On Approximate Multi-Cubic Mappings in 2-Banach Spaces
Abstract
:1. Introduction
- (i)
- If is complete, then a unique mapping exists:
- (ii)
- If , then is additive, i.e., it is a solution to (2).
- (i)
- if and only if and are linearly dependent;
- (ii)
- (iii)
- ;
- (iv)
- .
- (i)
- for all ;
- (ii)
- If for all , then ;
- (iii)
- For any 2-convergent sequence in , we have
2. Representation of M-CMs as an Equation
3. Stability of M-CMs in 2-Normed Spaces
3.1. Stability of (14) Using the Direct Method
3.2. Stability of (14): The FP Method
- (i)
- if and only if for all ;
- (ii)
- for all ;
- (iii)
- for all .
- (i)
- ∀;
- (ii)
- The sequence is convergent to an FP of Ξ;
- (iii)
- is the unique FP of Ξ in the set
- (iv)
- for all .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics, Science ed.; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach Space. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar]
- Ciepliński, K. Approximate multi-additive mappings in 2-Banach spaces. Bull. Iranian Math. Soc. 2015, 41, 785–792. [Google Scholar]
- Ciepliński, K.; Xu, T.-Z. Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces. Carpathian J. Math. 2013, 29, 159–166. [Google Scholar]
- Park, C.-G. Multi-quadratic mappings in Banach spaces. Proc. Am. Math. Soc. 2002, 131, 2501–2504. [Google Scholar]
- Salimi, S.; Bodaghi, A. A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings. J. Fixed Point Theory Appl. 2020, 22, 9. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, X.; Pang, C.-T. Solution and stability of the multiquadratic functional equation. Abstr. Appl. Anal. 2013, 2013, 415053. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators; Academic Press: London, UK, 2018. [Google Scholar]
- Rassias, J.M. Solution of the Ulam stability problem for cubic mappings. Glasnik Matematicki. Serija III 2001, 36, 63–72. [Google Scholar]
- Jun, K.-W.; Kim, H.-M. The generalized Hyers-Ulam-Russias stability of a cubic functional equation. J. Math. Anal. Appl. 2002, 274, 267–278. [Google Scholar]
- Jun, K.-W.; Kim, H.-M. On the Hyers-Ulam-Rassias stability of a general cubic functional equation. Math. Inequal. Appl. 2003, 6, 289–302. [Google Scholar]
- Chu, H.-Y.; Kang, D.-S. On the stability of an n-dimensional cubic functional equation. J. Math. Anal. Appl. 2007, 325, 595–607. [Google Scholar] [CrossRef]
- Bodaghi, A.; Moosavi, S.M.; Rahimi, H. The generalized cubic functional equation and the stability of cubic Jordan *-derivations. Ann. Univ. Ferrara 2013, 59, 235–250. [Google Scholar]
- Bodaghi, A.; Shojaee, B. On an equation characterizing multi-cubic mappings and its stability and hyperstability. Fixed Point Theory 2021, 22, 83–92. [Google Scholar]
- Bodaghi, A. Equalities and inequalities for several variables mappings. J. Inequa. Appl. 2022, 2022, 6. [Google Scholar] [CrossRef]
- Bodaghi, A.; Dutta, H. A new form of multi-cubic mappings and the stability results. Math. Foun. Comput. 2025, 8, 232–241. [Google Scholar]
- Neisi, A.R.; Asgari, M.S. Characterization and stability of multi-cubic mappings. Int. J. Nonlinear Anal. Appl. 2022, 13, 2493–2502. [Google Scholar]
- Gähler, S. Lineare 2-normierte Räume. Math. Nachr. 1964, 28, 1–43. [Google Scholar]
- Gähler, S. 2-metrische Räumen und ihr topologische structure. Math. Nachr. 1963, 26, 115–148. [Google Scholar]
- White, A. 2-Banach space. Math. Nachr. 1969, 42, 44–60. [Google Scholar] [CrossRef]
- Lewandowska, Z. Generalized 2-normed spaces. Stuspske-Pr.-Fiz. 2001, 1, 33–40. [Google Scholar]
- Lewandowska, Z. On 2-normed sets. Glasnik Mat. Ser. III 2003, 38, 99–110. [Google Scholar] [CrossRef]
- Ciepliński, K. Ulam stability of functional equations in 2-Banach spaces via the fixed point method. J. Fixed Point Theory Appl. 2021, 23, 33. [Google Scholar] [CrossRef]
- Sayar, K.Y.N.; Bergam, A. A fixed point approach to the stability of a cubic functional equation in 2-Banach spaces, Facta Universitatis (Niš). Ser. Math. Inform. 2022, 37, 239–249. [Google Scholar] [CrossRef]
- Rumlawang, F.Y. Fixed point theorem in 2-normed spaces. Pure Appl. Math. J.-Tensor 2020, 1, 41–46. [Google Scholar] [CrossRef]
- Gunawan, H.; Mashadi, H. On finite dimensional 2-normed spaces. Soochow J. Math. 2001, 27, 321–329. [Google Scholar]
- Turinici, M. Sequentially iterative processes and applications to Volterra functional equations. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1978, 32, 127–134. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Jung, S.-M.; Lee, Z.-H. A fixed point approach to the stability of quadratic functional equation with involution. J. Fixed Point Theory. Appl. 2008, 2008, 732086. [Google Scholar] [CrossRef]
- Cǎdariu, L.; Radu, V. On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Berichte 2004, 346, 43–52. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-hady, E.-s.; Alsahli, G.; Bodaghi, A.; Dehghanian, M. On Approximate Multi-Cubic Mappings in 2-Banach Spaces. Symmetry 2025, 17, 475. https://doi.org/10.3390/sym17040475
El-hady E-s, Alsahli G, Bodaghi A, Dehghanian M. On Approximate Multi-Cubic Mappings in 2-Banach Spaces. Symmetry. 2025; 17(4):475. https://doi.org/10.3390/sym17040475
Chicago/Turabian StyleEl-hady, El-sayed, Ghazyiah Alsahli, Abasalt Bodaghi, and Mehdi Dehghanian. 2025. "On Approximate Multi-Cubic Mappings in 2-Banach Spaces" Symmetry 17, no. 4: 475. https://doi.org/10.3390/sym17040475
APA StyleEl-hady, E.-s., Alsahli, G., Bodaghi, A., & Dehghanian, M. (2025). On Approximate Multi-Cubic Mappings in 2-Banach Spaces. Symmetry, 17(4), 475. https://doi.org/10.3390/sym17040475