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Abstract: In this paper, we characterize the helical beam structure through an analysis of the spiral
character of the phase distribution inside a light beam. In particular, we show that a line connected
with the 2π phase jump in the Laguerre–Gauss beam can be described by a Fermat’s spiral. We propose
a numerical fitting method to determine the parameters of a spiral equation for the phase distribution
of the helical beam. Next, we extend the procedure to a vortex beam created by the spiral phase plate
and apply it to experimental phase maps, which allows us to recover the phase shift introduced into
the object beam in the optical vortex scanning microscope.

Keywords: optical vortices; Fermat’s spiral; phase recover; interferometry

1. Introduction

Structured light with non-Gaussian intensity profiles and with spatially variant phase distributions
is getting attention in many fields of optical science and technology. A special case of such beams is a
vortex beam, which features a helical shaped wavefront and annular intensity distribution [1,2].
A specific example of this kind of beam is, for example, the Laguerre–Gauss (LG) beam [3].
During propagation, the phase of this beam rotates around a line, where the phase value is undetermined.
At the screen, the line is reduced to a point, which is usually called the vortex point. One of the
interesting physical features of the vortex beam is its donut-shaped intensity distribution. In the
intensity pattern, one can observe a dark area (the vortex core) surrounded by a bright ring [4].
Another unique aspect of this beam is the phase distribution. Its contour lines reveal a spiral character.
Many methods have been used to characterize a vortex beam regarding its intensity profile. The bright
ring of the ideal vortex beam is circular, with a diameter that encapsulates information of the beam
size [5]. In the case of optical imperfections, the intensity profile loses its spherical symmetry, changing,
for example, into an elliptical one [6,7]. There are also methods to characterize a vortex beam by
looking at the correlation between the measured and pure (ideal) modes [8] or to identify order modes
by its orbital angular momentum spectra [9]. In this paper, we propose a new way for characterizing a
vortex beam through the analysis of its phase distribution contour. We show that the phase profile of
the LG beam can be described by a Fermat’s spiral with parameters that determine the curvature of the
beam wavefront, as well as its spiral orientation. Moreover, we propose a procedure for recovering
parameters of the spiral from the phase map. We also show that this concept of beam description can be
applied in the case of a helical beam created by the spiral phase plate which is used in the optical vortex
scanning microscope [10,11]. In the experimental part, we apply this new way of beam description to
recover the phase shift introduced into the object beam in the optical vortex scanning microscope.
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2. Laguerre–Gauss Beam and a Fermat’s Spiral in the Phase Profile

The complex amplitude of the Laguerre–Gauss beam (mode LG0m*) can be expressed in Cartesian
coordinates by Equation (1):

LG(x, y) = A · (x + σiy)m
· exp

(
−B

(
x2 + y2

))
(1)

where σ = ±1, and A and B belong to the complex numbers and m is topological charge, which measures
the phase change in one close trip around the axis (m = 1, 2, 3, . . . ). Figure 1 presents a contour plot of
the arg(LG(x, y)). It is shown below that level sets of a function form a family of Fermat’s spirals [12].
First, by passing to polar coordinates x = r cosϕ, y = r sinϕ, one gets arg(x + σiy)m = σmϕ by the
Moivre’s formula. Using arg(exp(z)) = Imz, x2 + y2 = r2, and the addition rule for arguments of
complex numbers [13] one obtains:

LG(r,ϕ, z) =√
Re(A)2 + Im(A)2r|m| · exp

(
−Re(B) · r2

)
· exp

{
i
[
mσϕ+ arg(A) − Im(B) · r2

]} (2)

Photonics 2020, 7, x FOR PEER REVIEW 2 of 11 

 

2. Laguerre–Gauss Beam and a Fermat’s Spiral in the Phase Profile 

The complex amplitude of the Laguerre–Gauss beam (mode LG0m*) can be expressed in 
Cartesian coordinates by Equation (1): 

( ) ( )( )2 2( , ) expmLG x y A x iy B x yσ= ⋅ + ⋅ − +  (1) 

where 1σ = ± , and A and B belong to the complex numbers and m is topological charge, which 
measures the phase change in one close trip around the axis (m = 1, 2, 3, …). Figure 1 presents a 
contour plot of the arg( ( , ))LG x y . It is shown below that level sets of a function form a family of 
Fermat’s spirals [12]. First, by passing to polar coordinates cosx r ϕ= , siny r ϕ= , one gets 
arg( )mx iy mσ σ ϕ+ =  by the Moivre’s formula. Using arg(exp( )) Imz z= , 2 2 2x y r+ = , and the 
addition rule for arguments of complex numbers [13] one obtains: 

( ) { }2 2 2 2

( , , )

Re( ) Im( ) exp Re( ) exp arg( ) Im( )m

LG r z

A A r B r i m A B r

ϕ

σϕ

=

 + ⋅ − ⋅ ⋅ + − ⋅ 
 (2) 
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Tangent line 2b aϕ = − . 
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2
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Figure 2 presents the exemplary phase maps calculated using Equation (3) and printed in 
grayscale, for different values of parameters α (Equation (7)) and β (Equation (8)). The phase 
distribution reveals a characteristic 2π jump, which we call the phase step line. As stated above, it 

Figure 1. (a) Equiphase lines from Equation (1) form a set of spirals, each spiral can be viewed as single
branches of Fermat’s spirals (case m = 1); (b) Lines of the constant phase 0 and π form a complete
Fermat’s spiral (both branches plotted with different colors), (b) tangent line ϕ = 0; (c) Tangent line
ϕ = −b2/a.

From the above equation we get:

AN(x, y) = argA + σmϕ− ImB · r2(mod2π) (3)

If σ = sgn(ImB), then σ/ImB = 1/|ImB|. Hence, a level set of the function AN in polar
coordinates,AN(r cosϕ, r sinϕ) = Φ, is a curve given by a formula:

r2 = a2ϕ+ b = a2
(
ϕ+ b/a2

)
(4)

where
a =

√
m/|ImB|andb = (argA−Φ)/ImB (5)

The curve described by Equation (3) is a Fermat’s spiral with a tangent line at r = 0 equal to
ϕ = −b/a2. Two cases of tangent lines are presented in Figure 1b,c. Equation (4) can be rewritten as:

ϕ = α · r2 + β (6)

which is a more convenient form to perform the numerical fitting. Here,

α =
1
a2 (7)

β = −
b
a2 . (8)
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Figure 2 presents the exemplary phase maps calculated using Equation (3) and printed in grayscale,
for different values of parameters α (Equation (7)) and β (Equation (8)). The phase distribution reveals
a characteristic 2π jump, which we call the phase step line. As stated above, it forms a Fermat’s
spiral. Figure 2a,b presents the phase maps with the same value of parameter α and different β values,
showing that β indicates spiral orientation. Figure 2b,c shows the same β value and different α values.
Here, one can see that α is responsible for spiral density. Thus, spiral density depends on the parameter
α alone, while the parameter β affects the spiral orientation.
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Figure 2. Phase distribution obtained by using Equation (2) for m = 1 and different values of α and
β. (a) α = 13.9 (1/mm2) and β = 0.77; (b) α = 13.9 (1/mm2) and β = −0.79; (c) α = 5.26 (1/mm2) and
β = −0.79.

Equations (1) and (2) can be compared to the LG equation expressed by the physical parameter of
the Gaussian beam [3]:

LG(r,ϕ, z) =

E0
w0
w ·

(
r

w(z)2

)|m|
· exp

(
−

r2

w(z)2

)
· exp

[
−i

(
mϕ+ k·r2

2R(z) + kz + ΦG + φ0

)] (9)

where w0 is a beam waist, w(z) = w0

√
1 + z2

z2
R

is transverse beam dimension, R(z) = z
(
1 +

z2
R

z2

)
is radius

of curvature of the beam wavefront, zR =
π·w2

0
λ is Rayleigh range, ΦG is Gouy phase, and φ0 is initial

phase. By comparing Equations (2) and (9), one reads that ImB = k
2R(z) and ReB = 1

w(z)2 . Applying

Equations (5) and (7), one gets the expression for the radius of curvature of the wavefront in terms of
the parameter α:

R =
k

2mα
(10)

The value of β indicates an angle of tangent line at radial coordinate r = 0 (see Figure 1).
In the next paragraphs, we describe a procedure for recovering the parameters encoding Fermat’s

spiral (α, β in Equation (6)), first, from numerical phase maps, and then from the phase maps obtained
in the experiment.

3. Numerical Fitting Procedure

To demonstrate how the spiral equation can be found and verify the fitting procedure, we started
from numerically generated phase maps. In the first step, the complex amplitude of the vortex beam is
calculated using Equation (1), from which the phase term has been extracted.

The phase values plotted modulo-2π are presented in Figure 3a as a surface plot. One can see
the 2π phase jump (from −3.14 rad to 3.14 rad) which forms a spiral line. It is one of many isophase
lines on the map but it is the easiest to find. This phase jump line can be treated as an edge and can be
extracted using Roberts method [14] for edge detection used in image processing. The results of this
step are presented in Figure 3b. In this way, we obtain Cartesian coordinates of points forming a spiral
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(Figure 3b) which, next, have to be transformed into polar coordinates (radial radius r and azimuth
angle ϕ).Photonics 2020, 7, x FOR PEER REVIEW 4 of 11 
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Figure 3. (a) Phase distribution of the Laguerre–Gauss (LG) beam (m = 1), phase values plotted
modulo-2π. Edge in this figure is 2π phase jump; (b) Points assigned to the 2π phase jump detected
by Roberts algorithm for edge detection; (c) Spiral line from (b) expressed in polar coordinates.
Unwrapping is needed to get the correct values of azimuth angle ϕ.

In the next step of calculations, the received points are sorted according to radial radii, and then
unwrapping is necessary to assign the proper value of the azimuthal angle to the radial radius. Without
unwrapping, an azimuth angle ranges from −π to π, which is not the case for the spiral coordinates
(Figure 3c). Increasing the azimuth angle enables a recognition of subsequent twirls of the spiral.
Now, coordinates are set in proper order in order to reconstruct a curve expressed by Equation (6).
In order to determine the values of parameters α and β, we use a nonlinear least squares method
without normalization [15]. The nonlinear least squares is the form of least squares analysis used
to fit a set of mk observations with a model that is nonlinear in “n” unknown parameters (mk ≥ n).
The basis of the method is to approximate the model by a linear one and to refine the parameters by
successive iterations.

We simulated numerically a beam with an optical vortex with the following optical characteristics:
values A and B (Equation (1)) for this beam were equal to A = −0.0177 + 0.0797i and B = 0.8139 +

8.9525i
[

1
mm2

]
, λ = 0.633 · 10−3[mm] and correspondingly α = 8.9525

[
1

mm2

]
and β = 1.3521. The results

of a spiral recovering are presented in Figure 4. Figure 4a shows two spirals, one spiral extracted from
numerically generated helical wavefronts (dots), and a second spiral (circles) given by Equation (6)
with the recovered values of α and β. Values of parameters are fitted (with 95% confidence bounds) as
α = 8.95 ± 0.01

[
1

mm2

]
and β = 1.35 ± 0.1. Figure 4b displays a dependence between the radial radius

and azimuthal angle for both spirals. The orientation (determined by the tangent line) of the calculated
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spiral was β = 77.3 ± 0.7◦, while the radius of the wavefront curvature of the beam (Equation (9)) is
R = 357 mm. One sees that, in this way, we are able to recover the spiral characteristics.
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Figure 4. Results of spiral recovering (m = 1), (a) Comparison of two spirals, numerically generated
(circles) and fitted (points), recovered spiral equation is ϕ = 8.95r2 + 1.35; (b) Comparison of radial
radius and azimuthal angle of both spirals.

For the LG beam with higher topological charges, fitting is more complicated, but can be done.
There are more 2π phase jumps lines forming Fermat’s spirals in the phase distribution. In these cases,
the points found with the Roberts method must be separated into separate spirals. If the points are
converted to polar coordinates and arranged in an increasing order of the radius, then, the particular
spirals can be separated based on the second coordinate, the azimuth angle ϕ. Figures 5 and 6 present
the results of the algorithm for topological charges, m = 3 and m = 4, respectively, together with the
fitted parameters α and β. One can see that the values of parameter α are kept almost constant for
the given topological charge while the β values change, pointing out that the subsequent spirals are
rotated by an angle of 119◦ ± 2◦ in the case of m = 3 and 90◦ ± 2◦ in the case of m = 4.
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Figure 5. Results of fitting Fermat’s spirals to the LG beam with topological charge m = 3. Parameters
of subsequent spirals are (95% confidence bounds). (1) Spiral 1, α = 4.666 (4.659, 4.672) (1/mm2) and
β = −1.172 (−1.179, −1.164); (2) Spiral 2, α = 4.589 (4.583, 4.595) (1/mm2) and β = 3.083 (3.076, 3.09);
(3) Spiral 3, α = 4.653 (4.647, 4.659) (1/mm2) and β = 0.944 (0.937, 0.951).

In the experimental part, which is described in the next section, the vortex beam is generated by
the spiral phase plate (SPP). In this case, the complex amplitude is described by the sum of two special
Bessel functions ([16], Equation (22)). We numerically generate phase maps and intensity distribution
within such beam and notice that the spiral line can be divided into two parts, i.e., one Fermat’s spiral
fits the internal part of the beam (Figure 7a) while the second Fermat’s spiral fits the external areas
of the beam (Figure 7b). In the experiments, we examined only the central area of the beam (inside
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the bright intensity ring), therefore, the part of the spiral included, only in this area, has been taken
into account.Photonics 2020, 7, x FOR PEER REVIEW 6 of 11 
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with the known value introduced into the beam. 

Figure 6. Results of fitting Fermat’s spirals to the LG beam with topological charge m = 4. Parameters
of subsequent spirals are (95% confidence bounds). (1) Spiral 1, α = 3.497(3.492, 3.502) (1/mm2) and
β = 2.635(2.629, 2.64); (2) Spiral 2, α = 3.447 (3.442, 3.452) (1/mm2) and β = −2.045 (−2.051,−2.039);
(3) Spiral 3, α = 3.454 (3.449, 3.459) (1/mm2) and β = −0.4907 (−0.4966, −0.4849); (4) Spiral 4, α = 3.505
(3.499, 3.51) (1/mm2) and β = 1.048 (1.042, 1.054).
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Figure 7. Numerical phase profile of the spiral beam created by the spiral phase plate plotted on the
background of the intensity distribution. Spiral line can be described by two Fermat’s spirals. (a) One
spiral fitting to the central area of the beam; (b) A second spiral fitting to the external areas of the beam.
Recovered spiral equations are also provided.

We use the algorithm described above to recover the uniform phase shift which is introduced into
the vortex beam. The phase shift in the vortex beam manifests itself in the rotation of the phase profile.
Figure 8 presents the spiral lines (plotted over the intensity distribution) in the case of four different
values of phase φ0. The phase is increased subsequently by the amount of π/5, causing the rotation
of the 2π jump line, and the angle by which the spiral rotates corresponds to the introduced phase
shift. As mentioned earlier, the parameter β from the spiral equation describes the spiral orientation,
so its value changes when the spiral rotates. Table 1 shows the results of the numerical fitting of the
Fermat’s spiral parameters. One can see that α value is kept almost constant, while β changes indicate
the rotation of the spiral. By calculating the difference between the β values in particular cases, we can
recover the value of the introduced phase shift ∆φ, which corresponds well with the known value
introduced into the beam.
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Figure 8. Spiral lines plotted over the intensity distribution in the case where different phase shifts
have been introduced into the vortex beam showing rotation of the phase map.

Table 1. Introduced and recovered phase shifts in the cases shown in Figure 6.

Introduced ∆φ (rad)
Introduced ∆φ (◦) φ0 φ0 + π/5 (0.62)

36◦
φ0 + 2π/5 (1.26)

72◦
φ0 + 3π/5 (1.88)

107◦

α (1/mm2) 19.1 ± 0.4 18.8 ± 0.7 18.8 ± 0.7 18.9 ± 0.7
β −1.93 ± 0.04 −1.34 ± 0.05 −0.71 ± 0.06 −0.09 ± 0.06

Recovered ∆φ (rad) - 0.59 ± 0.05; 1.22 ± 0.06; 1.8 ± 0.06;
Recovered ∆φ (◦) - 34◦ ± 3◦ 70◦ ± 3.5◦ 105◦ ± 3.5◦

4. Experimental Results

The algorithm described above was tested on experimental data. Figure 9 shows the scheme
of the experimental setup of the optical vortex scanning microscope [17]. In the object arm of the
interferometer, the Gaussian beam from the He-Ne laser (λ = 0.633 µm) passes through the spiral phase
plate (SPP) which introduces helical wavefront into the beam [18]. Then, this beam is focused by the
microscope objective (×20, NA = 0.4) into the sample plane. The spot size of the vortex beam reveals a
donut shape (see Figure 9) and its size can be described by the bright ring diameter, which in our case
was about 2.8 µm. Through the imaging system (NA = 0.4, magnification 200×) a spot was imaged
on the CCD camera and its size has been enlarged to about 0.6 mm. The object beam, together with
the reference beam, creates on the CCD, the interferogram. When the vortex is present in the beam,
the interference fringes split forming the characteristic fork pattern.
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The standard Fourier technique [19] was applied to recover the phase of the object beam. To do
this, the Fourier transform is applied to the detected interferogram. In its spectrum, the first order is
extracted and shifted to zero order position to remove the carrier frequency. Next, the inverse Fourier
transform is applied. This recovers the complex amplitude of the detected beam, in which phase
distribution is coded. Figure 10a displays the exemplary phase maps of the central part of the vortex
beam obtained from the experiment. Figure 10b plots the polar coordinates of the localized 2π phase
jump line (points) together with the fitted line of the equation. Figure 10c compares the fitted Fermat’s
spiral (circles) with the experimental points (crosses). Values of coefficients, fitted with 95% confidence
bounds, are equal to α = 20.0± 0.04

[
1/mm2

]
and β = −2.32± 0.04.
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Figure 10. (a) The phase map obtained from the experiment; (b) Polar coordinates of the edge position
extracted from (a) and the fitted line; (c) Fermat’s spiral fitted to the experimental data-crosses denote
the 2π jump line from (a), circles indicate the fitted spiral.

To demonstrate how this vortex beam description can be used in optical measurement, the phase
sample is introduced into the object beam (at a sample plane). When the vortex beam passes through
the transparent sample, its phase distribution changes. As was mentioned in the preceding section,
in the case of uniform phase change within the whole beam, the phase profile rotates, manifesting the
rotation of the spiral and this rotation can be read from the parameter β. In our experiment, the tiny,
transparent sample had the shape of the square step of high 200 nm and size 2 µm. As the sample
transverse dimensions were a little bit smaller than the vortex beam diameter and because it was hard
to localize it perfectly in the beam center, it was mounted on the motorized XYZ table in order to
position the sample with nanometer precision. The sample was shifted gradually with the step 0.05 µm.
When the step was within the beam, the additional phase shift equal to ∆φ = 2π

λ (n− 1) · h � 0.9rad
(h is the step height equal 200 nm in our case, sample was a PMMA resist applied to the saphire
substrates, n � 1.48) was expected, which should cause rotation of the spiral by the amount of ∆φ, as
was explained in the previous section. Figure 11 shows the idea of the experiment and obtained results.
For each sample position, the interferogram was detected, phase map recovered, and parameters of
Fermat’s spiral fitted (Figure 11a,b). Figure 11c shows the change of the fitted value βwhile the sample
was moved across the beam. The reference phase value (in the case where the step was outside the
beam) was calculated for a sequence of measurements and equaled 2.51 ± 0.15 rad (uncertainty was
evaluated on the base of the series of measurements taken when the object was outside the vortex beam).
While the phase object was gradually moved through the vortex beam, the spiral was rotated and β
reached the mean value 3.37 ± 0.15 rad when the whole phase step was inside the beam. Therefore, the
spiral rotated by an angle of 0.86 ± 0.15 rad, which corresponded well with the value expected from
object geometry.
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Figure 11. (a,b) Schematic presentation of the experiment, sample with the phase step was shifted
through the focused vortex beam causing rotation of the spiral profile in the case where the step was
inside the beam; (c) Values of the parameter β correspond well with the expected phase shift. The lower
solid line indicates ϕ0 level (2.51 rad) and the upper solid line indicates 3.37 rad.

5. Conclusions

We proposed a new method for characterizing a vortex beam with a topological charge of one and
higher. We focused on the phase distribution and showed that its contour lines could be described by
a Fermat’s spiral in the case of the LG beam. In addition, we showed that the same could be done
for the central part of the phase profile of the Gaussian beam passing through SPP. Fermat’s spiral
equation was expressed by two parameters, which could be assigned to the physical characteristics
of the beam-radius of the wavefront curvature and the phase orientation. We proposed and tested a
procedure for fitting the spiral equation to the phase maps of a vortex beam. The procedure consisted
of three main stages. In the first step, a characteristic line assigned to the 2π phase jump was extracted
from the phase map, in our case with the help of the Roberts method for edge detection. Next, the found
points were arranged in the order of increasing values of radial radii and azimuth angles. In the third
step, a nonlinear least squares method without normalization was used in order to fit extracted points
into the spiral equation. This procedure worked well for numerical, as well as for experimental data.

To demonstrate the possible application of this way of beam characterization, we showed, that
the spiral rotated in response to the transparent object by the angle equal to the introduced phase shift
and one of the spiral parameters could read this rotation. We showed in [11] that the accuracy of the
recovered phase shift using OV could be very high because optical vortex could be treated as a single
fringe surrounding the singular point, and in such geometry, rotation could be determined with high
precision. If the phase disturbance is not uniform within the beam, then the phase undergoes local
changes, deforming somehow the ideal Fermat’s spiral, which happens when LG beams are generated,
for example, by SLM. Some methods of SLM correction have used vortex structure as a template.
Distorted vortex has been compared with an ideal one [20,21]. In another work [22], deformation from
the ideal vortex was used for determining misalignment. Thus, the description of the ideal overall
phase distribution gives a new set of tools in data analysis. We can treat it as a kind of reference profile
against which wavefront deformation could be determined. We plan to use this idea in our further
work. In our experimental part, we considered only m = 1 case, as higher order vortices are very
unstable structures and split into a constellation of single-charged vortices [8,23]. Further research is
needed to show their utility in experimental conditions.
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