Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (213)

Search Parameters:
Keywords = Li-organic battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2688 KiB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 416
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

21 pages, 3984 KiB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Viewed by 410
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 284
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

18 pages, 3874 KiB  
Article
Organic and Ionic Liquids Electrolyte Solutions as Versatile Media for Metallic Lithium Recovery
by Mihai Tudor Olaru, Alexandru Matei, Irina Atkinson, Adelina Ionela Matei, Elena Bacalum, Miruna Iota and Ana-Maria Popescu
Materials 2025, 18(12), 2899; https://doi.org/10.3390/ma18122899 - 19 Jun 2025
Viewed by 471
Abstract
For various applications, particularly in battery technology, there is a significant demand for uniform, high-quality lithium or lithium-coated materials. The use of electrodeposition techniques to obtain such materials has not proven practical or economical due to the low solubility of most lithium salts [...] Read more.
For various applications, particularly in battery technology, there is a significant demand for uniform, high-quality lithium or lithium-coated materials. The use of electrodeposition techniques to obtain such materials has not proven practical or economical due to the low solubility of most lithium salts in suitable solvents. In this study, we propose efficient lithium electrodeposition processes and baths that can be operated at low temperatures and relatively low costs. We utilized organic solvents such as dimethyl acetamide (DMA), dimethylforamide (DMF), and dimethyl sulfoxide (DMSO), as well as a mixture of DMSO and ionic liquid [1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide BMIMTFSI]. Lithium salts such as LiCl, Li2CO3, and LiNO3 were tested. Lithium metal was deposited on copper substrates at different temperatures and selected current densities within an argon-filled glovebox using a DC power source or a PARSTAT-4000A potentiostat. Cyclic voltammetry (CV) was employed to determine and compare the deposition processes. The obtained deposits were analyzed through visual inspection (photography) and scanning electron microscopy (SEM). Chemical analysis (ICP-OES) and XRD confirmed the presence of lithium and occasionally lithium hydroxide in the deposits. The best results were achieved with the deposition of lithium from DMSO-LiNO3 and DMSO-BMIMTFSI-LiNO3 systems. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

31 pages, 1734 KiB  
Review
Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article
by Hamid Safarzadeh and Francesco Di Maria
Batteries 2025, 11(6), 230; https://doi.org/10.3390/batteries11060230 - 13 Jun 2025
Cited by 1 | Viewed by 1812
Abstract
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future [...] Read more.
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future prospects. Design: Review based on PRISMA 2020. Data sources: Scientific publications indexed in major databases such as Scopus, Web of Science, and ScienceDirect were searched for relevant studies published between 2020 and 15 April 2025. Inclusion criteria: Studies were included if they were published in English between 2020 and 15 April 2025, and focused on the recycling of electric vehicle batteries. Eligible studies specifically addressed (i) recycling methods, technologies, and material recovery processes for EV batteries; (ii) the impact of recycled battery systems on power generation processes and grid stability; and (iii) assessments of materials used in battery manufacturing, including efficiency and recyclability. Review articles and meta-analyses were excluded to ensure the inclusion of only original research data. Data extraction: Data were independently screened and extracted by two researchers and analyzed for recovery rates, environmental impact, and system-level energy contributions. One researcher independently screened all articles and extracted relevant data. A second researcher validated the accuracy of extracted data. The data were then organized and analyzed based on reported quantitative and qualitative indicators related to recycling methods, material recovery rates, environmental impact, and system-level energy benefits. Results: A total of 23 studies were included. Significant progress has been made in hydrometallurgical and direct recycling processes, with recovery rates of critical metals (Li, Co, Ni) improving. Second-life battery applications also show promise for grid stabilization and renewable energy storage. Furthermore, recycled batteries show potential in stabilizing power grids through second-life applications in BESS. Conclusion: EV battery recycling is a vital strategy for addressing raw material scarcity, minimizing environmental harm, and supporting energy resilience. However, challenges persist in policy harmonization, technology scaling, and economic viability. Future progress will depend on integrated efforts across sectors and regions to build a circular battery economy. Full article
Show Figures

Graphical abstract

23 pages, 4227 KiB  
Review
Redox Mediators for Li2CO3 Decomposition
by Zixuan Liu, Haoshen Huang, Zhengfei Chen, Haiyong He, Deyu Wang and Zhoupeng Li
Inorganics 2025, 13(6), 192; https://doi.org/10.3390/inorganics13060192 - 8 Jun 2025
Viewed by 574
Abstract
Lithium–air batteries (LABs) possess the highest energy density among all energy storage systems, and have drawn widespread interest in academia and industry. However, many arduous challenges are still to be conquered, one of them is Li2CO3, which is a [...] Read more.
Lithium–air batteries (LABs) possess the highest energy density among all energy storage systems, and have drawn widespread interest in academia and industry. However, many arduous challenges are still to be conquered, one of them is Li2CO3, which is a ubiquitous product in LABs. It is inevitably produced but difficult to decompose; therefore, Li2CO3 is perceived as the “Achilles’ heel of LABs”. Among various approaches to addressing the Li2CO3 issue, developing Li2CO3-decomposing redox mediators (RMs) is one of the most convenient and versatile, because they can be electrochemically oxidized at the gas cathode surface, then they diffuse to the solid-state products and chemically oxidize them, recovering the RMs to a pristine state and avoiding solid-state catalysts’ contact instability with Li2CO3. Furthermore, because of their function mechanism, they can double as catalysts for Li2O2/LiOH decomposition, which are needed in LABs/LOBs anyway regardless of Li2CO3 incorporation due to the sluggish kinetics of oxygen reduction/evolution reactions. This review summarizes the progress in Li2CO3-decomposing RMs, including halides, metal–chelate complexes, and metal-free organic compounds. The insights into and discrepancies in the mechanisms of Li2CO3 decomposition and corresponding catalysis processes are also discussed. Full article
(This article belongs to the Special Issue Novel Research on Electrochemical Energy Storage Materials)
Show Figures

Graphical abstract

13 pages, 1817 KiB  
Article
Modified Polyethylene Oxide Solid-State Electrolytes with Poly(vinylidene fluoride-hexafluoropropylene)
by Jinwei Yan, Wen Huang, Tangqi Hu, Hai Huang, Chengwei Zhu, Zhijie Chen, Xiaohong Fan, Qihui Wu and Yi Li
Molecules 2025, 30(11), 2422; https://doi.org/10.3390/molecules30112422 - 31 May 2025
Viewed by 605
Abstract
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of [...] Read more.
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of polyethylene oxide (PEO)-based polymer via blending with poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)). The experimental results showed that the addition of P(VDF-HFP) disrupted the crystalline regions of PEO by increasing the amorphous domains, thus improving lithium-ion migration capability. The electrolyte membrane with 30 wt% P(VDF-HFP) and 70 wt% PEO exhibited the highest ionic conductivity, widest electrochemical window, and enhanced thermal stability, as well as a high lithium-ion transference number (0.45). The cells assembled with this membrane electrolyte demonstrated an excellent rate of performance and cycling stability, retaining specific capacities of 122.39 mAh g−1 after 200 cycles at 0.5C, and 112.77 mAh g−1 after 200 cycles at 1C and 25 °C. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

12 pages, 2463 KiB  
Article
Metal–Organic Frameworks (MOF)-Derived Gel Electrolyte via UV Cross-Linking for High-Performance Lithium Metal Batteries
by Naiyao Mao, Lingxiao Lan, Qiankun Hun, Jianghua Wei, Xinghua Liang and Yifeng Guo
Gels 2025, 11(6), 409; https://doi.org/10.3390/gels11060409 - 29 May 2025
Viewed by 640
Abstract
Gel electrolytes (GEs) play a pivotal role in the advancement of lithium metal batteries by offering high energy density and enhanced rate capability. Nevertheless, their real-world application is hampered by relatively low ionic conductivity and significant interfacial resistance at room temperatures. In this [...] Read more.
Gel electrolytes (GEs) play a pivotal role in the advancement of lithium metal batteries by offering high energy density and enhanced rate capability. Nevertheless, their real-world application is hampered by relatively low ionic conductivity and significant interfacial resistance at room temperatures. In this work, we developed a gel electrolyte membrane (GEM) by embedding Zeolitic Imidazolate Framework-8 (ZIF-8) metal–organic frameworks (MOFs) material into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix through UV curing. The composite membrane, with 4 wt% ZIF-8, exhibited an ionic conductivity of 1.17 × 10−3 S/cm, an electrochemical stability window of 4.7 V, and a lithium-ion transference number of 0.7. The test results indicate that the electrochemical performance of LFP//GEM//Li battery has an initial specific capacity of 168 mAh g−1 at 0.1 C rate. At 1 C, the discharge capacity was 88 mAh g−1, and at 2 C, it was 68 mAh g−1. Enhanced ionic transport, improved electrochemical stability, and optimized lithium-ion migration collectively contributed to superior rate performance and prolonged cycle life. This study offers novel insights and methodological advances for next-generation lithium metal batteries technologies. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

14 pages, 3772 KiB  
Article
Organic Dinitrates: Electrolyte Additives That Increase the Energy Densities of Lithium/Graphite Fluoride Batteries
by Junwei Xiao, Lingchen Kong, Yong Wang, Ziyue Zhao, Yu Li and Wei Feng
Nanomaterials 2025, 15(10), 758; https://doi.org/10.3390/nano15100758 - 18 May 2025
Viewed by 392
Abstract
Li/graphite fluoride (Li/CFx) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol [...] Read more.
Li/graphite fluoride (Li/CFx) batteries display the highest energy densities among those of commercially available primary Li batteries but fail to satisfy the high-performance requirements of advanced applications. To address this drawback, two liquid organic dinitrates, namely, 1,4-butanediol dinitrate (BDE) and 2,2,3,3-tetrafluoro-1,4-butanediol dinitrate (TBD), were employed as high-energy energetic materials, and they were highly compatible with the electrolytes of Li/CFx batteries. The use of Super P electrodes confirmed that the reduction reaction mechanisms of both nitrate ester-based compounds delivered considerable specific capacities, associated with discharge potentials matching that of the Li/CFx battery. When considering the combined mass of the electrolyte and cathode as the active material, the overall energy densities of the Li/CFx batteries increased by 25.3% (TBD) and 20.8% (BDE), reaching 1005.50 and 969.1 Wh/kg, respectively. The superior performance of TBD was due to the synergistic effects of the high electronegativities and levels of steric hindrance of the F atoms. Moreover, the nanocrystal LiF particles generated by TBD induced crack formation within the fluorinated graphite, increasing the lithium-ion accessible surface area and enhancing its utilization efficiency. These combined factors enhanced the reactivity of TBD and facilitated its involvement in electrochemical reactions, thus improving the capacity of the battery. The developed strategy enables the facile, cost-effective enhancement of the capacities of Li/CFx batteries, paving the way for their practical use in energy-demanding devices. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

12 pages, 2024 KiB  
Communication
Structural Influences on Lithium-Ion Transport in Bismuth Oxides: A Molecular Dynamics Approach
by Seong-Beom You, Byeong Jun Kim and Yong Nam Ahn
Materials 2025, 18(10), 2287; https://doi.org/10.3390/ma18102287 - 14 May 2025
Viewed by 369
Abstract
This study investigates Li-ion diffusion characteristics in Li-contained and Li-free bismuth oxide crystals, aiming to explore their potential as solid electrolytes for next-generation lithium-ion batteries. Although bismuth oxide has been widely applied as a solid electrolyte in fuel cells, its suitability for Li-ion [...] Read more.
This study investigates Li-ion diffusion characteristics in Li-contained and Li-free bismuth oxide crystals, aiming to explore their potential as solid electrolytes for next-generation lithium-ion batteries. Although bismuth oxide has been widely applied as a solid electrolyte in fuel cells, its suitability for Li-ion battery applications remains unexplored. Using molecular dynamics simulations, we analyzed the Li-ion diffusion behavior in two distinct Li-contained bismuth oxide crystals with layered and non-layered structures, as well as four Li-free bismuth oxide phases. It is demonstrated that the layered structure exhibits a simpler and more organized diffusion pathway compared to the complex and bottlenecked pathways in the non-layered structure, resulting in superior Li-ion diffusivity. For Li-free bismuth oxide phases, diffusion coefficients vary significantly depending on structural characteristics, with the highest diffusion coefficient observed in the phase with minimal void fraction. A notable inverse relationship between void fraction and Li-ion diffusivity efficiency highlights the importance of structural design in enhancing ionic transport. This study provides valuable insights into the diffusion mechanisms of Li ions in bismuth oxide systems and offers strategic guidance for designing high-performance solid electrolytes, contributing to the advancement of all-solid-state battery technologies. Full article
Show Figures

Figure 1

35 pages, 4575 KiB  
Review
Advances in Metal-Organic Frameworks (MOFs) for Rechargeable Batteries and Fuel Cells
by Christos Argirusis, Niyaz Alizadeh, Maria-Εleni Katsanou, Nikolaos Argirusis and Georgia Sourkouni
Batteries 2025, 11(5), 192; https://doi.org/10.3390/batteries11050192 - 14 May 2025
Cited by 1 | Viewed by 1076
Abstract
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging [...] Read more.
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging as viable solutions. The challenge lies in the stochastic nature of renewable energy sources, which necessitates the implementation of electrical energy storage solutions, whether through batteries, supercapacitors, or hydrogen production. In this regard, innovative materials are essential to address the questions associated with these technologies. Metal-organic frameworks (MOFs) are crucial for achieving clean and efficient energy conversion in fuel cells and storage in batteries and supercapacitors. Metal-organic frameworks (MOFs) can be used as electrocatalytic materials, membranes for electrolytes, and energy storage materials. They exhibit exceptional design versatility, large surface, and can be functionalized with ligands with several charges and metallic centers. This article offers an in-depth examination of materials and devices utilizing metal-organic frameworks (MOFs) for electrochemical processes concerning the generation, transformation, and storage of electrical energy. This review specifically focuses on rechargeable batteries and fuel cells that incorporate MOFs. Finally, an outlook on the potential applications of MOFs in electrochemical industries is presented. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Figure 1

11 pages, 10269 KiB  
Article
Electrolyte Optimization for Anthraquinone-Based Slurry Batteries
by Cunhang Zhao and Tu Hu
Processes 2025, 13(5), 1403; https://doi.org/10.3390/pr13051403 - 4 May 2025
Viewed by 542
Abstract
AQ suspensions show strong potential as organic anodes for Li-ion slurry batteries. However, the influence of slurry electrolyte composition on the electrochemical behavior of AQ lacks systematic investigation. We explored the effects of different lithium salts and solvents in the electrolyte on the [...] Read more.
AQ suspensions show strong potential as organic anodes for Li-ion slurry batteries. However, the influence of slurry electrolyte composition on the electrochemical behavior of AQ lacks systematic investigation. We explored the effects of different lithium salts and solvents in the electrolyte on the redox behavior of the AQ material electrode. An electrolyte (1 M LiTFSI dissolved in DME: DOL with a volume ratio of 1:1) optimized for AQ lithium slurry batteries exhibits a stable 2.3 V charge/discharge platform delivering a discharge specific capacity of 246.2 mAh g−1 at 1.25 A g−1 (approaching the theoretical value) with stable slurry reactor operation for over 47 h. This work establishes a structure-property relationship between electrolyte formulation and AQ electrode performance, offering a design principle for electrolyte selection in organic slurry-based battery systems. Full article
(This article belongs to the Special Issue Energy Storage and Conversion: Next-Generation Battery Technology)
Show Figures

Figure 1

16 pages, 4986 KiB  
Article
Performance of 3D Network-Structured LiFePO4@Li3V2(PO4)3/Carbon Nanofibers via Coaxial Electrospinning as Self-Supporting Cathode for Lithium-Ion Batteries
by Ruixia Chu, Hongtao Zhang, Wanyou Huang, Fangyuan Qiu, Yan Wang, Zhenyu Li and Xiaoyue Jin
Materials 2025, 18(9), 1969; https://doi.org/10.3390/ma18091969 - 26 Apr 2025
Viewed by 608
Abstract
Lithium-ion batteries (LIBs) with high power, high capacity, and support for fast charging are increasingly favored by consumers. As a commercial electrode material for power batteries, LiFePO4 was limited from further wide application due to its low conductivity and lithium-ion diffusion rate. [...] Read more.
Lithium-ion batteries (LIBs) with high power, high capacity, and support for fast charging are increasingly favored by consumers. As a commercial electrode material for power batteries, LiFePO4 was limited from further wide application due to its low conductivity and lithium-ion diffusion rate. The development of advanced architectures integrating rational conductive networks with optimized ion transport pathways represents a critical frontier in optimizing the performance of cathode materials. In this paper, a novel self-supporting cathode material (designated as LFP@LVP-CES) was synthesized through an integrated coaxial electrospinning and controlled pyrolysis strategy. This methodology directly converts LiFePO4, Li3V2(PO4)3, and polyacrylonitrile (PAN)) into flexible, binder-free cathodes with a hierarchical structural organization. The 3D carbon nanofiber (CNF) matrix synergistically integrates LiFePO4 (Li/Fe/POx) and Li3V2(PO4)3 (Li/V/POx) nanoparticles, where CNFs act as a conductive scaffold to enhance electron transport, while the POx polyanionic frameworks stabilize Li+ diffusion pathways. Morphological characterizations (SEM and TEM) revealed a 3D cross-connected carbon nanofiber matrix (diameter: 250 ± 50 nm) uniformly embedded with active material particles. Electrochemical evaluations demonstrated that the LFP@LVP-CES cathode delivers an initial specific capacity of 165 mAh·g−1 at 0.1 C, maintaining 80 mAh·g−1 at 5 C. Notably, the material exhibited exceptional rate capability and cycling stability, demonstrating a 96% capacity recovery after high-rate cycling upon returning to 0.1 C, along with 97% capacity retention over 200 cycles at 1 C. Detailed kinetic analysis through EIS revealed significantly reduced Rct and increased Li+ diffusion. This superior electrochemical performance can be attributed to the synergistic effects between the 3D conductive network architecture and dual active materials. Compared with traditional coating processes and high-temperature calcination, the preparation of controllable electrospinning and low-temperature pyrolysis to some extent avoid the introduction of harmful substances and reduce raw material consumption and carbon emissions. This original integration strategy establishes a paradigm for designing freestanding electrode architectures through 3D structural design combined with a bimodal active material, providing critical insights for next-generation energy storage systems. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 3462 KiB  
Article
Ionic Liquid Electrolyte Technologies for High-Temperature Lithium Battery Systems
by Eleonora De Santis, Annalisa Aurora, Sara Bergamasco, Antonio Rinaldi, Rodolfo Araneo and Giovanni Battista Appetecchi
Int. J. Mol. Sci. 2025, 26(7), 3430; https://doi.org/10.3390/ijms26073430 - 6 Apr 2025
Viewed by 1247
Abstract
The advent of the lithium-ion batteries (LIBs) has transformed the energy storage field, leading to significant advances in electronics and electric vehicles, which continuously demand more and more performant devices. However, commercial LIB systems are still far from satisfying applications operating in arduous [...] Read more.
The advent of the lithium-ion batteries (LIBs) has transformed the energy storage field, leading to significant advances in electronics and electric vehicles, which continuously demand more and more performant devices. However, commercial LIB systems are still far from satisfying applications operating in arduous conditions, such as temperatures exceeding 100 °C. For instance, safety issues, materials degradation, and toxic stem development, related to volatile, flammable organic electrolytes, and thermally unstable salts (LiPF6), limit the operative temperature of conventional lithium-ion batteries, which only occasionally can exceed 50–60 °C. To overcome this highly challenging drawback, the present study proposes advanced electrolyte technologies based on innovative, safer fluids such as ionic liquids (ILs). Among the IL families, we have selected ionic liquids based on tetrabutylphosphonium and 1-ethyl-3-methyl-imidazolium cations, coupled with per(fluoroalkylsulfonyl)imide anions, for standing out because of their remarkable thermal robustness. The thermal behaviour as well as the ion transport properties and electrochemical stability were investigated even in the presence of the lithium bis(trifluoromethylsulfonyl)imide salt. Conductivity measurements revealed very interesting ion transport properties already at 50 °C, with ion conduction values ranging from 10−3 and 10−2 S cm−1 levelled at 100 °C. Thermal robustness exceeding 150 °C was detected, in combination with anodic stability above 4.5 V at 100 °C. Preliminary cycling tests run on Li/LiFePO4 cells at 100 °C revealed promising performance, i.e., more than 94% of the theoretical capacity was delivered at a current rate of 0.5C. The obtained results make these innovative electrolyte formulations very promising candidates for high-temperature LIB applications and advanced energy storage systems. Full article
Show Figures

Figure 1

13 pages, 3481 KiB  
Article
Lithium Salt Screening for PEO-Based Solid Electrolytes of All Solid-State Li Ion Batteries Using Density Functional Theory
by Qian Liu, Jinghua Yin, Minghua Chen, Jialong Shen, Xinhao Zhao and Yulong Liu
Crystals 2025, 15(4), 333; https://doi.org/10.3390/cryst15040333 - 31 Mar 2025
Cited by 1 | Viewed by 982
Abstract
As key components in solid-state electrolytes, lithium salts influence the electrochemical window, ionic conductivity, and ultimately the full battery’s performance. To reduce the selection time and costs while providing electric and molecular level insights into the interactions of elements and components in solid [...] Read more.
As key components in solid-state electrolytes, lithium salts influence the electrochemical window, ionic conductivity, and ultimately the full battery’s performance. To reduce the selection time and costs while providing electric and molecular level insights into the interactions of elements and components in solid polymer electrolytes, this paper proposes a rapid screening method based on Density Functional Theory (DFT). The structure stability, electrochemical stability, and ionic conductivity of eight common inorganic and organic lithium salts were systematically investigated by analyzing five parameters: formation energy, band gap, Li+–anion dissociation energy, anion–PEO binding energy, and anion diffusion barriers along PEO chains. Through a comprehensive analysis of these parameters obtained from DFT, LiTFSI has been identified as the most suitable lithium salt. The electrolytes fabricated by LiTFSI exhibited better performance. This approach, characterized by its rapidness, efficiency, and low cost, provides a viable method for screening lithium salts in developing solid-state batteries. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

Back to TopTop