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Abstract: Traditional ideas about linearly polarized paraxial beam propagation along the optical
axis of a uniaxial crystal suggest that at the crystal exit face, after propagation through the polarizer,
the beam will form an intensity distribution in the form of a conoscopic pattern. Any violation of
axial propagation was considered as a perturbation of the conoscopic pattern and was not taken
into account. Nevertheless, this process opens up a wide variety of transformations of polarization
singularities caused by weak perturbations. In this article, the behavior of linearly polarized low-
order Laguerre–Gauss beams in a uniaxial crystal is considered. The existence of a fine structure of
radiation on the output face of a uniaxial crystal and the dependence of this fine structure on the
parameters of the crystal and the beam are shown.
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1. Introduction

Recently, special attention has been paid to beams that carry the so-called optical
vortices and carry a topological charge [1]. In the mid-1990s, such beams in free space
were obtained experimentally [2,3]. Since then, an intensive experimental study of singular
beams has begun. At about the same time, it was discovered that beams with optical
vortices carry angular momentum [4,5]. In addition, interest in beams containing optical
vortices has increased significantly due to the fact that it is possible to create optical tweezers
and similar objects from such beams.

However, the creation of single optical vortices carried by paraxial beams of the
Laguerre–Gauss and Bessel–Gauss types faces serious technical difficulties. The fact is that
the traditional method of obtaining optical vortices is based on the diffraction of light or on
computer-synthesized holograms [2,3] or with spiral phase plates [6,7]. These methods are
based on strict observance of the diffraction conditions near the phase singularity and are
critical to the wavelength. In this case, special mention should be made of optical beams
that have the property of Fourier invariance [8,9]. However, in the works [10–12], it was
possible to avoid such stringent requirements for the formation of an optical vortex due to
the processes of light propagation in a uniaxial anisotropic medium. It was shown that a
circularly polarized beam propagating along the optical axis of an anisotropic medium is
capable of forming optical vortices on the axis with the same localization, regardless of the
wavelength.

Traditional ideas about a linearly polarized paraxial beam passing along the optical
axis of a uniaxial crystal suggest that at the exit from the crystal, after passing through the
polarizer, the beam forms an intensity distribution in the form of a Maltese cross [13]. Such
a picture is the hallmark of a uniaxial crystal.
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In terms of polarization singularities, the conoscopic pattern arises from the superpo-
sition of two circularly polarized beams carrying vortices with a double topological charge
of the opposite sign. In fact, this picture is a field with perpendicular edge dislocations.

When the beam is tilted relative to the optical axis, the double vortices leave the beam,
and the structure of edge dislocations must undergo structural transformations. The main
volume [14,15] of theoretical and experimental studies mainly concerns the study of the
structure of conoscopic patterns arising in axial beams. Conoscopic carines are interference
patterns in a converging polarized beam obtained in crossed polarizers between which the
anisotropic medium under study is located. The conoscopic pattern corresponding to the
circular state of polarization on the input face of an anisotropic crystal is localized in the
focal plane of the objective. However, it also has the form of concentric rings. In the center
of the picture, there are four topological dipoles separated by light stripes. Any violation of
axial propagation was considered as a perturbation of the conoscopic pattern and was not
taken into account. However, this process hides a variety of transformations of polarization
singularities caused by weak perturbations.

It should be noted that studies [16–18] are devoted to the study of the structure of
polarization singularities in low-order Laguerre–Gauss beams that arise after excitation
of a crystal by linearly polarized light. The authors of these papers focused on linearly
polarized beams. Their model is based on two linearly polarized beams carrying optical
vortices (ordinary and extraordinary) propagating at slightly different angles.

The authors argue as follows: For beams with a large waist radius w0 ≈ 700µm,
the wave front is an almost flat region far from the singularity. The tilt of the beam
leads to the appearance of a phase difference between the ordinary and extraordinary
beams, and a change in the phase difference π/2 gives a periodic reproduction of the state.
However, since the linearly polarized components of the beams have a small divergence,
a nonuniformly polarized field distribution with a network of polarization singularities
arises in the observation plane. A small change in the angle of inclination, such that
the phase difference π is reversed, is equivalent to the action of a λ/2 plate: right-hand
circular polarization reverses the direction of circulation. If moving along the C-lines, then
it will intersect the L-surfaces (surfaces with linear polarization) at points separated by a
distance where the phase difference between the beams differs by π. Although the C-line
remains continuous, points of switching of the directions of circular polarization appear at
the intersections of the surface, the so-called polarization unfolding. Moreover, the total
topological index over the entire area of the observation field remains constant. However,
the linearly polarized beam field in the crystal is slightly deformed along the direction
of the initial polarization [6], which means that: (1) the shape of the C-lines cannot have
axial symmetry; (2) the structure of polarization singularities depends on the beam tilt
plane; and (3) the structure of the C-line depends on the angle of orientation of the linear
polarization with respect to the tilt plane of the beam. The authors of [16,17] do not take
this into account. Therefore, the studies presented in [16,17] are of a particular nature and
cannot be generalized to the entire variety of manifestations of singularities in crystals.
They are limited, firstly, only to the case when the input linear polarization is oriented at
an angle γ = 45

◦
to the beam tilt plane; secondly, the beam tilt angle varies within very

small limits (0.2 degrees); thirdly, the angle to the crystal axis is θ = 40
◦
; and fourthly,

considering the case of very large beam waist radii ( w0 ∼ 700µm). The aim of this work
is to study the structure of scalar and polarization singularities in a wide range of slope
angles, which covers the range from paraxial cases to asymptotic variants. The results
obtained in this publication can be used in modern photonics, for example, to develop
improved configurations of the shape and types of optical beams, to find states (C-lines and
L-surfaces) of polarization of anisotropic media that cannot be created by other means, to
overcome any technical limitations associated with the improvement of design instruments
and apparatuses, including those for medical research.
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2. Evolution of Polarization Singularities in a Tilt Linearly Polarized Fundamental
Gaussian Beam

Let us consider the propagation of an axisymmetric light beam along the optical axis of
an unlimited homogeneous uniaxial crystal with the permittivity tensor ε = diag(ε0, ε0, ε3),
where n1 =

√
ε0 and n3 =

√
ε3 are the refractive indices along the main crystallographic

axes (n1 > n3). A beam can be represented as a set of rays propagating at different angles
α to the optical axis, and the beam axis is tilted in the yOz plane. The beam waist falls on
the front face of the crystal. As shown in [19,20], the amplitudes of partial beams can be
described as:

Ψo =
1
σo

exp

(
−i

r2

w2
0σo

)
, Ψe =

1
σo

exp

(
− r2

w2
0σe

)
, (1)

where σo,e = 1− iz/zo, e, zo,e =
ko,ew2

0
2 , and w0—beam waist radius in the plane z = 0.

To describe the field at the exit from the crystal, one can write a matrix that allows
one to estimate the evolution of a singular beam with any initial polarization propagating
obliquely to the optical axis of a uniaxial crystal.

Ψ′ =


1 −℘− 0 0
−℘+ 1 0 0

0 0 1 ℘−
0 0 ℘+ 1




Ψ′o
(m,l)

0
Ψ′e

(m,l)

0

, (2)

where ℘− = x−i(y+iαozo)
x+i(y+iαozo)

, ℘+ = x+i(y+iαozo)
x−i(y+iαozo)

, besides zoαo = zeαe.
Let us consider the case when the initial beam is linearly polarized in the plane. In

fact, this means that such a beam consists of two circularly polarized beams. In accordance
with expression (2), we find the components in the circularly polarized basis:

E+ = Ψo + Ψe − (Ψo −Ψe)e−i(2ϕ−γ), (3)

E− = (Ψo + Ψe)eiγ − (Ψo −Ψe)ei2ϕ, (4)

where E+ corresponds to the right circularly polarized field component (RCP) and E−
corresponds to the left circularly polarized field component (LCP); the angle γ characterizes
the azimuth of the slope of the linear polarization in the input plane, and if γ = 0, then
the electric vector oscillates along the direction x (has only x component). At γ = π/2, the
linear polarization is directed along the axis y.

When a linearly polarized beam (γ = 0) propagates along the optical axis of the
crystal, the field decomposes, due to diffraction on the crystal lattice, into components with
circular polarization, which form the characteristic pattern of polarization features shown
in Figure 1. From the map of polarization states shown in Figure 1, it can be seen that the
field near the beam axis is linearly polarized. At the same time, the peripheral regions of
the field have a complex polarization composition. Four areas close to the axis are clearly
distinguished, forming lemon-type polarization singularities [21]. The topological index n
of different polarization singularities is additive: a loop taken around multiple singularities
will give an index equal to the sum of the indices of the individual singularities. Orientation
ambiguity occurs at circular polarization states called C-points. C-points in particular come
in three generic types: lemons with index n = +1/2, stars with index n = −1/2, and
monstars with index n = +1/2. The monstar is a less common transition singularity
formed in creation and annihilation events between singularities.
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Figure 1. Polarization distribution for a linearly polarized beam γ = 0. For a crystal thickness
z = 2 cm, beam waist radius w0 = 10 µm, and beam tilt angle αo = 0

◦
. Circles correspond to lemons,

squares to stars.

These singularities are located on lines oriented at an angle θ = ±π/4 to the axis
x. Singularities close to them, located on the same line, look like stars. In terms of scalar
singularities, regions of the lemon and star types correspond in each component to optical
vortices having opposite unit charges.

At C-points, S1 = S2 = 0, and for L-lines, S3 = 0 [13,21]. Polarization singularities
of ellipse as well as vector fields appear as phase singularities in the complex Stokes field
S12 = S1 + iS2, constructed from the Stokes parameters. These singularities are called
Stokes singularities, with Stokes singularity index σ12. Instead of two indices, namely,
the C-point index for ellipse fields and Poincare–Hopf index for vector fields, a single
index known as the Stokes singularity index can be used. C-points are phase vortices of
topological charge l = ±1, and their Stokes singularity index is σ = ±1.

Typical pictures of the distribution of optical vortices in the beam components are
shown in Figures 2 and 3. In order to identify the sign of the vortex charge in adjacent
columns, interference patterns are shown. Each row in the column corresponds to the
original beams with different waist radii. As can be seen from the figures, the structure
of singularities in the beam does not depend on its waist, but on the position of optical
vortices on rays with charges θ = 45

◦
, 135

◦
, 225

◦
and 315

◦
. The smaller the beam waist

radius, the closer the position of the optical vortices to the beam axis. It can be concluded
from the form of interference patterns that each quadruple of vortices forms a characteristic
topological quadrupole for monochromatic [22] and polychromatic [23] beams. The vortices
lying on the rays θ = 45

◦
, 225

◦
and θ = 135

◦
, 315

◦
have opposite topological charges. In

addition, the optical vortices in the circularly polarized components are specularly reflected
with respect to each other. That is, the vortices lying on the same beam have opposite signs
of the topological charge.

Such a symmetrical distribution of charges in the components has a simple physical
meaning: if a beam is observed in a linearly polarized basis, then the complex pattern of
vortices in the beams will be replaced by a typical Maltese cross. When the beam is tilted,
the pattern of singularities shifts synchronously, as shown in Figure 4.
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Figure 4. Displacement of singularities at tilt of the beam axis in the RCP component, beam waist
radius wo = 5 µm, crystal thickness z = 2 cm at an angle of inclination (a) αo = 0

◦
; (b) αo = 0.2

◦
;

(c) αo = 0.4
◦
; (d) αo = 0.6

◦
; (e) αo = 0.8

◦
; and (f) αo = 1

◦
.

At large beam inclinations, the combined field do not separate into two separate
partial beams, since the extraordinary beam is interferential suppressed, and we observe
only an ordinary beam with linear polarization. This beam completely repeats the original
Gaussian beam, and all phase and polarization singularities disappear.
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3. Structure of the Field of an Inclined Linearly Polarized Laguerre–Gauss Beam

Let us consider the structure of the field of an inclined beam, which is formed from
a linearly polarized Laguerre–Gaussian beam with m = 0, l = −1, polarized at an angle
90− γ to the plane. It should be noted that the features of the generation of a topological
charge (TC) based on an anisotropic medium [10,11] are that only in one of the polarization
components a beam is created that carries TC = ±2 (depending on the circulation of the
input polarization). If we use a Laguerre–Gauss beam (TC = +1) incident on the input
plane of the crystal at small angles to the z-axis, then in this case we obtain (for different
polarization circulations) TC = 1 or TC = 3, respectively. Using expression (2), we find

E(L)
+ =

[
x−i(y−αoz)

w0σo
Ψo +

x−i(y−αez)
w0σe

Ψe

]
eiγ−

− x−i(y+αozo)
x+i(y+αozo)

[
x−i(y−αoz)

w0σo
Ψo − x−i(y−αez)

w0σe
Ψe

]
e−iγ

, (5)

E(L)
− =

[
x−i(y−αoz)

w0σo
Ψo +

x−i(y−αez)
w0σe

Ψe

]
e−iγ−

− x+i(y+αozo)
x−i(y+αozo)

[
x−i(y−αoz)

w0σo
Ψo − x−i(y−αez)

w0σe
Ψe

]
eiγ

. (6)

For coaxial propagation (αo = 0), the RCP component has a term containing an optical
vortex with a negative triple topological charge, while the LCP component contains an
optical vortex term with unit negative topological charge. This symmetry of the circularly
polarized components of the electric field is essentially manifested in the difference in their
oblique propagation in the crystal. Figure 5 illustrates the change in the magnitude of the
total intensity in each of the circular components with a change in angle αo, if the angle of
inclination is γ = π/4.
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Figure 5. The dependence of the intensity of the RCP (red) and LCP (blue) components for different
beam waist radii wo, for the crystal length z = 2 cm, (a) wo = 10 µm; (b) wo = 25 µm; and
(c) wo = 50 µm.

In contrast to the case of a circularly polarized beam propagating through a crystal, a
beam with an initial linear polarization in the z = 2 cm plane has equal intensities of the
RCP and LCP components at αo = 0. Increasing the tilt angle of the initial beam first leads
to a rapid decrease in the intensity in the LCP component, while the intensity of the RCP
component increases.

It is quite remarkable that the amplitude of the change in intensity is rigidly related to
the value of the beam waist radius w0. The smaller the beam waist radius, the smaller the
initial amplitude. For example, for a beam with a waist radius w0 = 10 µm (Figure 5a), the
maximum deviation of the normalized intensity Inorm = 0.5 from the average value (∆I) is
∆Imax = Inorm − ∆I = 0.15. By the normalized intensity (Inorm) value we mean the ratio of
the intensity value I(α) measured at an angle to the highest (maximum) intensity value
I(αmax):Inorm = I(α)/I(αmax). At the same time, the maximum deviation from the initial
value in the intensities of the components for a beam with a waist radius w0 = 50 µm
(Figure 5c) reaches the value ∆Imax = 0.45. Since the RCP and LCP intensity fluctuations
are in antiphase for beams with a relatively large waist radius (w0 = 50 µm) already for
the angle αo = 0.5

◦
(see Figure 5), the intensity in the RCP component practically doubles,
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while the intensity in the LCP becomes vanishingly small. In fact, there is a conversion
between LCP and RCP polarization. At the same time, for beams with a relatively small
waist radius (w0 = 10 µm), the intensity fluctuations are very small.

Such a difference in the conversion of polarizations in inclined beams with different
waists cannot but affect the evolution of polarization and scalar singularities in the beam
components. Figure 6 shows the intensity distributions and interference patterns for a beam
with a waist radius w0 = 4 µm for the LCP and RCP components. The picture clearly shows
two chains of optical vortices (Figure 6a), located along the rays θ = 0

◦
, 90

◦
, 180

◦
, 270

◦
. As

in the case of linear polarization with γ = 0, unit vortices along each ray have alternating
signs of topological charges. The axial vortex has a charge equal to l = −1, and the vortices
closest to it, located along the axis Oy, have charges l = 1. When the beam is tilted in the
plane yOz, at first glance it seems that the pattern of singularities should shift down along
the axis Oy; in this case, the axial optical vortex must slip off the beam axis, and its place
must be taken by a vortex with the opposite topological charge, and so on. However, in
reality, the picture of vortex evolution in each beam component is much more complicated.
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Figure 6. Intensity distribution of a linearly polarized beam γ = π/4, with a change in tilt angles αo,
crystal length z = 2 cm, in the LCP component (a–c), and in the RCP component (d–f).

As can be seen from Figure 6d–f, the structure of an RCP component is very different
from an LCP component. From the comparison of interference patterns Figure 6a,d, it
can be seen that the charges of the axial vortices are the same, but the vortices in the first
ring have opposite charges. When changing the angle αo, the unfolding zones for different
components fall at different angles: for LCP components, on αo = 0.6

◦
(Figure 6b), for RCP,

on αo = 0.9
◦

(Figure 6f). The entire complexity of the situation is already manifested in the
example of beams with a relatively large waist radius w0 = 50 µm (see Figure 7).

Thus, in the case of coaxial beam propagation, we observe an almost symmetrical
intensity distribution with a centered optical vortex. All peripheral vortices disappear.
When the beam is tilted, a number of topological reactions occur, which lead to a radical
structural rearrangement of the entire beam. Under the concept of the topological reaction
of optical vortices in an anisotropic sheaf, we mean the addition or subtraction (annihi-
lation) of the topological charge of a given beam. As we can see from the comparison
of two similar processes (Figures 6 and 7), the structural transformations in them are
fundamentally different.
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Figure 7. Structure of the intensity distribution and interference pattern (a–c) for a Laguerre–Gauss
beam with a waist of w0 = 50 µm and a crystal length of z = 2 cm in the RCP component.

4. Polarization Unfolding and Doubling of Scalar Singularities
4.1. Polarization Unfolding at γ = 45

To understand the processes of evolution of polarization and phase singularities in
a linearly polarized beam, let us consider the form of C-lines for beams with a relatively
large w0 = 50 µm, which is shown in Figure 8 for the case of input polarization tilt relative
to the beam tilt plane γ = 45

◦
.
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Figure 8. The trajectory of C-points at small angles, depending on the angle of inclination, for a
crystal with a length of z = 2 cm, w0 = 50 µm. RPC—red, LPC—blue.

As in the case of excitation of a crystal by a beam with circular polarization, for linear
polarization we can distinguish four main sections of the trajectory in which the structure
of the lines and the course of topological reactions are different: (1) the initial section in the
vicinity of the angle αo ≈ 0

◦
; (2) an intermediate section up to the region of critical angles;

(3) the region of critical angles; and (4) asymptotic region at relatively large angles αo or
large crystal lengths z. Figure 8 corresponds to the first two corner sections. As can be
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seen from the figure, regarding value αo ≈ 0.7
◦
, before, the changes in the trajectories are

quite small, but after this angle, the number of trajectories of C-points increases, and the
trajectory becomes much more complicated.

In the area near the axial propagation (αo = 0) of the beam, the pattern of C-lines is
shown in Figure 9.
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Figure 9. The trajectory of C-lines at small angles, depending on the angle of inclination, for a crystal
with a length of z = 2 cm, w0 = 50 µm, RPC—red, LPC—blue.

To understand the structure of the C-lines in the initial section, let us first turn to
the distribution of the states of the field polarization. An optical vortex is located on the
beam axis, which is a degenerate state in the form of a field with linear polarization, which
lies at the point of intersection of two L-lines. These two L-lines are separated by four
“lemons” located a little farther from the beam axis. Note that the total topological index
of this system, taking into account the sign of the polarization circulation, must be equal
to the topological index of the scalar field (topological charge l = −1). Lemons have a
topological index s = −1/2. In the peripheral region are two RCP lemons and two LCP
lemons. Therefore, the full index [21] is:

S = −1/2− 1/2− 1/2(−1)− 1/2(−1) + (−1) = −1. (7)

With a small beam tilt, four lemons are slightly shifted down in the beam tilt plane. At
the same time, the degenerate state at the point of intersection of two L-lines on the beam
axis splits into two singular points—a lemon and a star with opposite circular polarizations
(star topological index). The total topological index of the sheaf is:

S = −1/2− 1/2− 1/2(−1)− 1/2(−1)− [1/2− 1/2(−1)] = −1. (8)

Thus, the tilt of the beam will not change the overall topological index of the system.
Returning to Figure 9 we see that a lemon and a star are born near the axis at point 1,
corresponding to the linearly polarized initial vortex. As the angle increases, near the beam
axis at point 2, a lemon–star pair is born, which corresponds to the topological dipole of
vortices in the LCP component. The singularities of this pair move in opposite directions:
the lemon approaches the paraxial star and annihilates with it at point 3 (the point of
polarization unfolding), while the star of the dipole pair is forced out to infinity. Thus, a
lemon (red line) remains in the beam near the axis, which corresponds to a vortex with
a negative topological charge. There is a sign switching of the circulation of polarization
singularities, but the signs of charges in the circularly polarized components have not
changed. Further, at point 4 on the red trajectory, a lemon–star dipole pair is again born,
corresponding to the topological dipole in the RCP component, and at point 5, the process
is repeated. This process corresponds to the annihilation of the circular polarization and,
on the whole, looks like a switch in the circulation direction along one of the C-lines.
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Just a simplified version of such an unfolding is discussed in [16,17]. In the future, this
process is regularly repeated. In fact, such a process corresponds to the annihilation of an
optical vortex with a negative charge in one component and the appearance of the same
vortex in another component [19,20]. This process can be considered as an exchange of
optical vortices between circularly polarized components, in which the conservation law of
the total topological index is satisfied, and the magnitude and sign of the optical vortex
involved in the exchange does not change.

4.2. Doubling of Scalar Singularities at γ = −45
◦

In fact, if one follows the evolution of optical vortices in each of the circularly polarized
components, then a situation arises when, in the entire section of the paraxial trajectory,
an optical vortex is absent in the circularly polarized component but appears in another
component. This effect of the exchange of optical vortices between the components is
characteristic of the entire intermediate segment of the trajectories of polarization and
scalar singularities. However, the course of this process changes if the sign of the slope of
the linear polarization at the entrance to the crystal is reversed ( γ = 45

◦ → γ = −45
◦

).
Indeed, referring to Figure 10 for the RCP component propagating along the optical

axis of the crystal, we see that the signs of the peripheral vortices along the direction Oy
have changed.
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Figure 10. Change in the field structure upon rotation of the input polarization γ = 45
◦

(a,b) → γ = −45
◦

(c,d) for a beam with a waist radius of w0 = 8 µm that has passed through a crystal with a length of
z = 2 cm.

It can be assumed that when the beam is tilted in the plane, the axial yOαo vortex at
certain angles will encounter vortices with identical signs of topological charges, and at first
glance, instead of unfolding, we should obtain a doubling of the topological charge on the
axis in certain planes of the crystal. To find out the correctness of such an assumption, it is
necessary to study the evolution of the fine structure of scalar singularities. By the concept of
fine structure [21], we mean not only the polarization structure (C-lines and L-surfaces), but
also the structure of the topological charge of a singular beam. A characteristic interference
pattern in the region of convergence of vortices with the same charge signs is shown in
Figure 11.
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Figure 11. Doubling of the topological charge (a,b) at γ = −45
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, and annihilation of the optical vortex
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◦

for a crystal of length z = 2 cm and tilt angle αo = 0.37
◦
, with a beam waist radius

w0 = 10 µm.
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The interference pattern in Figure 11b, for beams with a waist radius w0 = 10 µm,
illustrates a double helix characteristic of vortices with a double topological charge. For
comparison, in Figure 11c,d the picture of annihilation in the same plane is shown. To
verify the fact of vortex doubling on a macroscopic scale, we plotted the trajectories of
optical vortices in the RCP in this section for a beam with a waist radius of w0 = 50 µm.
The corresponding trajectory is shown in Figure 12.
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Figure 12. Trajectory of the C-point in the RCP component for a beam with beam waist radius
w0 = 50 µm, for a crystal length z = 2 cm.

We see that the axial vortex in the RCP component propagates without external
disturbances at small tilt angles. As it approaches the polarization singularity unfolding
plane at γ = 45

◦
(see Figure 12), a dipole pair of vortices is born near the axis at point

A (green circle); one of them quickly moves away from the beam axis, and the second
negatively charged vortex approaches the axial one and the negatively charged vortex.
However, as it approaches, repulsion of the trajectories occurs. Therefore, a vortex with
a double topological charge l = −2 does not arise. However, at the same time, a vortex
propagates along the axial trajectory in the LCP component, creating the appearance of
polarization unfolding. In contrast to the case of the polarization tilt angle γ = 45

◦
,

where true unfolding occurs, accompanied by the event of vortex annihilation in one of
the components, in the case of γ = −45

◦
the vortices do not annihilate in one of the

components, but simply leave the beam. Therefore, polarization unfolding as such does
not occur.

Such a process of exchange of optical vortices between orthogonally polarized compo-
nents near L-surfaces is characteristic of the entire zone of intermediate angles. In fact, the
above-described exchange processes are alternately repeated up to the critical angle.

It is important to note that in the case of the initial linearly polarized beam, it is
impossible to divide the trajectories into two types: longitudinal (the main trunk of the
trajectory) and transverse, as was the case when the crystal was excited by a circularly
polarized beam. Switching the polarization circulation in the unfolding planes eliminates
such splitting. Part of the trajectories of vortices in linearly polarized beams is transverse,
while the central parts of each trajectory are almost parallel to the axis of the original beam.

4.3. Splitting Singular Beams

Thus, the trajectory has a mixed character up to critical angles. When the tilt angle of
the initial beam axis reaches the critical angle, the trajectory structure changes significantly.

Figure 13 shows two types of trajectories for RCP (Figure 13a) and LCP (Figure 13b)
beams in the vicinity of the critical angle. At the critical angle [24,25], the lateral branch of
the trajectory gradually bends, forming the trunk of the second beam. The next branch of the
trajectory also bends, forming the stem of the first beam. The shape of both stem trajectories
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resembles a spiral. In this case, the direction of twisting of the spirals for both RCP and LCP
is the same, and the trajectories of these polarization points are symmetrical. The critical
angle conditions remain the same as for beams with the initial circular polarization.
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5. Conclusions
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planes, an exchange of vortices
between the orthogonal components of the beam is observed, provided that the magnitude
and sign of the topological charge are preserved. The exchange of vortices is accompanied
by a chain of topological reactions, which consist in the fact that paraxial vortices in the
circularly polarized components of the beam either annihilate alternately or are abruptly
forced out to infinity. The process of annihilation of vortices is typical for the orientation
of linear polarization at an angle γ = 45

◦
, and the process of displacement of vortices is

typical for an angle γ = −45
◦
.

The method described in this article can be applied by other researchers to analyze
the properties of spin and orbital moments in free space [26], to analyze the shapes and
properties of beams that carry a topological charge, to study anisotropic media [27], and to
study the properties of topological charges [28] both in anisotropic media and in weakly
turbulent atmospheric media.

The results obtained in this publication can be used in modern photonics, for example,
to develop improved configurations of the shape and types of optical beams, to find states
(C-lines and L-surfaces) of polarization of anisotropic media that cannot be created by other
means, and to overcome any technical limitations associated with the improvement of
design instruments and apparatuses, including those for medical research.
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