs) have attracted considerable attention for light olefin separation owing to their negligible vapor pressure, excellent thermal stability, and tunable molecular structures. However, their intrinsically high viscosity severely restricts gas diffusion, leading to poor mass-transfer efficiency and limited separation performance in bulk form. Herein, we report the develop a high-performance adsorbent by immobilizing a silver-functionalized ionic liquid within ordered mesoporous MCM-41 to overcome the diffusion limitations of bulk ILs. The IL@MCM-41 composites were prepared via an impregnation–evaporation strategy, and their mesostructural integrity and textural evolution were confirmed by XRD and N2 sorption analyses. Their C2H4/C2H6 separation performance was subsequently evaluated. The composite with a 70 wt% IL loading achieves a high C2H4 uptake of 25.68 mg/g and a C2H4/C2H6 selectivity of 15.59 in breakthrough experiments (298 K, 100 kPa). X-ray photoelectron spectroscopy results are consistent with the presence of reversible Ag+–π interactions, which governs the selective adsorption of C2H4. Additionally, the composite exhibits excellent thermal stability (up to 570 K) and maintains stable separation performance over 10 adsorption–desorption cycles. These IL@MCM-41 composites have significant potential for designing sorbent materials for efficient olefin/paraffin separation applications. Full article
Show Figures

Figure 1

16 pages, 2145 KB  
Article
Integrated Transcriptomics and Targeted Metabolomics Approaches: Comparative Analysis of the Ileum in Neonatal Piglets with Different Birth Weight
by Hyunseo Lee, Gyuseong Kim, Wonvin Choi and Minju Kim
Animals 2026, 16(2), 213; https://doi.org/10.3390/ani16020213 - 11 Jan 2026
Viewed by 251
Abstract
This study was conducted to elucidate the molecular and metabolic differences in ileal development according to birth weight in neonatal piglets. A total of 126 neonatal piglets born from Yorkshire × Landrace × Duroc crossbred sows were used, and the top 5% (H [...] Read more.
This study was conducted to elucidate the molecular and metabolic differences in ileal development according to birth weight in neonatal piglets. A total of 126 neonatal piglets born from Yorkshire × Landrace × Duroc crossbred sows were used, and the top 5% (H group, 1.77 ± 0.02 kg) and bottom 5% (L group, 0.72 ± 0.03 kg) of birth weights were selected for analysis. Ileal tissues were collected for transcriptomic (RNA-seq) and targeted metabolomic (GC–MS) analyses, and selected genes were validated using RT-qPCR. A total of 112 differentially expressed genes (DEGs) were identified, among which RFC3, PCNA, MCM3, MCM10, AURKA, AURKB, CCNB2, CCNA2, CCNF, and SI were significantly upregulated in the H group (p < 0.05). These genes were mainly involved in pathways related to DNA replication, cell division, and nutrient digestion and absorption. In addition, metabolomic analysis revealed that pyruvic acid concentrations were significantly higher in the H group (p < 0.05), indicating the activation of energy metabolic pathways. These results indicate that high-birth-weight piglets possess a genetic foundation for enhanced cellular proliferation and energy metabolism, and they further highlight potential molecular targets for improving growth performance and intestinal development in low-birth-weight piglets. Full article
(This article belongs to the Special Issue Application of Nutriomics for Pig and Poultry Production)
Show Figures

Figure 1

20 pages, 5344 KB  
Article
Photoluminescence and Scintillation Properties of Ce3+-Doped GdBO3 Nanoscintillator Sensors: Effect of Some Synthesis Parameters
by Lakhdar Guerbous, Mourad Seraiche, Ahmed Rafik Touil, Zohra Akhrib and Rachid Mahiou
Micromachines 2026, 17(1), 34; https://doi.org/10.3390/mi17010034 - 28 Dec 2025
Viewed by 224
Abstract
Cerium (Ce3+)-doped gadolinium orthoborate (GdBO3) phosphor powders were synthesized via an aqueous sol–gel route, with systematic variation in solution pH (2, 5, and 8) and annealing temperature (600–1200 °C, in 100 °C increments) to investigate their influence on structural, [...] Read more.
Cerium (Ce3+)-doped gadolinium orthoborate (GdBO3) phosphor powders were synthesized via an aqueous sol–gel route, with systematic variation in solution pH (2, 5, and 8) and annealing temperature (600–1200 °C, in 100 °C increments) to investigate their influence on structural, optical, and scintillation properties. The materials were comprehensively characterized using thermogravimetric and differential thermal analysis (TG–DTA) to assess thermal behavior, X-ray diffraction (XRD) for crystal structure determination, Fourier-transform infrared spectroscopy (FTIR) for vibrational analysis, and both photoluminescence (PL) and radioluminescence (RL) spectroscopies to evaluate optical and scintillation performance. All samples crystallized in the hexagonal GdBO3 vaterite phase (space group P63/mcm). The PL and RL emission spectra were consistent with the Ce3+ 5d–4f transitions, and scintillation yields under X-ray excitation were quantified relative to a standard Gadox phosphor. A decrease in photoluminescence quantum yield (PLQY) was observed at annealing temperatures above 800 °C, which is attributed to the incorporation of Ce3+ into the host lattice. Scintillation decay profiles were recorded, enabling extraction of timing kinetics parameters. Overall, the results reveal clear correlations between synthesis conditions, structural evolution, and luminescence behavior, providing a rational basis for the optimization of Ce3+-doped GdBO3 phosphors for scintillation applications. Full article
Show Figures

Figure 1

14 pages, 2432 KB  
Review
Parental Histone Recycling During Chromatin Replication
by Xin Bi
Biomolecules 2026, 16(1), 13; https://doi.org/10.3390/biom16010013 - 20 Dec 2025
Viewed by 411
Abstract
The past decade has seen significant advancement in our understanding of DNA replication-coupled chromatin assembly, especially parental histone recycling that is essential for epigenetic inheritance. Leading strand-specific and lagging strand-specific pathways have been found to promote the transfer of parental histones H3-H4 to [...] Read more.
The past decade has seen significant advancement in our understanding of DNA replication-coupled chromatin assembly, especially parental histone recycling that is essential for epigenetic inheritance. Leading strand-specific and lagging strand-specific pathways have been found to promote the transfer of parental histones H3-H4 to nascent DNA. It is now clear that the replisome initially characterized as the machinery that carries out the duplication of genomic DNA is also responsible for parental histone recycling. A series of replisome components including CMG (Cdc45-MCM-GINS) replicative helicase, DNA polymerases Polε, Polδ, Polα-primase, and FPC (Fork Protection Complex) that promote parental histone recycling exhibit histone-binding activities. Structural analyses of native and reconstituted replisomes, together with AlphaFold modeling of histone (H3-H4)2 tetramer binding by replisome components, provided a framework for understanding the molecular mechanisms of parental histone recycling. A working model has emerged in which the mobile histone chaperone FACT (Facilitates Chromatin Transcription) binds parental histone (H3-H4)2 tetramer or (H3-H4)2-(H2A-H2B) hexamer on the front of the replication fork, and escorts it across the replisome to the daughter strands in the wake of the replication fork. In this model, parental histones transiently associate with the histone-binding modules in the replisome as steppingstones during their movement. Future studies are needed to elucidate the spatiotemporal coordination of the functions of replisome factors in parental histone transfer. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin and Chromosome Molecular Research)
Show Figures

Figure 1

16 pages, 2233 KB  
Article
Formation AgI and ZnI2 Nanocrystals in AgI-ZnI2-SiO2 Hybrid Powders
by Anastasiia Averkina, Igor Valtsifer, Vladimir Strelnikov, Natalia Kondrashova and Viktor Valtsifer
Nanomaterials 2025, 15(24), 1875; https://doi.org/10.3390/nano15241875 - 13 Dec 2025
Viewed by 398
Abstract
AgI and ZnI2 nanocrystals are key components for AgI-ZnI2-SiO2 hybrid powders (HPs), which could be potentially important for atmospheric artificial precipitation technology. HPs were created by the “Hydrothermal template cocondensation” method (“HTC” method). Mesoporous silica dioxide (MCM48, MCM41, SBA15, [...] Read more.
AgI and ZnI2 nanocrystals are key components for AgI-ZnI2-SiO2 hybrid powders (HPs), which could be potentially important for atmospheric artificial precipitation technology. HPs were created by the “Hydrothermal template cocondensation” method (“HTC” method). Mesoporous silica dioxide (MCM48, MCM41, SBA15, SBA16), silver iodides, and zinc iodides were simultaneously grown under specific conditions. The influence of silica dioxide on AgI and ZnI2 nanocrystals characteristics (phase, size, and thermal stability) were studied using various physicochemical analysis methods. In addition to crystal features, some structural and textural properties of the AgI-ZnI2-SiO2 hybrid as an individual agglomerate and its morphology were determined. This showed that nanocrystal features were dependent on synthesis condition. The influence of the nature of the reagent, which is pH-forming, was manifested at the initial stage of the process, and the morphology of the silica dioxide matrix controlled the crystal properties during the post-synthesis phase. It was established that the thermal stability of AgI and ZnI2 nanocrystals increased due to the protective shielding function of that SiO2 matrix. Full article
Show Figures

Graphical abstract

16 pages, 3267 KB  
Article
Whole-Genome Resequencing Analysis Reveals the Local Ancestry and Selection of Kongshan Cattle
by Mengmeng Bai, Kai Yang, Xiaohui Ma, Chenqi Bian, Wei Wang, Jun Yi, Ningbo Chen, Chuzhao Lei and Xiaoting Xia
Biology 2025, 14(12), 1778; https://doi.org/10.3390/biology14121778 - 12 Dec 2025
Viewed by 542
Abstract
Kongshan cattle is an indigenous breed from Sichuan Province, China, characterized by their excellent meat quality, high fertility, strong disease resistance, and remarkable environmental adaptability. However, their genomic diversity has not been systematically studied. In this work, we performed whole-genome sequencing of 30 [...] Read more.
Kongshan cattle is an indigenous breed from Sichuan Province, China, characterized by their excellent meat quality, high fertility, strong disease resistance, and remarkable environmental adaptability. However, their genomic diversity has not been systematically studied. In this work, we performed whole-genome sequencing of 30 Kongshan cattle from a breeding farm and integrated these data with 113 representative commercial and indigenous cattle breeds worldwide to investigate their population structure and genetic diversity. We further analyzed the ancestral contributions to the development of the breed. The population structure revealed that Kongshan cattle possess four types of ancestral components: East Asian indicine (0.5974), East Asian taurine (0.3464), European taurine (0.0483), and Indian indicine (0.0079). The population also exhibits high nucleotide diversity, second only to pure East Asian indicine cattle. We inferred the ancestry of each variable site in the genome and, in combination with integrated haplotype score analysis, identified candidate genes related to meat quality (ME1, ENPP2, GPD2, PDZRN4, and TMTC2), immunity (MCM6, MAP3K6, PIP4K2A, CDC6, CDC25B, PTAFR, ZC3H10, and NEK6), and environmental adaptability (KCNJ15, BECN1, AOC2, DUSP5, and ST3GAL4). These findings provide valuable insights into the evolutionary history and ancestral origins of Kongshan cattle and contribute to the broader understanding, conservation, and sustainable utilization of indigenous Chinese cattle genetic resources. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

19 pages, 3660 KB  
Article
Corrosion and Anodic Oxidation of Alloy 690 in Simulated Primary Coolant of a Small Modular Reactor Studied by In Situ Electrochemical Impedance Spectroscopy
by Martin Bojinov, Iva Betova and Vasil Karastoyanov
Metals 2025, 15(11), 1242; https://doi.org/10.3390/met15111242 - 12 Nov 2025
Cited by 1 | Viewed by 423
Abstract
The effect of KOH concentration as a boron-free coolant for prospective use in Small Modular Reactors (SMRs) on the corrosion of Alloy 690 is studied by in situ impedance spectroscopy at 280 °C/9 MPa during 168 h exposure in a flow-through cell connected [...] Read more.
The effect of KOH concentration as a boron-free coolant for prospective use in Small Modular Reactors (SMRs) on the corrosion of Alloy 690 is studied by in situ impedance spectroscopy at 280 °C/9 MPa during 168 h exposure in a flow-through cell connected to a high-temperature/high-pressure loop. To follow further oxidation of the passive film, the samples were subsequently polarized up to potentials 0.5 V more positive than the corrosion potential. The formed oxides were analyzed ex situ by measuring the atomic concentration of the constituent elements via glow discharge optical emission spectroscopy (GDOES) depth profiling. The Mixed-Conduction Model for Oxide Films (MCM) was employed to quantitatively interpret the impedance results. The estimated parameters are used to quantify the influence of KOH concentration and anodic polarization on oxide formation and soluble product release rates. Results are compared to those obtained in the nominal primary chemistry of pressurized water reactors and indicate that Alloy 690 can also be successfully used as a steam generator tube material in SMRs. Full article
Show Figures

Figure 1

11 pages, 3024 KB  
Article
Preparation of Lithium–Cesium Co-Doped Tungsten Oxide by Low-Temperature Hydrothermal Method
by Yue Liu, Xinyu Song, Liying Wen, Yan Luo, Zhiwang Sun and Shifeng Wang
Nanomaterials 2025, 15(21), 1616; https://doi.org/10.3390/nano15211616 - 23 Oct 2025
Viewed by 580
Abstract
Buildings consume 40% of global energy, over half of which is used for cooling and heating. Tungsten bronze (MxWO3) holds promise for smart windows due to its ability to block near-infrared (NIR) heat radiation while maintaining visible light transmittance. [...] Read more.
Buildings consume 40% of global energy, over half of which is used for cooling and heating. Tungsten bronze (MxWO3) holds promise for smart windows due to its ability to block near-infrared (NIR) heat radiation while maintaining visible light transmittance. However, conventional high-temperature synthesis is energy intensive. Here, we develop a low-temperature hydrothermal method (170 °C) to prepare Li and Cs co-doped tungsten oxide using WCl6, LiF, and CsOH·H2O as precursors, with acetic acid as a crystallographic modulator. The material exhibits a hexagonal structure (P63/mcm) and Li+-induced lattice expansion (0.34 nm spacing). Combined XPS and ICP-OES analyses confirm the chemical composition as Cs0.31Li0.09WO3 and reveal a positive correlation between the W5+ content (15.76%) and oxygen vacancy concentration, which is identified as the key factor enhancing the NIR absorption. The material demonstrates excellent visible light transmission and NIR shielding properties. Our work provides a more energy-efficient and sustainable pathway for the production of smart window materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

22 pages, 5859 KB  
Article
miR-21-5p Alleviates Retinal Ischemia–Reperfusion Injury by Inhibiting M1 Polarization of Microglia via Suppression of STAT3 Signaling
by Liangshi Qin, Junle Liao, Cheng Tan, Can Liu, Wenjia Shi and Dan Chen
Biomedicines 2025, 13(10), 2456; https://doi.org/10.3390/biomedicines13102456 - 9 Oct 2025
Viewed by 1007
Abstract
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator [...] Read more.
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator of Transcription 3 (STAT3) in retinal I/R injury. Methods: An acute intraocular hypertension (AIH) rat model was used to induce retinal I/R. The interaction between miR-21-5p and STAT3 was examined by dual-luciferase reporter assays. miR-21-5p and STAT3 expression were quantified by qRT-PCR and Western blotting. Retinal morphology, microglial polarization, and RGC survival were assessed by H&E staining and immunofluorescence. In vitro, microglia and RGCs were subjected to oxygen–glucose deprivation/reperfusion (OGD/R), and microglial-conditioned media (MCM) were applied to RGCs. Results: (1) miR-21-5p ameliorated AIH-induced retinal damage in vivo. (2) Overexpression of miR-21-5p inhibits M1 polarization of RM cultured in vitro. (3) MCM from miR-21-5p-overexpressing microglia attenuated OGD/R-induced RGC death. (4) miR-21-5p downregulates STAT3 expression to inhibit RM M1 polarization. (5) miR-21-5p down-regulation of STAT3 levels inhibits M1 polarization and reduces apoptosis of RGCs in retinal microglia of AIH rats. Conclusions: miR-21-5p alleviates retinal I/R injury by restraining microglial M1 polarization through direct repression of STAT3, thereby promoting RGC survival. These findings identify the miR-21-5p/STAT3 axis as a potential therapeutic target for ischemic retinal diseases. Full article
Show Figures

Figure 1

18 pages, 2438 KB  
Article
Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture
by Enrique Rodríguez-Castellón, Daniel Ballesteros-Plata and Nicolas Fellenz
Appl. Sci. 2025, 15(17), 9370; https://doi.org/10.3390/app15179370 - 26 Aug 2025
Viewed by 921
Abstract
Two nitrogen-modified mesoporous MCM-41-type silicas were synthesized by the sol–gel route and post-grafting surface modification procedure, obtaining an aminopropyl-modified MCM-41 (denoted MCM-41-N) and an aminoethyl-aminopropyl-modified MCM-41 (denoted MCM-41-NN). Hexavalent chromium removal from acidified water by adsorption and reduction to Cr(III) on the solid [...] Read more.
Two nitrogen-modified mesoporous MCM-41-type silicas were synthesized by the sol–gel route and post-grafting surface modification procedure, obtaining an aminopropyl-modified MCM-41 (denoted MCM-41-N) and an aminoethyl-aminopropyl-modified MCM-41 (denoted MCM-41-NN). Hexavalent chromium removal from acidified water by adsorption and reduction to Cr(III) on the solid mesophases was analyzed. The modified silicas were characterized by powder X-ray diffraction (XRD), Fourier transformed infrared spectra (FT-IR), nitrogen adsorption–desorption measurements at −196 °C, X-ray photoelectron spectroscopy (XPS), 29Si solid state Nuclear Magnetic Resonance (29Si-RMN), and thermogravimetric analysis (TGA). Both samples exhibited very high capacities for decreasing Cr(VI) concentrations in water, according to the Langmuir isotherm model: 129.9 mg·g−1 for MCM-41-N and 133.3 mg·g−1 for MCM-41-NN. The chromium speciation in the supernatant after 24 h indicates that MCM-41-N had a higher capacity to reduce Cr(VI) to the less toxic Cr(III) species than MCM-41-NN: 92.9% vs. 72.5% when the initial Cr(VI) concentration was 10 mg·g−1. These differences were related to the different capacity of nitrogen atoms in MCM-41-N and MCM-41-NN to interact with the surrounding surface silanols which are required for the chemical reduction in the hexavalent species to take place, as evidenced by FT-IR and XPS analysis. Also, the Cr(III)/Cr(VI) atomic ratios on the solid’s surfaces were higher for MCM-41-N. These results highlight the characteristics that nitrogen atoms incorporated into silica matrices must possess in order to maximize the transformation of Cr(VI) into the trivalent species, thereby reducing the generation of toxic waste harmful to living organisms. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

28 pages, 5628 KB  
Article
Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation
by Tamara B. Benzaquén, Paola M. Carraro, Griselda A. Eimer, Julio Urzúa-Ahumada, Po S. Poon and Juan Matos
Molecules 2025, 30(12), 2484; https://doi.org/10.3390/molecules30122484 - 6 Jun 2025
Cited by 4 | Viewed by 1150
Abstract
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice [...] Read more.
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice husk as the silica template. Iron was incorporated and the so-prepared biogenic photocatalysts were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, transmission electron microscopy, diffuse reflectance UV-Vis, surface pH, cyclic voltammetry, and Fourier transform infrared spectral analysis of pyridine adsorption. The photocatalytic performance of the materials was evaluated following the removal by adsorption and the photon-driven degradation of RhB. The adsorption capacity and photocatalytic activity of the biogenic materials were correlated with their properties, including iron content, texture, surface content, and electrochemical properties. The best biogenic material boosted the degradation rates of RhB under UV irradiation up to 4.7 and 2.2 times greater than the direct photolysis and the benchmark semiconductor TiO2-P25. It can be concluded that the use of rice husks for the synthesis of biogenic Fe-modified mesoporous materials is a promising strategy for wastewater treatment applications, particularly in the removal of highly toxic organic dyes. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules: Recent Advances in Photochemistry)
Show Figures

Graphical abstract

19 pages, 7410 KB  
Article
Novel Catalysts Based on Synthetic Mesoporous Silicates of the MCM-41 Type and Hydroxyapatite for Desulfurization of Model Fuel
by Nadezhda O. Donskaya, Margarita A. Goldberg, Alexander S. Fomin, Anna O. Koptelova, Polina D. Domashkina, Ekaterina A. Eseva, Olga S. Antonova, Anatoliy A. Konovalov, Alexander V. Leonov, Egor A. Kudryavtsev, Fadis F. Murzakhanov, Marat R. Gafurov, Argam V. Akopyan, Sergey M. Barinov and Vladimir S. Komlev
Ceramics 2025, 8(2), 61; https://doi.org/10.3390/ceramics8020061 - 21 May 2025
Viewed by 2210
Abstract
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous [...] Read more.
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous silicate and an HA phase with low crystallinity. The presence of aluminum and iron in the structure of the powders resulted in further amorphization. The obtained samples showed high specific surface areas (SSAs), ranging from 162.3 to 186.6 m2/g for MCM-41-HA and from 112.6 to 127.2 m2/g for AlMCM-HA. The hysteresis loops were found to be of type H3, indicating the formation of slit-like pores in the intercrystalline space, as confirmed by transmission electron microscopy, which revealed the presence of lamellar and flake-like particles. Catalytic activity tests showed that the conversion of dibenzothiophene depended on the iron concentration in the material and the acidity of the support. To further improve the catalytic activity of the materials, they were impregnated with molybdenum compounds. Active molybdenum peroxo complexes formed under these conditions enabled 100% conversion of dibenzothiophene. To our knowledge, this is the first study on the influence of MCM-41-HA- or AlMCM-HA-based materials on dibenzothiophene conversion via oxidative desulfurization using hydrogen peroxide as an oxidant. Full article
Show Figures

Graphical abstract

22 pages, 4622 KB  
Article
An Inhaled Nanoemulsion Encapsulating a Herbal Drug for Non-Small Cell Lung Cancer (NSCLC) Treatment
by Mural Quadros, Mimansa Goyal, Gautam Chauhan, Dnyandev Gadhave and Vivek Gupta
Pharmaceutics 2025, 17(5), 540; https://doi.org/10.3390/pharmaceutics17050540 - 22 Apr 2025
Cited by 2 | Viewed by 2079
Abstract
Background: Celastrol (Cela), a phytochemical extracted from Tripterygium wilfordii, has been extensively investigated for its potential anti-inflammatory, anti-psoriatic, antioxidant, neuroprotective, and antineoplastic properties. However, its clinical translation is limited due to poor bioavailability, low solubility, and nonspecific toxicity. This study aimed to [...] Read more.
Background: Celastrol (Cela), a phytochemical extracted from Tripterygium wilfordii, has been extensively investigated for its potential anti-inflammatory, anti-psoriatic, antioxidant, neuroprotective, and antineoplastic properties. However, its clinical translation is limited due to poor bioavailability, low solubility, and nonspecific toxicity. This study aimed to develop and evaluate an inhalable Cela-loaded nanoemulsion (NE) formulation to enhance targeted drug delivery and therapeutic efficacy in non-small cell lung cancer (NSCLC). Methods: The NE formulation was optimized using Capmul MCM (25%), Tween 80 (20%), Transcutol HP (5%), and water (50%) as the oil, surfactant, co-surfactant, and aqueous phase, respectively. Physicochemical characterization included globule size, zeta potential, and drug release in simulated lung fluid. In vitro aerosolization performance, cytotoxicity in NSCLC cell lines (A549), scratch and clonogenic assays, and 3D tumor spheroid models were employed to assess therapeutic potential. Results: The NE showed a globule size of 201.4 ± 3.7 nm and a zeta potential of −15.7 ± 0.2 mV. Drug release was sustained, with 20.4 ± 5.5%, 29.1 ± 10%, 64.6 ± 4.1%, and 88.1 ± 5.2% released at 24, 48, 72, and 120 h, respectively. In vitro aerosolization studies indicated a median aerodynamic particle size of 4.8 ± 0.2 μm, confirming its respirability in the lung. Cell culture studies indicated higher toxicity of NE-Cela in NSCLC cells. NE-Cela significantly reduced A549 cell viability, showing a ~6-fold decrease in IC50 (0.2 ± 0.1 μM) compared to Cela alone (1.2 ± 0.2 μM). Migration and clonogenic assays demonstrated reduced cell proliferation, and 3D spheroid models supported its therapeutic activity in tumor-like environments. Conclusions: The inhalable NE-Cela formulation improved Cela’s physicochemical limitations and demonstrated enhanced anti-cancer efficacy in NSCLC models. These findings support its potential as a targeted, well-tolerated therapeutic option for lung cancer treatment. Full article
Show Figures

Graphical abstract

18 pages, 9987 KB  
Article
Hydrogen Yield from the Partial Oxidation of Methane: Effect of Sc Promoter on Supported Ni/MCM-41 Catalyst
by Ahmed A. Ibrahim, Omer A. Bellahwel, Fayez M. Al-Alweet, Mabrook S. Amer, Anis H. Fakeeha, Ahmed E. Abasaeed, Abdulaziz S. Bentalib and Ahmed S. Al-Fatesh
Catalysts 2025, 15(4), 337; https://doi.org/10.3390/catal15040337 - 31 Mar 2025
Viewed by 776
Abstract
This study explores the impact of scandium (Sc) as a promoter on the catalytic performance of 4Ni/MCM-41 catalysts for the partial oxidation of methane (POM). 4Ni+Sc/MCM-41 catalysts were synthesized with varying Sc loadings of 0, 0.2, 0.4, 0.6, and 0.8 wt.%. These catalysts [...] Read more.
This study explores the impact of scandium (Sc) as a promoter on the catalytic performance of 4Ni/MCM-41 catalysts for the partial oxidation of methane (POM). 4Ni+Sc/MCM-41 catalysts were synthesized with varying Sc loadings of 0, 0.2, 0.4, 0.6, and 0.8 wt.%. These catalysts were characterized using several techniques, including N2 physisorption, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). All catalysts exhibited a mesoporous structure characterized by narrow slit-shaped pores. Among them, the 4Ni+0.2Sc/MCM-41 catalyst showed the most consistent pore size distribution. The addition of Sc (scandium) facilitated the formation of strongly interacting nickel species, which enhanced the initial catalytic activity. However, a trade-off was observed between initial activity and long-term stability. The optimal Sc loading was determined to be 0.2 wt.%. This catalyst achieved the highest methane conversion rate of 63.9%, a hydrogen yield of 60%, and an H2/CO ratio of 2.7 while also demonstrating superior stability during extended operation. The 4Ni+0.2Sc/MCM-41 catalyst showed only a 7% weight loss in the thermogravimetric analysis (TGA), which shows that it will stay stable even after being used for a long time. The improved performance of the Sc-promoted catalysts is attributable to the increased availability of active sites, enhanced stability, and better dispersion of nickel. These efforts aim to create more sustainable and efficient methods for hydrogen production, minimizing the negative effects associated with traditional processes. By advancing these technologies, we can further support the transition to a cleaner energy future. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

17 pages, 312 KB  
Article
On Approximate Multi-Cubic Mappings in 2-Banach Spaces
by El-sayed El-hady, Ghazyiah Alsahli, Abasalt Bodaghi and Mehdi Dehghanian
Symmetry 2025, 17(4), 475; https://doi.org/10.3390/sym17040475 - 21 Mar 2025
Cited by 1 | Viewed by 600 | Correction
Abstract
The present article presents a system of symmetric equations defining multi-cubic mappings (M-CMs). Next, we describe how these mappings are structured and obtain an equation for describing them. Moreover, we Address the Hyers-Ulam stability (H-UStab) in the sense of Găvruţa for a symmetric [...] Read more.
The present article presents a system of symmetric equations defining multi-cubic mappings (M-CMs). Next, we describe how these mappings are structured and obtain an equation for describing them. Moreover, we Address the Hyers-Ulam stability (H-UStab) in the sense of Găvruţa for a symmetric multi-cubic equation through the application of the so-called Hyers (direct) method in the setting of 2-Banach spaces. For a typical case, by means of a norm, induced from a 2-norm of Rd, we examine the stability and hyperstability of a mapping f:RdnRd by using a fixed point (FP) result. Full article
(This article belongs to the Special Issue Symmetry in Functional Equations and Inequalities, 2nd Edition)
Back to TopTop