Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Laguerre–Gauss beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 533 KB  
Article
Comparison of Different Rydberg Atom-Based Microwave Electrometry Techniques
by Eliel Leandro Alves Junior, Manuel Alejandro Lefrán Torres, Jorge Douglas Massayuki Kondo and Luis Gustavo Marcassa
Atoms 2025, 13(7), 59; https://doi.org/10.3390/atoms13070059 - 20 Jun 2025
Viewed by 478
Abstract
In this study, we have compared different Rydberg atom-based microwave electrometry techniques under the same experimental conditions and using the same Rydberg states (68S1/2, 68P3/2, and 67P3/2). [...] Read more.
In this study, we have compared different Rydberg atom-based microwave electrometry techniques under the same experimental conditions and using the same Rydberg states (68S1/2, 68P3/2, and 67P3/2). The comparison was carried out for the following techniques: (i) auxiliary microwave field, (ii) microwave amplitude modulation, and (iii) polarization spectroscopy. Our results indicate that all three techniques have a similar minimum measurable microwave electric field. A slightly better result can be obtained by performing polarization spectroscopy using a Laguerre–Gauss coupling laser beam. Full article
(This article belongs to the Section Atom Based Quantum Technology)
Show Figures

Figure 1

33 pages, 7076 KB  
Review
Numerical Simulation of an Optical Resonator for the Generation of Radial Laguerre–Gauss LGp0 Modes
by Kamel Aït-Ameur, Michael Fromager and Abdelkrim Hasnaoui
Appl. Sci. 2025, 15(6), 3331; https://doi.org/10.3390/app15063331 - 18 Mar 2025
Cited by 2 | Viewed by 465
Abstract
The research on high-order transverse modes in lasers is a subject as old as the laser itself and has been largely abandoned. However, recently several studies have demonstrated an interest in using, instead of the usual Gaussian beam, a radial Laguerre–Gauss LGp [...] Read more.
The research on high-order transverse modes in lasers is a subject as old as the laser itself and has been largely abandoned. However, recently several studies have demonstrated an interest in using, instead of the usual Gaussian beam, a radial Laguerre–Gauss LGp0 beam, as, for instance, one can observe a strong improvement, for a given power, in the longitudinal and radial forces in optical tweezers illuminated by a LGp0 beam instead of the usual Gaussian beam. Since in most commercial lasers, the delivered laser beam is Gaussian, we therefore think it opportune to consider the problems of forcing a laser to oscillate individually on a higher-order transverse LGp0 mode. We propose a comprehensive analysis of the effects of an intra-cavity phase or amplitude mask on the fundamental mode of a plano-concave cavity. In particular, we discuss the best choice of parameters favouring the fundamental mode of a pure radial Laguerre–Gauss LGp0 model. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

11 pages, 7949 KB  
Article
Dynamic Excitation of Surface Plasmon Polaritons with Vector Laguerre–Gaussian Beams
by Aldo Peña-Ramírez, Tingting Zhai, Rafael Salas-Montiel and Víctor Ruiz-Cortés
Optics 2024, 5(4), 523-533; https://doi.org/10.3390/opt5040039 - 21 Nov 2024
Viewed by 1258
Abstract
We investigate the dynamic excitation of surface plasmon polaritons (SPPs) using vector Laguerre–Gauss (LG) beams, which offer unique properties for manipulating the polarization and spatial distribution of light. Our study demonstrates the efficient coupling of SPPs with LG beams, characterized by their azimuthal [...] Read more.
We investigate the dynamic excitation of surface plasmon polaritons (SPPs) using vector Laguerre–Gauss (LG) beams, which offer unique properties for manipulating the polarization and spatial distribution of light. Our study demonstrates the efficient coupling of SPPs with LG beams, characterized by their azimuthal and radial indices (m,p), as well as polarization distribution type. Numerical simulations reveal that the vector nature of LG beams enables selective excitation of SPPs, depending on the polarization type of the beam. Experimental verification of our simulations is achieved using a gold circular Bragg grating and a spatial light modulator that generates vector LG beams. Leakage radiation imaging demonstrates the potential of vector LG beams for dynamic SPP excitation and manipulation. This study opens novel ways for the control of SPPs in plasmonic devices, such as modulators, and nanophotonic circuits. Full article
Show Figures

Figure 1

17 pages, 2817 KB  
Article
Improving the Performances of Optical Tweezers by Using Simple Binary Diffractive Optics
by Kamel Aït-Ameur and Abdelkrim Hasnaoui
Photonics 2024, 11(8), 744; https://doi.org/10.3390/photonics11080744 - 8 Aug 2024
Viewed by 1534
Abstract
Usually, optical tweezers for trapping atoms or nanoparticles are based on the focusing of a Gaussian laser beam (GB). The optical trap is characterised by its longitudinal stability (LS), expressed as the ratio of the backward axial gradient and the forward scattering forces. [...] Read more.
Usually, optical tweezers for trapping atoms or nanoparticles are based on the focusing of a Gaussian laser beam (GB). The optical trap is characterised by its longitudinal stability (LS), expressed as the ratio of the backward axial gradient and the forward scattering forces. Replacing the GB with a LGp0 beam (one central peak surrounded by p rings) does not improve the LS because the on-axis intensity distribution is the same whatever the mode order p. However, it has been recently demonstrated that a restructured LGp0 beam can improve greatly the LS. In this paper, we consider the restructuring of a LGp0 beam when passing through a simple binary diffracting optical element called a circular π-plate (CPP). For a particular radius of the dephasing zone of the CPP, it is found that the LS is multiplied by a factor corresponding to a relative increase of about 220% to 320%. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 9879 KB  
Article
Study on the Imaging Interference of a Vortex-Light-Modulated Gaussian Beam
by Yanghe Liu, Yuanhe Tang, Jian Zhou, Cunxia Li, Ningju Hui, Yishan Zhang and Yanlong Wang
Photonics 2024, 11(6), 557; https://doi.org/10.3390/photonics11060557 - 13 Jun 2024
Cited by 2 | Viewed by 1592
Abstract
Combined with vortex light and airglow, some different physical phenomena are presented in this paper. Based on the ground-based airglow imaging interferometer (GBAII) made by our group, a liquid crystal on silicon (LCoS) device on one arm of a wide-angle Michelson interferometer (MI) [...] Read more.
Combined with vortex light and airglow, some different physical phenomena are presented in this paper. Based on the ground-based airglow imaging interferometer (GBAII) made by our group, a liquid crystal on silicon (LCoS) device on one arm of a wide-angle Michelson interferometer (MI) of the GBAII is replaced by the reflector mirror to become the GBAII-LCoS system. LCoS generates a vortex phase to convert a Gaussian profile airglow into a vortex light pattern. After the Gaussian profile vortex light equation is obtained by combining the Gaussian profile airglow with the Laguerre–Gauss light, three different physical phenomena are obtained: the simulated Gaussian vortex airglow beam exhibits a hollow phenomenon with the introduction of the vortex phase, and as the topological charge (TC) l increases, the hollow range also increases; after adding the vortex factor, the interference fringe intensity can be ‘broadened’ with the optical path difference (OPD) and TC l increases, which match the field broadening technology for solid wide-angle MI; the ‘Four-point algorithm’ wind measurement for the upper atmosphere based on the vortex airglow is derived, which is different from the usual expressions. Some experimental results are presented: We obtained the influence modes of vortex light interference and a polarization angle from 335° to 245°. We also obtained a series of interference images that verifies the rotation of the vortex light, onto which is loaded a set of superimposed vortex phase images with TC l = 3 into LCoS in turn, and the interference image is rotated under the condition of the polarization angle of 245°. The controlled vortex interference image for different TC and grayscale values are completed. Full article
Show Figures

Figure 1

27 pages, 6373 KB  
Review
The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams
by Kamel Aït-Ameur
Photonics 2024, 11(3), 217; https://doi.org/10.3390/photonics11030217 - 27 Feb 2024
Cited by 3 | Viewed by 2015
Abstract
Most laser applications are based on the focusing of a Gaussian laser beam (GLB). When the latter is subject to a phase aberration such as the optical Kerr effect (OKE) or spherical aberration (SA), it is recognised that the focusing performance of the [...] Read more.
Most laser applications are based on the focusing of a Gaussian laser beam (GLB). When the latter is subject to a phase aberration such as the optical Kerr effect (OKE) or spherical aberration (SA), it is recognised that the focusing performance of the GLB is degraded. In this paper, it is demonstrated that high-order radial Laguerre–Gauss LGp0 beams are more resilient than the GLB when subject to the OKE or SA. This opens up opportunities to replace with advantages the usual GLB with a high-order LGp0 beam for some applications. Full article
(This article belongs to the Special Issue Structured Light Beams: Science and Applications)
Show Figures

Figure 1

22 pages, 1161 KB  
Article
Comparison between the Propagation Properties of Bessel–Gauss and Generalized Laguerre–Gauss Beams
by Colin J. R. Sheppard and Miguel A. Porras
Photonics 2023, 10(9), 1011; https://doi.org/10.3390/photonics10091011 - 4 Sep 2023
Cited by 7 | Viewed by 4656
Abstract
The connections between Laguerre–Gauss and Bessel–Gauss beams, and between Hermite–Gauss and cosine-Gauss beams are investigated. We review different asymptotic expressions for generalized Laguerre and Hermite polynomials of large radial/transverse order. The amplitude variations of generalized Laguerre–Gauss beams, including standard and elegant Laguerre–Gauss beams [...] Read more.
The connections between Laguerre–Gauss and Bessel–Gauss beams, and between Hermite–Gauss and cosine-Gauss beams are investigated. We review different asymptotic expressions for generalized Laguerre and Hermite polynomials of large radial/transverse order. The amplitude variations of generalized Laguerre–Gauss beams, including standard and elegant Laguerre–Gauss beams as special cases, are compared with Bessel–Gauss beams. Bessel–Gauss beams can be well-approximated by elegant Laguerre–Gauss beams. For non-integral values of the Laguerre function radial order, a generalized Laguerre–Gauss beam with integer order matches the width of the central lobe well, even for low radial orders. Previous approximations are found to be inaccurate for large azimuthal mode number (topolgical charge), and an improved approximation for this case is also introduced. Full article
Show Figures

Figure 1

14 pages, 4656 KB  
Article
Fine Structure of Optical Vortices in Linearly Polarized Laguerre–Gaussian Beams in Oblique Beams Propagating a Uniaxial Crystal
by Yuriy Egorov and Alexander Rubass
Photonics 2023, 10(6), 684; https://doi.org/10.3390/photonics10060684 - 13 Jun 2023
Cited by 7 | Viewed by 1818
Abstract
Traditional ideas about linearly polarized paraxial beam propagation along the optical axis of a uniaxial crystal suggest that at the crystal exit face, after propagation through the polarizer, the beam will form an intensity distribution in the form of a conoscopic pattern. Any [...] Read more.
Traditional ideas about linearly polarized paraxial beam propagation along the optical axis of a uniaxial crystal suggest that at the crystal exit face, after propagation through the polarizer, the beam will form an intensity distribution in the form of a conoscopic pattern. Any violation of axial propagation was considered as a perturbation of the conoscopic pattern and was not taken into account. Nevertheless, this process opens up a wide variety of transformations of polarization singularities caused by weak perturbations. In this article, the behavior of linearly polarized low-order Laguerre–Gauss beams in a uniaxial crystal is considered. The existence of a fine structure of radiation on the output face of a uniaxial crystal and the dependence of this fine structure on the parameters of the crystal and the beam are shown. Full article
(This article belongs to the Special Issue Optical Communication, Sensing and Network)
Show Figures

Figure 1

18 pages, 2330 KB  
Article
Projectile Coherence Effects in Twisted Electron Ionization of Helium
by A. L. Harris
Atoms 2023, 11(5), 79; https://doi.org/10.3390/atoms11050079 - 3 May 2023
Cited by 4 | Viewed by 2295
Abstract
Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that [...] Read more.
Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction is within the perturbative regime. This has led to a surge in studies that examine the effects of the projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored. However, the recent demonstration of sculpted electron wave packets opens the door to studying projectile coherence effects in electron-impact collisions. We report here theoretical triple differential cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role in the probability of ionization. We also demonstrate that projectiles with large coherence lengths result in cross-sections that more closely resemble their fully coherent counterparts. Full article
Show Figures

Figure 1

13 pages, 57000 KB  
Communication
Spin-Orbit Coupling in Quasi-Monochromatic Beams
by Yuriy Egorov and Alexander Rubass
Photonics 2023, 10(3), 305; https://doi.org/10.3390/photonics10030305 - 13 Mar 2023
Cited by 19 | Viewed by 1868
Abstract
We investigate the concept that the value of the spin-orbit coupling is the energy efficiency of energy transfer between orthogonal components. The energy efficiency changes as the beam propagates through the crystal. For a fundamental Gaussian beam, its value cannot exceed 50%, while [...] Read more.
We investigate the concept that the value of the spin-orbit coupling is the energy efficiency of energy transfer between orthogonal components. The energy efficiency changes as the beam propagates through the crystal. For a fundamental Gaussian beam, its value cannot exceed 50%, while the energy efficiency for Hermite–Gaussian and Laguerre–Gaussian beams of higher orders of the complex argument can reach a value close to 100%. For Hermite–Gauss and Laguerre–Gauss beams of higher orders of real argument, the maximum energy efficiency can only slightly exceed 50%. It is shown that zero-order Bessel–Gauss beams are able to achieve an energy efficiency close to 100% when generating an axial vortex in the orthogonal component in both monochromatic and polychromatic light, while for a polychromatic Laguerre–Gauss or Hermite–Gauss beam of a complex argument, the energy efficiency reduced to a value not exceeding 50%. The spin angular momentum is compensated by changing the orbital angular momentum of the entire beam, which occurs as a result of the difference in the topological charge of the orthogonally polarized component by 2 units. Full article
(This article belongs to the Special Issue Advances in Optical Communication and Network)
Show Figures

Figure 1

18 pages, 6843 KB  
Article
Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices
by Alok Kumar Pandey, Tanguy Larrieu, Guillaume Dovillaire, Sophie Kazamias and Olivier Guilbaud
Sensors 2022, 22(1), 132; https://doi.org/10.3390/s22010132 - 25 Dec 2021
Cited by 8 | Viewed by 5660
Abstract
Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light–matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in [...] Read more.
Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light–matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor. These vortex beams are obtained using spiral phase plates (SPPs) that are frequently used for high-intensity applications. The reconstructed wavefronts display a helical structure compatible with the topological charge induced by the SPPs. We affirm the accuracy of the optical field reconstruction by the wavefront sensor through an excellent agreement between the numerically backpropagated and experimentally obtained intensity distribution at the waist. Consequently, through Laguerre–Gauss (LG) decomposition of the reconstructed fields, we reveal the radial and azimuthal mode composition of vortex beams under different conditions. The potential of our method is further illustrated by characterizing asymmetric Gaussian vortices carrying fractional average OAM, and a realtime topological charge measurement at a 10Hz repetition rate. These results can promote Shack-Hartmann wavefront sensing as a single-shot OV characterization tool. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

30 pages, 4381 KB  
Review
Depolarization of Light in Optical Fibers: Effects of Diffraction and Spin-Orbit Interaction
by Nikolai I. Petrov
Fibers 2021, 9(6), 34; https://doi.org/10.3390/fib9060034 - 1 Jun 2021
Cited by 20 | Viewed by 6264
Abstract
Polarization is measured very often to study the interaction of light and matter, so the description of the polarization of light beams is of both practical and fundamental interest. This review discusses the polarization properties of structured light in multimode graded-index optical fibers, [...] Read more.
Polarization is measured very often to study the interaction of light and matter, so the description of the polarization of light beams is of both practical and fundamental interest. This review discusses the polarization properties of structured light in multimode graded-index optical fibers, with an emphasis on the recent advances in the area of spin-orbit interactions. The basic physical principles and properties of twisted light propagating in a graded index fiber are described: rotation of the polarization plane, Laguerre–Gauss vector beams with polarization-orbital angular momentum entanglement, splitting of degenerate modes due to spin-orbit interaction, depolarization of light beams, Berry phase and 2D and 3D degrees of polarizations, etc. Special attention is paid to analytical methods for solving the Maxwell equations of a three-component field using perturbation analysis and quantum mechanical approaches. Vector and tensor polarization degrees for the description of strongly focused light beams and their geometrical interpretation are also discussed. Full article
Show Figures

Graphical abstract

11 pages, 3952 KB  
Article
Characterization of the Vortex Beam by Fermat’s Spiral
by Ewa Frączek, Agnieszka Popiołek-Masajada and Sławomir Szczepaniak
Photonics 2020, 7(4), 102; https://doi.org/10.3390/photonics7040102 - 5 Nov 2020
Cited by 11 | Viewed by 3585
Abstract
In this paper, we characterize the helical beam structure through an analysis of the spiral character of the phase distribution inside a light beam. In particular, we show that a line connected with the 2π phase jump in the Laguerre–Gauss beam can be [...] Read more.
In this paper, we characterize the helical beam structure through an analysis of the spiral character of the phase distribution inside a light beam. In particular, we show that a line connected with the 2π phase jump in the Laguerre–Gauss beam can be described by a Fermat’s spiral. We propose a numerical fitting method to determine the parameters of a spiral equation for the phase distribution of the helical beam. Next, we extend the procedure to a vortex beam created by the spiral phase plate and apply it to experimental phase maps, which allows us to recover the phase shift introduced into the object beam in the optical vortex scanning microscope. Full article
Show Figures

Graphical abstract

12 pages, 4163 KB  
Article
Determining Vortex-Beam Superpositions by Shear Interferometry
by Behzad Khajavi, Junior R. Gonzales Ureta and Enrique J. Galvez
Photonics 2018, 5(3), 16; https://doi.org/10.3390/photonics5030016 - 14 Jul 2018
Cited by 16 | Viewed by 5955
Abstract
Optical modes bearing optical vortices are important light systems in which to encode information. Optical vortices are robust features of optical beams that do not dissipate upon propagation. Thus, decoding the modal content of a beam is a vital component of the process. [...] Read more.
Optical modes bearing optical vortices are important light systems in which to encode information. Optical vortices are robust features of optical beams that do not dissipate upon propagation. Thus, decoding the modal content of a beam is a vital component of the process. In this work, we present a method to decode modal superpositions of light beams that contain optical vortices. We do so using shear interferometry, which presents a simple and effective means of determining the vortex content of a beam, and extract the parameters of the component vortex modes that constitute them. We find that optical modes in a beam are easily determined. Its modal content can be extracted when they are of comparable magnitude. The use of modes of well-defined topological charge, but not well-defined radial-mode content, such as those produced by phase-only encoding, are much easier to diagnose than pure Laguerre–Gauss modes. Full article
(This article belongs to the Special Issue Optical Angular Momentum in Nanophotonics)
Show Figures

Figure 1

Back to TopTop