ijms-logo

Journal Browser

Journal Browser

Electrochemical Research of Metal Compounds and Its Energy Storage Applications

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Physical Chemistry and Chemical Physics".

Deadline for manuscript submissions: closed (31 January 2025) | Viewed by 734

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
Interests: energy storage materials; bioengineering; energy storage devices; supercapacitor; batteries; fuel cells; solar cells; chemical physics

Special Issue Information

Dear Colleagues,

Due to their diverse electrochemical properties and potential for high-performance applications, metal compounds are at the forefront of energy storage research. Transition metal-based metal compounds, including oxides, sulfides, and phosphates/phosphates, MOFs, etc., have been explored for energy storage applications. Transition metal-based electrodes show promise as electrode materials in supercapacitors and batteries. Additionally, metal compounds have also been explored in the field of fuel cell technologies. Their unique properties and versatility make them suitable candidates for a wide range of applications, contributing to the development of more efficient and sustainable energy storage solutions. Metal compounds play a crucial role in the development of high-performance energy storage systems due to their unique electrochemical properties, which significantly impact the efficiency, capacity, and longevity of these systems.

This Special Issue delves into the latest advancements in the electrochemical research of metal compounds and their applications in energy storage technologies. All article research submissions should involve research at the molecular level as well as verified experiments.

Dr. Iftikhar Hussain
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal compounds
  • electrochemical
  • energy storage
  • batteries
  • fuel cells

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3462 KiB  
Article
Ionic Liquid Electrolyte Technologies for High-Temperature Lithium Battery Systems
by Eleonora De Santis, Annalisa Aurora, Sara Bergamasco, Antonio Rinaldi, Rodolfo Araneo and Giovanni Battista Appetecchi
Int. J. Mol. Sci. 2025, 26(7), 3430; https://doi.org/10.3390/ijms26073430 - 6 Apr 2025
Viewed by 399
Abstract
The advent of the lithium-ion batteries (LIBs) has transformed the energy storage field, leading to significant advances in electronics and electric vehicles, which continuously demand more and more performant devices. However, commercial LIB systems are still far from satisfying applications operating in arduous [...] Read more.
The advent of the lithium-ion batteries (LIBs) has transformed the energy storage field, leading to significant advances in electronics and electric vehicles, which continuously demand more and more performant devices. However, commercial LIB systems are still far from satisfying applications operating in arduous conditions, such as temperatures exceeding 100 °C. For instance, safety issues, materials degradation, and toxic stem development, related to volatile, flammable organic electrolytes, and thermally unstable salts (LiPF6), limit the operative temperature of conventional lithium-ion batteries, which only occasionally can exceed 50–60 °C. To overcome this highly challenging drawback, the present study proposes advanced electrolyte technologies based on innovative, safer fluids such as ionic liquids (ILs). Among the IL families, we have selected ionic liquids based on tetrabutylphosphonium and 1-ethyl-3-methyl-imidazolium cations, coupled with per(fluoroalkylsulfonyl)imide anions, for standing out because of their remarkable thermal robustness. The thermal behaviour as well as the ion transport properties and electrochemical stability were investigated even in the presence of the lithium bis(trifluoromethylsulfonyl)imide salt. Conductivity measurements revealed very interesting ion transport properties already at 50 °C, with ion conduction values ranging from 10−3 and 10−2 S cm−1 levelled at 100 °C. Thermal robustness exceeding 150 °C was detected, in combination with anodic stability above 4.5 V at 100 °C. Preliminary cycling tests run on Li/LiFePO4 cells at 100 °C revealed promising performance, i.e., more than 94% of the theoretical capacity was delivered at a current rate of 0.5C. The obtained results make these innovative electrolyte formulations very promising candidates for high-temperature LIB applications and advanced energy storage systems. Full article
Show Figures

Figure 1

Back to TopTop