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Abstract: Most laser applications are based on the focusing of a Gaussian laser beam (GLB). When the
latter is subject to a phase aberration such as the optical Kerr effect (OKE) or spherical aberration (SA),
it is recognised that the focusing performance of the GLB is degraded. In this paper, it is demonstrated
that high-order radial Laguerre–Gauss LGp0 beams are more resilient than the GLB when subject
to the OKE or SA. This opens up opportunities to replace with advantages the usual GLB with a
high-order LGp0 beam for some applications.

Keywords: high-order Laguerre–Gauss modes; rectified Laguerre–Gauss beams; optical tweezers;
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1. Introduction

Since the invention of the laser, most people have seen the usual Gaussian laser beam
(GLB) as a kind of perfect beam for well-founded reasons based on some parameters
characterising its propagation (divergence, M2 factor, brightness). Generally, the laser
cavities are inherently multimode, and a laser oscillation occurring exclusively on the GB
is achieved as a result of various strategies. The latter involves either the matching of the
pump size for end-pumped solid-state lasers to the size of the desired Gaussian beam in
order to maximise the modal overlap [1] or, more simply, by inserting a diaphragm inside
the cavity, allowing only the Gaussian mode to oscillate as the fundamental mode [2–4].
The high-order transverse modes have been ignored over a long period of time in such a
way that, today, the standard laser beam in most commercial lasers is the GLB. However,
we have observed a revived interest in higher-order azimuthal Laguerre–Gaussian modes
since the discovery of their orbital angular momentum along the optical axis [5]. High-order
azimuthal Laguerre–Gaussian modes have been experimented with in various configura-
tions of optical resonators [6–11]. In contrast, high-order radial Laguerre–Gaussian modes
have received little attention of late [12,13]. In the next sections, our study will only deal
with high-order radial Laguerre–Gauss LGp0 beams made up of a central peak surrounded
by p rings of light. The electric field associated with a collimated LGp0 beam is given by

Ein(ρ) = E0Lp(2ρ2/W2) exp(−ρ2/W2) (1)

where Lp is the Laguerre polynomial of order p; W = 1 mm, the width of the collimated
Gaussian LG00 beam; and ρ is the radial coordinate.

The beam propagation factor of LGp0 beams is M2 = (2p + 1), excluding their use
for applications requiring high brightness. However, what can be an important drawback
can also be an advantage for certain applications of lasers. Indeed, it has been recently
shown that LGp0 beams are outperforming the Gaussian beam in at least two applications,
which are 3-dimensional microfabrication [14] by two-photon polymerisation and in optical
tweezers subject to spherical aberration [15]. More precisely, the two above applications
involve a rectification of the LGp0 beam, which involves transforming the negative rings of
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the LGp0 beam into a positive one by using a binary diffractive optical element (BDOE) made
up of annular zones introducing a phase shift equal to 0 or π, giving rise to a transmittance
equal to +1 or −1. The positions of the phase jump from 0 to π or from π to 0, following
exactly the zeros of the Laguerre polynomial Lp. The main feature of rectified LGp0 beams
is to give rise to a quasi-Gaussian intensity profile in the focal plane of a focusing lens. The
rectification makes a transfer of the energy carried by the rings toward the central part of
the focused pattern while keeping the beam propagation factor equal to (2p + 1) [14].

In Section 2, we will examine the effect of particular aberrations (spherical aberration
and Kerr effect) on LGp0 beams. We will be very surprised by the behaviour of high-order
beams. In Section 3, we will consider the spatial properties of “rectified” LGp0 beams.
In Section 4, we will show that optical tweezers enlightened by an LGp0 beam (p ≥ 1)
subject to spherical aberration allow for several increases in the longitudinal and transverse
trapping effects compared to the trap enlightened by a pure Gaussian beam. In Section 5,
it will be demonstrated that a phase-only binary diffractive optical element is able to
transform an LGp0 beam into a flat-top or optical bottle beam in the plane of a focusing lens.

2. LGp0 Beams Subject to an Aberration

Before proceeding further, it is useful to recall the propagation properties of a pure
LGp0 beam characterised by an electric field given by Equation (1). Its intensity profile,
shown in Figure 1, is made up of a central peak surrounded by p rings of light. It is
important to view the wavefront of a collimated radial LGp0 beam as alternately concentric
out-of-phase rings.
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Figure 1. Transverse intensity distribution of the first 4 radial Laguerre–Gauss LGp0 beams. 
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Figure 1. Transverse intensity distribution of the first 4 radial Laguerre–Gauss LGp0 beams.

Three fundamental quantities characterising LGp0 beams are the Rayleigh range zR, the
beam propagation factor M2

p, and the longitudinal distribution Wp(z) of the beam width
based on the second-order intensity moment [16].

zR =
πW2

0
λM2 (2)

M2
p = (2p + 1) (3)
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p(z) = W2
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(
λM2

pz

πW2
0

)2
 (4)

where the origin z = 0 of the longitudinal coordinate is in the beam waist plane of the focused
beam and W0 is the beam waist radius of the LG00 beam. It is important to note that the beam
width W appearing in Equation (1) has a simple physical meaning only for the fundamental
mode LG00, i.e., the width of the Gaussian beam. The beam spreading increases with mode
order p so that the beam width Wp in the far-field (z >> zR) is given by

Wp = W
√

2p + 1 (5)

Most uses of laser beams are based on their focusing, as shown in Figure 2, where (PO)
stands for a phase object which can be an optical Kerr effect (OKE), spherical aberration
(SA) or a binary diffractive optical element (BDOE). These phase objects will be further
defined. It is important to keep in mind a particularity of focused LGp0 beams giving rise to
the same on-axis intensity distribution.

Photonics 2024, 11, x FOR PEER REVIEW 3 of 30 
 

 






























+=

2

2
0

2
2
0

2 1)(
W
zM

WzW p
p π

λ
 (4)

where the origin z = 0 of the longitudinal coordinate is in the beam waist plane of the 
focused beam and 0W  is the beam waist radius of the 00LG  beam. It is important to note 
that the beam width W appearing in Equation (1) has a simple physical meaning only for 
the fundamental mode 00LG , i.e., the width of the Gaussian beam. The beam spreading 
increases with mode order p so that the beam width pW  in the far-field ( Rzz >> ) is given 
by 

12 += pWWp  (5)

Most uses of laser beams are based on their focusing, as shown in Figure 2, where 
(PO) stands for a phase object which can be an optical Kerr effect (OKE), spherical aberra-
tion (SA) or a binary diffractive optical element (BDOE). These phase objects will be fur-
ther defined. It is important to keep in mind a particularity of focused LGp0 beams giving 
rise to the same on-axis intensity distribution. 

 
Figure 2. Schematic layout for the focusing of a collimated LGp0 beam passing through a phase object 
(PO) and a lens of focal length Lf . The (PO) can be a Kerr effect, spherical aberration, or a binary 
diffractive optical element (BDOE). 

In the presence of the PO, the incident collimated LGp0 beam diffracts, allowing for 
its restructuring. The diffracted beam through the ensemble (PO + lens) in the plane z is 
characterised by the electric field ),( zrEd , given by the well-known Fresnel–Kirchhoff 
formula [17]: 

ρρρ
λ
π

λ
πρρφρρτ

λ
π dr

z
J

fz
iiE

z
zrE

L
ind 
























−−Δ−= 

∞
.211exp)](exp[)()(2),( 0

2

0
 (6)

where r is the radial coordinate in plane z, λπ /2=k  is the wave number, 0J  is the zero-
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to the PO. The diffraction integral given by Equation (6) is calculated numerically by using 

Figure 2. Schematic layout for the focusing of a collimated LGp0 beam passing through a phase object
(PO) and a lens of focal length fL. The (PO) can be a Kerr effect, spherical aberration, or a binary
diffractive optical element (BDOE).

In the presence of the PO, the incident collimated LGp0 beam diffracts, allowing for
its restructuring. The diffracted beam through the ensemble (PO + lens) in the plane z
is characterised by the electric field Ed(r, z), given by the well-known Fresnel–Kirchhoff
formula [17]:

Ed(r, z) =
2π

λz

∞∫
0

τ(ρ)Ein(ρ) exp[−i∆ϕ(ρ)] exp
[
− iπρ2

λ

(
1
z
− 1

fL

)]
J0

[
2π

λz
r.ρ
]

ρdρ (6)

where r is the radial coordinate in plane z, k = 2π/λ is the wave number, J0 is the zero-order
Bessel function of the first kind, and τ(ρ) stands for the transmittance of the phase object (PO).
The focusing lens of focal length f L = 125 mm is assumed to be set quite close to the PO. The
diffraction integral given by Equation (6) is calculated numerically by using a FORTRAN
77 routine based on the numerical integrator dqdag from the International Mathematics and
Statistical Library (IMSL). The main characteristics of the diffracted field are as follows:
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(i) The intensity distribution Id(r, z) = |Ed(r, z)|2, which can be split into a longitudinal
distribution Id(0, z) and a transversal distribution Id(r, fL) in the plane z = fL.

(ii) The beam propagation factor M2
D of the diffracted LGp0. To determine the M2

D factor,
we need to determine numerically the longitudinal distribution of the width WD(z)
of the diffracted beam based on the second-order intensity moment [18].

W2
D(z) =

2
∞∫
0

Id(r, z)r3dr

∞∫
0

Id(r, z)rdr
(7)

The calculation of WD was conducted for 60 values of coordinate z on either side of
plane z = f L. From the longitudinal distribution of WD, we deduced two features. Firstly,
the minimum value of WD, denoted as WDmin, and, secondly, the longitudinal position,
denoted as zmin, where the beam focuses, that is, WD = WDmin. Note that zmin is almost
equal to fL whatever the value of p. The value of the beam propagation factor M2

D is defined
from a fit of the plot WD versus z with the following parabola:

W2
D(z) = W2

Dmin

1 +

(
M2

Dλ(z − zmin)

πW2min

)2
 (8)

Note that the infinite bound in the integral appearing in the numerator of Equation (7)
should have a finite value when conducting its numerical evaluation. The choice of the
upper integration bound is based on the value of the radial coordinate r, beyond which
the intensity Id(r) could be decreed negligible. Unfortunately, the cubic term r3 enhances
strongly the contribution of the beam wings, although the associated intensity is weak.
As a result, the M2

D value is very dependent on the upper integration bound and could
be overestimated. This is the reason why we preferred a different way of calculating the
M2 factor of the LGp0 beam diffracted through a BDOE. This method was based on the
decomposition of the diffracted field Ed(r, z) upon a complete basis made up of Laguerre–
Gauss functions.

Now let us define the phase aberrations characterising the phase object (PO). The first
one is the optical Kerr effect (OKE), for which the complex (PO) transmittance is noted
τ1(ρ), and the second one is the primary spherical aberration (SA), characterised by its
complex transmittance τ2(ρ).

2.1. OKE Aberration

The phase object is made up of a nonlinear material having a thickness d and a
refractive index n(ρ) = n1 + n2 Iin(ρ), where Iin(ρ) = |Ein(ρ)|2 is the incident intensity
distribution and n1(n2) is the linear (nonlinear) refractive index. As a result, the beam
incident on the lens is subject to a phase shift profile ∆ϕ(ρ), given by

∆ϕ(ρ) ≈ kn2dIin(ρ) (9)

where k = 2 π/λ and λ = 1064 nm. The incident collimated beam has a power P and an
on-axis intensity I0 = 2 P/(πW2), which is unchanged whatever the mode order p. The
Kerr phase shift ∆ϕ(ρ) then takes the following form:

∆ϕ(ρ) = ϕ0 ×
[

Lp

(
2ρ2

W2

)]2

× exp
[
−2ρ2

W2

]
(10)

with ϕ0 =
4n2Pd
λW2 (11)
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ϕ0 is the nonlinear on-axis phase shift also called the “breakup integral” or “B-integral”
by the community of high-power lasers [19–24]. The complex transmittance of the Kerr
phase object is written as τ1(ρ) = exp[−i∆ϕ(ρ)]. The nonlinear phase shift ∆ϕ(ρ) has to be
viewed as a phase aberration consisting of defocus and high-order spherical aberrations,
which are given in [25] and will not be repeated here. As a result, the defocus term will
be responsible for a shift of the best focus toward the lens. In addition to this focus shift,
the beam pattern in the geometric focal plane of the linear lens is additionally widened by
the spherical aberrations. All these phenomena contribute to the decrease in the on-axis
intensity in the focal plane of the focusing lens. Since the nonlinear phase aberration ∆ϕ(ρ)
is intensity-dependent, the distortion suffered by the focal spot is also intensity-dependent.
Several authors [25–30] have considered this issue by numerical modelling of the diffracted
intensity distribution in the geometrical focal plane of the focusing lens when the incident
beam is Gaussian, i.e., p = 0. In this case, it is observed that the OKE is responsible for
a reduction in the focused intensity in the plane z = fL. It is worth noting that since the
laser intensity is obviously time-dependent for pulses, light will focus at different locations
and, thus, the best focus will “zoom”, giving rise to the so-called “focal zoom”, which
is well described in [31]. As a result, the temporal pulse shape in the focal plane z = fL
is distorted so that it shows a dip near the time corresponding to the peak of the input
pulse [19,32]. What was just described in terms of spatiotemporal distortion corresponds to
a Gaussian incident beam. The situation is very different for higher-order LGp0 beams, as
shown in Figure 3, which displays the variations in the on-axis intensity in plane z = fL
versus ϕ0 [33]. It is seen that the effect of OKE is deleterious when focusing a Gaussian
beam since the collapse of Id(0, z = fL), the intensity at the centre of the focusing plane,
increases greatly with ϕ0, the nonlinear on-axis phase shift. The plots in Figure 3 show that
higher-order LGp0 beams are highly resistant to the OKE focal shift so that the intensity
Id(0, z = fL) remains high despite the nonlinear phase shift. We can see in Figure 3 that the
LG10 beam is superior to the other LGp0 beams in its resistance to the OKE. This is why, in
the following sections, particular emphasis will be placed on the LG10 beam.
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Concerning the temporal distortion of the pulse intensity Id(0, z = fL) at the beam
centre in plane z = fL, due to the OKE, it is much less pronounced for the LG10 than for
the LG00 beam, as shown in Figure 4. The time dependence of the incident pulse has a
Gaussian form, i.e., the electric field Ein(ρ) has to be multiplied by exp[−t2/τ2].
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Figure 4. Variations in the focused on-axis intensity of LG00 and LG10 beams in the focal plane versus
the normalised time t/τ, where τ is the pulse duration. The nonlinear on-axis phase shift is ϕ0 = 2π.

To have a good overview of the degradation of the focused intensity distribution due to
the OKE, it is useful to compare the longitudinal distribution of the on-axis intensity Id(0, z), as
shown in Figure 5. The plots in Figures 4 and 5 show that the LG10 beam is more resilient than
the LG00 when both are subject to the optical Kerr effect. This resilience has been discussed in
detail in [34]. The superiority, in terms of resilience in space and time, of the LG10 beam over the
Gaussian beam when subject to the OKE suggests at least two implications: first, it is possible to
reduce the protective capacity of optical limiters based on the OKE by enlightening with a LG10
beam in place of the usual LG00 beam [30] and, second, it could be possible to solve the problem
of producing ultra-intense pulses, avoiding the destruction of amplifiers by the phenomenon of
beam collapse observed with a Gaussian beam.
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In order to clarify expectations on optical power limiters (OPLs) [34–47], the optical
limiting device in its simplest form intended to protect some optronic systems is described
in Figure 6. The basic elements of the limiting device are a nonlinear Kerr medium of
thickness d characterised by a nonlinear refractive index n2, a linear lens of focal length fL,
and a diaphragm of radius RD set at a distance L from the ensemble (Kerr medium + lens).
Note that it has recently [48] been shown that the position L of the diaphragm is relatively
critical since the ensemble (Kerr medium + lens + aperture) acts (i) like a saturable absorber
if L < fL, and (ii) is an optical limiting device if L ≥ fL.
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Figure 6. Arrangement for a self-focusing power limiter made up of a nonlinear medium in which
the optical Kerr effect (OKE) is induced, with a linear lens of focal length fL and a diaphragm D of
radius RD. Solid line: low power; dashed line: high power. The best focus is located at z = fL for low
power and z = zmax for high power.

It is worth noting that the transmission of a saturable absorber (optical limiter) in-
creases (decreases) with increasing input power. The operating principle of the OPL based
on the Kerr effect can be easily understood by considering the Kerr lensing effect, which
shifts the best focal point at position zmax at high power, while the best focus is located at
position z = L at low power. As a result, the longitudinal focal shift from z = L to z = zmax
enlarges the beam incident on the diaphragm, leading to a reduction in its transmittivity.
From the plot in Figure 7, we can then expect that at a high power level, the LG10 beam
will be less attenuated than the LG00 beam [33]. In the case of a pulsed incident laser beam,
the transmissivity T of the diaphragm is defined as the ratio of output and input energies.
Figure 7 shows the variations of T versus ϕ0 for LG00 and LG10 beams. The conclusion is
that enlightening an OPL based on the Kerr effect by a LG10 laser beam instead of the usual
Gaussian beam is a countermeasure since the OPL is almost inefficient in protecting the
optical system set after the OPL. Note that the vertical scale in Figure 7 is logarithmic.
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The aperture transmission at low power has a value equal to 98%.
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The second application concerns the difficulty of laser pulse amplification at a high
intensity level in the presence of the Kerr effect occurring in the amplifying medium
constituting the amplifier chain. It is worth recalling that, usually, high-power laser chains
are made up of a fractioned amplifying medium in order to avoid beam collapse. As seen
previously and discussed in detail in [21], the focusing shift due to the Kerr lensing effect
is very much less pronounced for the LG10 beam than for the LG00 beam, and that has
an important consequence of laser beam collapse occurring when an intense laser pulse
propagates in a bulk optical amplifier. Indeed, it could be expected that the replacement
of the usual Gaussian beam by a LG10 beam should extend the upper limit of the laser
intensity in a high-power laser system, especially for nanosecond pulses. Indeed, for such
relatively large pulses, the technique called CPA (chirped pulse amplification) is not as
effective as that for femtosecond pulses. For the sake of completeness, it is worth noting
that replacing the usual LG00 with an LG10 beam in the concept of high-power laser chains
in the nanosecond regime should require an evaluation of both phenomena known as small-
and large-scale self-focusing. This question deserves a close examination that has not yet
been conducted in the literature, but which is outside the scope of this paper.

It is known that the beam propagation factor M2
D of the beam emerging from the phase

object could resume the beam distortion. The variations of M2
D versus ϕ0 are shown in

Figure 8 for LG00 and LG10 beams, and suggest that both beam divergences increase when
the nonlinear phase shift ϕ0 is increased.
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a Kerr medium characterised by the nonlinear on-axis phase shift ϕ0.

For the LG00 beam, unsurprisingly, this results in a decrease in the on-axis intensity (see
Figure 3) as the beam divergence increases, i.e., ϕ0 increases. However, for the LG10 beam, one
observes an unusual behaviour since the on-axis intensity in the plane z = fL remains high
(see Figure 3) when ϕ0 is increased, while its divergence is increased (see Figure 8).

This unexpected behaviour can be understood in terms of transverse correlation vanish-
ing (TCV) due to the presence of a phase aberration. The transverse correlation concept
applied to a laser beam means that there is a relation between its centre and its wings: if
the beam spreads (shrinks), this results in a decrease (increase) in its on-axis intensity.

Let us first consider the Gaussian beam, viewed as a reference beam in the absence of the
focusing lens, in the far-field, namely, at distance z, which is very large compared to its Rayleigh
range z0 = πW2

0 /λ, where W0 is the beam waist radius. It is easy to show that the relation
between the on-axis intensity Id(0, z) in the far-field and the far-field divergence θ is given by

Id(0, z)× θ = K (12)
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With K = 2P/z2 (13)

where P is the beam power. Equation (12) describes the basic property of a Gaussian beam,
which can be formulated as follows.

For a pure Gaussian beam, i.e., without aberration, the far-field on-axis intensity
necessarily decreases if the beam divergence is increased, i.e., if the beam is enlarged. Note
that this is also a basic property of many other laser beams. However, in the presence of
aberration, which is here a Kerr aberration described by Equation (9), this basic property
can be changed drastically, and this phenomenon can be described as transverse correlation
vanishing. It is interesting to compare the TCV associated with the LG00 and LG10 beams by
the use of the figure of merit noted FM and defined by

FM =
[K]ϕ ̸=0

[K]ϕ=0
(14)

Note that a value of FM close or equal to unity means that the beam fulfils Equation (12),
i.e., the far-field on-axis intensity varies relative to the inverse of its divergence angle. The
variations of FM versus the nonlinear phase shift ϕ0 for the LG00 and LG10 beams are
shown in Figure 9. After some algebra, we can express the far-field on-axis intensity
[Id(0, z)]ϕ ̸=0 of the beam subject to the OKE in terms of the on-axis intensity [Id(0, z)]ϕ=0
without aberration as follows:

[Id(0, z)]ϕ ̸=0 = FM × (2p + 1)
M2

D
× [Id(0, z)]ϕ=0 (15)
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For both LG00 and LG10 beams, the beam propagation factor M2
D increases with ϕ0,

as shown in Figure 8, but the increase of FM with ϕ0 is more important for the LG10 beam
than for the LG00 beam, as shown in Figure 9, so that the on-axis intensity remains high
for the LG10 beam while it decreases rapidly with ϕ0 for the LG00 beam (see Figure 3). In
fact, the diffraction occurring upon the Kerr phase shift produces a transfer of energy from
the ring of the LG10 beam toward the centre of the beam, maintaining a high intensity in
the centre of the focal spot despite the phase aberration. A first conclusion can be drawn
from the results of this question, which concerns the quality of laser beam focusing. For a
Gaussian beam, the presence of the Kerr effect degrades systematically the focusing quality,
i.e., there is intensity reduction in the focal plane. In contrast, it is found that a higher-order
transverse Laguerre–Gauss beam, in particular, the LG10 beam, is highly resistant to the
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Kerr effect, i.e., the intensity in the focal plane remains unchanged until there is at least a
nonlinear phase shift of about ten radians.

2.2. Spherical Aberration

The effect of a spherical aberration (SA) on the focusing of a Gaussian beam is well
documented in the literature [49–52] while the case of a LGp0 beam is less considered or
even not studied. The latter is addressed in this Section. Before proceeding, let us define
the spherical aberration characterising the PO introduced on the path of the laser beam to
be focused, as shown in Figure 2. The complex transmittance τ2 of the phase object causing
the SA is given by

τ2(ρ) = exp[−iϕSA(ρ)] (16)

with ϕSA(ρ) = kW40
ρ4

ρ4
0

(17)

where k = 2π/λ. W40 is the SA coefficient and ρ0 is the radius of the unit circle, which contains
99% of the incident power. The variations of ρ0 with the mode order p are given in Table 1.

Table 1. Variations of the radius ρ0 of the unit circle with the mode order p.

p 0 1 2 3

ρ0 1.5 W 2.13 W 2.58 W 2.96 W

It is well known that the presence of SA when focusing a Gaussian laser beam degrades
the focusing performance, i.e., the intensity in the focal plane is reduced [49–52]. However, for
the higher-order Laguerre–Gauss beams (p ≥ 1), we observe the opposite effect in a similar
way to what has been observed with the OKE in the previous section. Indeed, the influence of
the SA on the on-axis intensity distribution for p = 2, for instance, is shown in Figure 10. It
is seen that the SA presence produces an axial shift of the best focus (maximum of Id(0, z))
toward the lens (beyond the plane z = fL) when W40 is positive (negative). In addition, one
observes a substantial strengthening of the best focus intensity in the presence of SA.
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In order to have a synthetic view of the SA influence on the maximum of the axial
intensity, it is convenient to introduce a dimensionless factor Y defined by

Y =
[Id(0, z)]W40 ̸=0

max

[Id(0, z)]W40=0
max

(18)

The meaning of factor Y is that Y > 1 (Y < 1) indicates that the presence of spherical
aberration increases (decreases) the focused intensity. The variations of Y versus W40, for
several values of mode order p, are shown in Figure 11. It is worth observing in Figure 11 that
Y is less than unity for the LG00 beam and greater than one for p ≥ 1. One can conclude that,
in the presence of SA, the focusing of a LGp0 beam for p > 0 is more efficient than for the GLB.
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Another important feature characterising the restructured laser beam is its longitudi-
nal and radial gradient distributions, particularly for the implementation of optical traps
(see Appendix A). This point will be expanded on later, but it is useful to consider the influ-
ence of W40 on the longitudinal intensity gradient for a high-order Laguerre–Gauss beam
(p = 2 for instance). This is illustrated in Figure 12, which shows clearly that the presence of
the spherical aberration enhances the longitudinal intensity gradient.
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3. The Rectifed LGp0 Beams

The concept of “rectification” has been already presented in [14]. The rectification of
an LGp0 beam for p ≥ 1 involves introducing a phase object (Figure 2) on its path with the
function to convert the alternately out-of-phase rings into a unified phase. The phase object
used for achieving the rectification of an LGp0 beam is a binary diffractive optical element
(BDOE) made up of annular zones introducing a phase shift equal to 0 or π, giving rise to a
transmittance equal to +1 or −1 characterised by the transmittance τ3(ρ), given by

τ3(ρ) =


−1 for 0 < ρ ≤ ρ1

(−1)i+1 for ρi < ρ ≤ ρi+1 and (i + 1) < p
(−1)p+1 for ρ > ρp

(19)

The position of the phase jumps from 0 to π or from π to 0, following exactly the zeros
of the Laguerre polynomial Lp given in Table 2, where the ρ′is are the p radial positions for
which the intensity of the incident beam is null.

Table 2. Roots of Laguerre–Gauss polynomials: Lp(ρi/W) = 0.

p Values of Ratio ρi/W for the Zeros of the Intensity of the LGp0 Mode

1 0.707106

2 0.541195 1.306562

3 0.455946 1.071046 1.773407

The peculiarities of the rectified LGp0 beams are that (i) the intensity distribution
in plane z = fL is single-lobed, i.e., the rectification achieves a transfer of energy con-
tained in the rings toward the central peak [15], and (ii) the beam propagation factor is
unchanged [14] and remains equal to M2 = (2p + 1).

The beam propagation factor of rectified LGp0 beams is M2 = (2p + 1), excluding
their use for applications requiring high brightness. However, what can be an important
drawback can also be an advantage for certain applications of lasers. Indeed, it has been
recently shown that LGp0 beams are outperforming the Gaussian beam in at least two
applications, which are 3-dimensional microfabrication [14] by two-photon polymerisation
and in optical tweezers subject to third-order aberration [15]. The main feature of the
rectified LGp0 beam is to give rise to a quasi-Gaussian intensity profile in the focal plane
of a focusing lens, as shown in Figure 13. The rectification makes a transfer of the energy
carried by the rings toward the central part of the focused pattern while keeping the beam
propagation factor equal to (2p + 1) [14]. Table 3 allows us to compare the fraction of power
αLG(αR) in the central peak of an LGp0 beam (rectified LGp0).

Table 3. Power content αLG (αR) in the central peak of a pure (rectified) Laguerre–Gauss LGp0 beam
for p varying from 1 to 3. The ratio η = VG/VR represents the focal volume enhancement factor.

p αLG (%) αR (%) η

1 26.4 82.6 17

2 15.6 78.5 68

3 11.2 76.3 172
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In order to better understand the benefits of a rectified LGp0 beam, there is a need
to introduce the concept of focal volume, which defines the volume associated with the
focused beam where the intensity can be considered as high. First, let us define the focal
volume VG associated with the Gaussian beam (p = 0). It is worth recalling that the focusing
of a collimated Gaussian beam of width W incident on a converging lens of focal length f
yields a Gaussian focal spot of width W0, given by

W0 ≈ λ f
πW

(20)

Note that in Equation (20), it is assumed that the incident Rayleigh distance (πW2/λ) is
larger than the lens focal length f. Two fundamental quantities characterising the Gaussian
beam are necessary. The first one is the Rayleigh range zR and the second is the longitudinal
distribution W(z) of the beam width based on the second-order intensity moment, given by

zR =
πW2

0
λ

(21)

W2(z) = W2
0

1 +

(
λz

πW2
0

)2
 (22)

where the origin z = 0 of the longitudinal coordinate is in the beam waist plane of the
focused beam. The focal volume VG is defined by the following integral:

VG =

+zR∫
−zR

πW2(z)dz (23)

It is worth recalling that the focusing of a collimated Gaussian beam of width W incident
on a converging lens of focal length f yields a Gaussian focal spot of width W0, given by

W0 ≈ λ f
πW

(24)
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The associated focal volume is obtained by applying Equation (23):

VG =
λ3 f 4

π2W4 (25)

In the same way, it is possible to define a focal volume VR for the rectified LGp0 beam,
for which it should be noted that (i) its beam waist size, noted Wf in the plane z = fL, is
smaller than that of the focused LG00 beam, as shown in Figure 13 for p = 3, and (ii) its reduced
Rayleigh range is πW2

f /(λM2). Finally, the reduction in the focal volume by using a rectified
LGp0 beam in place of the usual LG00 beam can be characterised by the following factor:

η = VG/VR (26)

The calculation of factor η can be found in [53] and its value is given in Table 3. As
pointed out above, in some applications, such as 3-dimensional microfabrication [14] by
two-photon polymerisation, for instance, the size of the voxel is of primary importance. A
small size allows for the fabrication of small 3-D structures with a high resolution. It may
be accepted that the voxel volume is proportional to the focal volume. Consequently, in the
case of an incoming Gaussian laser beam, it is seen from Equation (25) that the reduction
of VG requires a short focal length f and a large beam width W. However, tight focusing
potentially involves a spherical aberration with the effect of reducing the focused intensity,
i.e., increasing the spot size W0. It is then clear that the use of a laser beam having a poor
quality (M2 > 1) can give, after reshaping, rise to a focused quasi-Gaussian pattern. This
is a possible solution for reducing the voxel size. For instance, let us consider the case
p = 3 for which η = 172 (see Table 3). This means that one can expect an increase in the
transverse and longitudinal resolution by a factor of about (172)1/3 ≈ 5.5.

4. Optical Tweezers Enlightened by a Structured LGp0 Beam

Usually, optical tweezers are based on the focusing of a Gaussian beam. The essential
features of the theory of optical tweezers are recalled in Appendix A, in which two figures of
merit are introduced. The first one, noted ZL, concerns the improvement of the longitudinal
trap stability, and the second one, noted ZR, describes the improvement of the radial
gradient of intensity. The objective is to examine if the restructuring of the incident beam
in the set-up shown in Figure 2 and the introduction of an adequate phase object (PO) are
able to make ZL and ZR larger than unity, i.e., improve the performances of the trap.

Before proceeding, it is important to note that all LGp0 beams for p ≥ 0 have the same
on-axis intensity distribution. Consequently, replacing the usual Gaussian beam by an
LGp0 beam cannot improve the longitudinal scattering and gradient forces and thus cannot
enhance the longitudinal stability of the trap. However, replacing the usual Gaussian beam
by an LGp0 beam improves slightly the radial gradient force, as shown in Table 4. These
values of pYR without a PO are identical to those given in Ref. [54]. Now, let us address
the crux of the matter by identifying the appropriate phase object (PO) to make ZL and ZR
larger than one. In fact, this objective is fulfilled by the two phase objects that have been
considered above and that are described by Equations (10), (17) and (19).

Table 4. Size of the central lobe of an LGp0 beam for p = 1 to 3 and the radial enhancement factor.

p Normalised Radius (ρ/W) of the Central Peak of a Pure LGp0 Beam pYR

1 0.7 1.9

2 0.53 2.4

3 0.45 2.9
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4.1. The Optical Trap Enlightened by a Rectified LGp0 Beam

It is very easy to see that a rectified LGp0 beam allows for the improvement of the ratio
ZL. Indeed, intensity and longitudinal gradient are enhanced due to the strong rise in the
maximum on-axis intensity owing to the energy transfer from the rings to the central peak.
The latter effect is inherent to the rectification process. It has been found that intensity
in plane z = fL of a rectified LGp0 beam is enhanced compared with the focusing of a
Gaussian beam of the same power by a ratio approximately equal to p [15]. Table 5 shows
that factor ZL is improved, particularly as p is increased [52]. It has been found that the
use of a rectified LGp0 beam does not improve the radial force of the optical tweezers since
pYR < 1 for p = 1 to 3 [54].

Table 5. Variations of ratio ZL for a rectified LGp0 beam.

p 1 2 3

ZL 2.06 3.37 4.77

4.2. The Optical Trap Enlightened by an LGp0 Beam Subject to SA

In Section 2.2, it was recalled that the presence of a positive spherical aberration degrades
the focusing performance of a Gaussian beam and enhances the focused intensity of an LGp0
beam. Here, we will envisage a spherical aberration that can be positive or negative and
consider its influence on ratios ZL and ZR. Details of this study can be found in [55], and it will
be enough to examine the final results depicted in Figures 14–16. The presence of a spherical
aberration, particularly when it is negative, can significantly improve the longitudinal stability
of optical tweezers, as shown in Figure 14. Figure 15 confirms that the presence of a positive
or negative SA degrades the longitudinal performance of the trap when it is enlightened by a
GLB. Concerning the radial force, Figure 16 shows that it is substantially improved, especially
for a negative SA, which can be obtained in different ways [55].
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5. Restructuring an LGp0 Beam into a Flat-Top or Optical Bottle Beam

In Section 3, we introduced the concept of “beam rectification”, which allows us to
generate a quasi-Gaussian intensity profile in the focal plane of a lens focusing a high-order
LGp0 beam crossing a BDOE defined by Equation (19). Now, in the following section, we
will demonstrate that the “partial rectification” of an LGp0 beam by using a particular
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BDOE—defined hereafter—can give rise to a flat-top or optical bottle beam in the vicinity
of the focal plane of a focusing lens.

Before proceeding, let us define the three BDOEs that are considered in the next section.
These three devices are a diaphragm, a circular π-plate (CPP), and an annular π-plate (APP),
characterised by their transmittances (field ratios) τD(ρ), τC(ρ), and τA(ρ), respectively.

The diaphragm of radius ρ0 has a transmittance given by

τD(ρ) =

{
1 f or ρ ≤ ρ0
0 f or ρ > ρ0

(27)

where ρ is the radial coordinate.
The CPP is a BDOE that introduces a π-phase shift in the central part of the incident

beam. It is characterised by the transmittance τC(ρ), expressed as

τC(ρ) =

{
−1 f or ρ ≤ ρ0
+1 f or ρ > ρ0

(28)

The APP is made up of a ring introducing a π-phase shift and its transmittance is

τA(ρ) =

{
−1 f or ρ1 ≤ ρ ≤ ρ2
+1 f or ρ < ρ1 and ρ > ρ2

(29)

The CPP and APP are assumed to be made of a transparent material on which is etched
a relief of height (or depth) h = λ/[2(n − 1)], where n is the refractive index of the material
and λ = 1064 nm the wavelength. The height (or depth) of the relief introduces a π-phase
shift. Note that, as will be seen later, the BDOE can include two or more dephasing rings.

5.1. Transformation of a Radial Laguerre–Gaussian LGp0 Beam into a Flat-Top

As pointed out above, a pure LGp0 beam is characterised for p > 0 by an electric field
given by Equation (1) involving radially a series of p oscillations alternatively positive
and negative. For convenience, let us introduce P+ (P−), the optical power carried by
the positive (negative) part of Ein(ρ), and the total power Ptot = P+ + P−. An important
parameter characterising the incident beam is η+, a dimensionless quantity defined as

η+ =
P+

Ptot
(30)

The pertinence of parameter η+ has been recently demonstrated [15,56]. Indeed, it
was found that when η+ is close to 0.96, the far-field distribution is made up of a flat-top
intensity profile [56]. In contrast, when η+ is in the range of 67% to 74%, the far-field is a
hollow beam or, more precisely, an optical bottle beam [57].

In the next section, we will demonstrate that the implementation of the η+ concept
allows for the reshaping of the LGp0 beam, for p ≥ 1, into a flat-top (FT) or optical bottle
beam (OBB). Before proceeding, let us consider the value of η+ associated with a pure LGp0
beam given in Table 6.

Table 6. Fraction of power carried by the negative rings potentially subject to rectification and ratio
η+ for a pure LGp0 beam.

p 0 1 2 3 4 5

Central peak (positive) 100% 26.4% 15.6% 11.1% 8.6% 7.1%

Ring #1 (negative) 73.6% 23.5% 15.3% 11.5% 9.24%

Ring #3 (negative) 53.7% 17.5% 11.8%

Ring #5 (negative) 45.7%

η+ (pure LGp0) 100% 26.4% 75.9% 30.9% 70.8% 33.2%
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Recently, it has been shown [56] that an LG10 beam can be transformed into an
FT profile in the focal plane of a focusing lens by increasing its η+ value from 26.4%
to 93.4% just by partially truncating the negative ring by using a diaphragm that gives
rise to a loss of about 72%. In the next section, it will be shown that a LG10 beam can
be transformed into an FT intensity profile in the far-field region by converting a part of
the negative ring into a positive value without loss. This is achieved by a transparent
phase-only diffractive optical element such as CPP or APP described above. In addition, we
will examine if the η+ concept could be applied to higher values of p in order to generate a
flat-top intensity profile after focusing. For the study of the partial rectification of an LGp0
beam in order to generate an FT profile in the focal plane of a converging lens, we will
consider the optical layout given in Figure 2, where the phase object (PO) is replaced by
one of the BDOEs defined in Equations (27)–(29). In the following, the calculation of the
diffracted field through the ensemble (BDOE + lens) in plane z is obtained by using the
well-known Fresnel–Kirchhoff formula given by Equation (6).

Before proceeding, it is important to note that the ability of transforming an LGp0 beam
into a flat-top intensity profile by using a phase-only BDOE achieving a partial rectification
is very different depending on the parity of the beam order p. As said above, the position
of the phase jumps from 0 to π and from π to 0, characterising the phase-only BDOE, in
order to achieve the partial rectification of a ring light, with some connected to the position
of the zeros of the Laguerre polynomials Lp. The latter are given in Table 2.

5.1.1. Reshaping of Odd LGp0 Beams: LG10, LG30, LG50

(a) LG10 beam

As given in Table 6, the value of η+ for the free LG10 beam is equal to 26.4% and must
be modified to about 90% (with reference to [56]) in order to obtain a flat-top profile in
the focal plane of a converging lens. For this, we planned to partially rectify the nega-
tive ring by using as a BDOE an annular π-plate (APP) defined by Equation (29), where
(ρ1/W) = YA and (ρ2/W) = YB. The value of YA was fixed to 0.707106 (zero of LG10 beam
intensity) and YB was variable. To find the right value of YB, allowing for the transforma-
tion of the LG10 beam into an FT intensity profile, we needed to “rectify” (90−26.4) = 63.6%
of the ring power content. As a consequence, the circle of radius YBW contained 90%
of the total power Ptot, and the value of YB could be deduced from the variations of the
normalised power P(ρ)/Ptot contained in the circle of normalised radius Y = ρ/W, plotted
in Figure 17. The extrapolated value of Y for which [P(ρ)/Ptot] = 90% was YB = 1.7. Then,
we needed to check that the intensity distribution Id(r, z = fL) was effectively a flat-top.
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The result is shown in Figure 18, which confirms the achievement of an FT profile.
The diffracted beam had a beam propagation factor found to be M2

D = 4.6. We could also
determine as previously the value of YB giving rise to an optical bottle beam (OBB). For
this, as said previously, the parameter η+ had to be in the range of 67% to 74%. As a result,
the partial rectification of the ring needed to be in the range of 67−26.4% to 74−26.4%,
namely, 40.6% to 47.6%. From the plot in Figure 17 for p = 1, we extrapolated the value of
YB, which was in the range of 1.4 to 1.47.
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Figure 18. Normalised intensity distribution in the focal plane of a converging lens of focal length
fL = 125 mm when the incident LG10 beam with W = 1 mm was partially rectified by a π-dephasing
ring bounded by the circles of normalised radius YA = 0.707 and YB = 1.7. The beam propagation
factor of the reshaped beam was found to be M2

D = 4.6.

The result shown in Figure 19 displays the expected hollow intensity profile with a
beam propagation factor of M2

D = 5.4. However, in order to confirm that we are dealing
with an OBB, we have to plot the on-axis intensity distribution, namely, Id(0, z) versus
z. The result is shown in Figure 20, which effectively confirms that the reshaping of
the LG10 beam generates for YB = 1.4 an OBB “closed” by the two longitudinal peaks of
intensity playing the symbolic role of the “cork” and “bottom” of the light bottle. It is
worth remembering that an OBB consists of a dark (minimal intensity) region surrounded
in all directions by regions of higher intensity. Such OBBs are very useful for the trapping
of cold neutral atoms [58–60] or metal nanoparticles [61–67]. It is interesting to compare the
OBB length ∆z = 4.3 mm, which represents the distance between the two intensity peaks
appearing in Figure 20, to the Rayleigh range zR of the pure focused LG10 beam (without a
BDOE). The distance zR (for p = 1) is expressed as a function of the beam waist size W0 of
the focused collimated Gaussian beam of width W = 1 mm:

zR =
πW2

0
(2p + 1)λ

= 5.3 mm (31)

With W0 = λfL/(πW) = 42 µm (32)
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increase +η  from 30.9% (pure LG30 beam) to the range of 67% (OBB) to 90% (FT). Conse-
quently, it was necessary to rectify fully Ring #1 and partially Ring #3 so that the adequate 
BDOE was a double annular π-plate (APP) made up of two π-dephasing rings, bounded 
by the circles of normalised radius YA = 0.455 and YB = 1.071 for the first ring and the circles 
of normalised radius YC = 1.77 and YD = variable for the second ring. In order to reshape 
the LG30 beam into an OBB, +η  needed to be close to 67%, and this could be achieved if 

Figure 19. Normalised intensity distribution in the focal plane of a converging lens of focal length
f L = 125 mm when the incident LG10 beam with W = 1 mm was partially rectified by a π-dephasing
ring bounded by the circles of normalised radius YA = 0.707 and YB = 1.4. The beam propagation
factor of the reshaped beam was found to be M2

D = 5.4.
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Figure 20. On-axis intensity distribution Id(0, z) for an LG10 beam partially rectified by an annular
phase plate (YA = 0.707 and YB = 1.4) for fL = 125 mm and W = 1 mm.

As a result, the OBB length was found to be ∆z = 0.8 zR, while the same reshaping of
the LG10 beam achieved by using a diaphragm gave an OBB length of ∆z = 6.6 zR [57].

(b) LG30 beam

A close look at Table 6 shows that the rectification of a single ring was not enough
to increase η+ from 30.9% (pure LG30 beam) to the range of 67% (OBB) to 90% (FT).
Consequently, it was necessary to rectify fully Ring #1 and partially Ring #3 so that the
adequate BDOE was a double annular π-plate (APP) made up of two π-dephasing rings,
bounded by the circles of normalised radius YA = 0.455 and YB = 1.071 for the first ring and
the circles of normalised radius YC = 1.77 and YD = variable for the second ring. In order
to reshape the LG30 beam into an OBB, η+ needed to be close to 67%, and this could be
achieved if 20.8% of Ring #3 were rectified. As conducted previously for the LG10 beam, we
deduced YD = 2.26 from Figure 17 for p = 3. The value expected for YD in order to obtain
an FT profile was YD = 2.58. The intensity profile Id(r, z = fL) showed that the best value
of YD to obtain the best OBB (FT) was 2.1 (2.45), as shown in Figure 21a,b. Both beams had
a beam propagation factor of M2

D = 10.8 instead of a beam propagation factor of M2
D = 7

associated with the incident beam.
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from Figure 17. By doing this, the BDOE rectified 67−33.2% = 33.8% of the last ring, and 
the best hollow intensity profile shown in Figure 22 was obtained for YB = 2.95 instead of 
the expected value YB = 3.18. The plot in Figure 22 shows that the quality of the hollow 
profile was bad because of the existence of numerous rings. It was found that the partial 
rectification of Ring #5 did not allow the generation of an FT profile, whatever the value 
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Figure 21. Normalised intensity distribution in the focal plane of a converging lens of focal length
f L = 125 mm when the incident LG30 beam with W = 1 mm had Ring #1 totally rectified and Ring
#3 partially rectified. The BDOE took the form of a double APP. The second π-dephasing ring was
bounded by the circles of normalised radius YD: (a) for YD = 2.1, the intensity profile was an OBB
with M2

D = 10.8 and (b) for YD = 2.45, we obtained a flat-top profile with M2
D = 10.8.

(c) LG50 beam

The LG50 beam had three positive and three negative zones and was characterised by
η+ = 33.2%. Consequently, it is seen from Table 6 that the generation of an OBB was possible
with a single APP rectifying partially Ring #5. The single APP was bounded by the circles of
normalised radius YA = 2.51 (fifth zero of intensity) and YB = 3.18, determined from Figure 17.
By doing this, the BDOE rectified 67−33.2% = 33.8% of the last ring, and the best hollow
intensity profile shown in Figure 22 was obtained for YB = 2.95 instead of the expected value
YB = 3.18. The plot in Figure 22 shows that the quality of the hollow profile was bad because
of the existence of numerous rings. It was found that the partial rectification of Ring #5 did
not allow the generation of an FT profile, whatever the value of YB.
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Figure 23. Normalised intensity distribution in the focal plane of a converging lens of focal length fL 

= 125 mm when the incident LG50 beam with W = 1 mm had Ring #3 totally rectified and Ring #5 
partially rectified. The BDOE took the form of a double APP. The second π-dephasing ring was 
bounded by the circles of normalised radius DY : (a) for YD = 2.8, the intensity profile was an OBB 

with 5.142 =DM  and (b) for YD = 3.05, we obtained a flat-top profile with 5.152 =DM . 

5.1.2. Reshaping of Even 0pLG  Beams: 20LG , 40LG  

Figure 22. Normalised intensity distribution in the focal plane of a converging lens of focal length
fL = 125 mm when the incident LG50 beam with W = 1 mm had Ring #5 partially rectified by a
π-dephasing ring bounded by the circles of normalised radius YA = 2.51 and YB = 2.95.

The second possibility allowing for the generation of an OBB or FT was the use of a
double APP rectifying totally Ring #3 and partially Ring #5. In accordance with Table 6
and Figure 17, the needed BDOE was made up of two π-dephasing rings bounded by the
circles of normalised radius YA = 1.34 and YB = 1.88 for Ring #3 and the circles of radius
YC = 2.51 and YD for the second ring, having different values depending on the desired
intensity profile, i.e., OBB or FT. Without repeating what has been explained above, we
expected an OBB if YD = 3 and an FT profile if YD = 3.5. Just as before, we found from the
numerical calculation that the OBB and FT profile were obtained for different values of YD.
In Figure 23a,b, it is seen that the intensity profile was an OBB (FT) for YD = 2.6 (YD = 3.05).
The beam propagation factor was found to be M2

D = 14.5 (M2
D = 15.5) for the OBB (FT)

profile instead of the beam propagation factor M2
D = 11 associated with the incident beam.
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Figure 23. Normalised intensity distribution in the focal plane of a converging lens of focal length fL 

= 125 mm when the incident LG50 beam with W = 1 mm had Ring #3 totally rectified and Ring #5 
partially rectified. The BDOE took the form of a double APP. The second π-dephasing ring was 
bounded by the circles of normalised radius DY : (a) for YD = 2.8, the intensity profile was an OBB 

with 5.142 =DM  and (b) for YD = 3.05, we obtained a flat-top profile with 5.152 =DM . 

5.1.2. Reshaping of Even 0pLG  Beams: 20LG , 40LG  

Figure 23. Normalised intensity distribution in the focal plane of a converging lens of focal length
f L = 125 mm when the incident LG50 beam with W = 1 mm had Ring #3 totally rectified and Ring
#5 partially rectified. The BDOE took the form of a double APP. The second π-dephasing ring was
bounded by the circles of normalised radius YD: (a) for YD = 2.8, the intensity profile was an OBB
with M2

D = 14.5 and (b) for YD = 3.05, we obtained a flat-top profile with M2
D = 15.5.

5.1.2. Reshaping of Even LGp0 Beams: LG20, LG40

By following the procedure detailed above for odd LGp0 beams, we modified the value
of η+ of LG20 and LG40 beams by using a single APP or double APP without reaching the
expected FT and OBB profiles in plane z = fL. In addition, no conspicuous beam reshaping
was observed when the geometry of the single or double APP was varied. It must be
concluded, without identifying the reasons for such behaviour, that the reshaping of an
LGp0 beam into an FT or OBB profile by using a binary phase-only DOE is only possible for
odd order p.

In summary, we have demonstrated that the intensity profile in the focal plane can
be a flat-top (FT) or an optical bottle beam (OBB), provided that η+ has an adequate value
96% or 67 to 74%. The adjustment of parameter η+ was made using a phase-only binary
diffractive optical element (BDOE) introducing a π-phase shift realising an operation of partial
rectification of the negative part of the LGp0 beam. The wording rectification means that the
negative electric field is transformed into a positive electric field. The resulting restructuring
of the LGp0 beam by the partial rectification led to an FT or an OBB, but only for odd order
p. The phase-only BDOE could be made of a transparent material on which was etched (one
etching level) a relief introducing the π-phase shift over the adequate circular areas calculated
to obtain the desired η+. The use of such a device has at least two main advantages, which
are, firstly, low cost compared to a spatial light modulator [68] or deformable mirror [69] and,
secondly, the ability to sustain high light intensities without damage.

6. Conclusions

It is important to note that the high-order transverse mode has been disqualified from
the applications of laser beams since the 1960s because it is more divergent and less bright
that the Gaussian laser beam (LG00 beam). Since that time, the Gaussian laser beam has been
put on a pedestal, but, from the 1990s, high-order modes have gained renewed interest. We
can mention the higher-order azimuthal Laguerre–Gauss modes since the discovery that they
possess well-defined orbital angular momentum along the optical axis for non-zero values
of the azimuthal order [5]. In contrast, high-order radial Laguerre–Gaussian beams have
received little attention as of late [70]. In this review, we wanted to emphasize some very
promising properties of restructured high-order radial Laguerre–Gauss beams. It would be
desirable to experiment with optical trapping with restructured LGp0 beams (by using OKE,
SA, or rectification) in order to benefit from improved trapping performances. However, the
first step should be to produce a LGp0 beam since commercial lasers deliver mainly Gaussian
beams. This can be achieved by inserting inside the laser cavity a mask made up of absorbing
rings [13] or a BDOE such as that described by Equation (19) [9,10,70]. Another possibility
could be to transform a Gaussian beam into a LGp0 beam by using an SLM and then carrying
out efficient amplification [71]. It will be interesting to extend the study of intensity and
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gradient distributions with other structured laser beams such as Bessel–Gauss beams and
generalised Laguerre–Gauss beams, which have attractive properties [72]. Finally, it would
be interesting to examine if restructured LGp0 beams can be more performant than GLBs for
applications other than those considered in this paper [73].
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Appendix A

Optical tweezers are today an indispensable tool for manipulating non-invasively
small particles. Initial work on the subject began in the 1970s by the pioneer Arthur
Ashkin, and remains a major challenge of intensive research. The latter corresponds to
the case where we are dealing with a spherical dielectric particle of radius a much smaller
than the laser wavelength (a << λ). In this context, the trapped particle is treated as a
point-induced electric dipole interacting with the electromagnetic field associated with the
focused laser beam. The theory of optical tweezers is described in detail in [74–79], and
the essential elements are briefly recalled below. The experimental setup allowing for the
implementation of usual optical tweezers involves a Gaussian laser beam and a focusing
lens, as shown in Figure A1.

Photonics 2024, 11, x FOR PEER REVIEW 25 of 30 
 

 

Acknowledgments: I would like to thank my collaborators, M. Fromager, E. Cagniot, A. Hasnaoui, 
A. Harfouche, S. Haddadi, D. Naidoo, S. Ngcobo, and A. Forbes, who have helped me for many 
years in the study of many aspects of the structuring of radial high-order Laguerre–Gauss beams. 

Conflicts of Interest: The author declares no conflicts of interest. 

Appendix A 
Optical tweezers are today an indispensable tool for manipulating non-invasively 

small particles. Initial work on the subject began in the 1970s by the pioneer Arthur Ash-
kin, and remains a major challenge of intensive research. The latter corresponds to the 
case where we are dealing with a spherical dielectric particle of radius a much smaller 
than the laser wavelength ( λ<<a ). In this context, the trapped particle is treated as a 
point-induced electric dipole interacting with the electromagnetic field associated with 
the focused laser beam. The theory of optical tweezers is described in detail in [74–79], 
and the essential elements are briefly recalled below. The experimental setup allowing for 
the implementation of usual optical tweezers involves a Gaussian laser beam and a focus-
ing lens, as shown in Figure A1. 

 
Figure A1. Optical trap set-up showing the scattering (in red) and gradient (in blue) longitudinal 
forces. The focusing lens has a focal length fL. 

The trapping of the small dielectric particle involves two longitudinal forces, as 
shown in Figure A1. The first force is a gradient force gradF


 proportional to the longitu-

dinal gradient of the distribution of intensity. The second one is the scattering force scatF


 
proportional to the longitudinal distribution of intensity. These two forces are given by  

),(
2
14

2

23
zrI

m
m

c
aF dzgrad ∇













+
−=

 π  (A1)

zzrI
m
m

c
anF d

m
scat ˆ),(

2
1

3
128

2

2

2

4

65













+
−=

λ
π

 (A2)

Figure A1. Optical trap set-up showing the scattering (in red) and gradient (in blue) longitudinal
forces. The focusing lens has a focal length fL.

The trapping of the small dielectric particle involves two longitudinal forces, as shown

in Figure A1. The first force is a gradient force
→
F grad proportional to the longitudinal gradi-

ent of the distribution of intensity. The second one is the scattering force
→
F scat proportional

to the longitudinal distribution of intensity. These two forces are given by

→
F grad =

4πa3

c

[
m2 − 1
m2 + 2

]→
∇z Id(r, z) (A1)
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→
F scat =

128π5nma6

3cλ4

[
m2 − 1
m2 + 2

]2

Id(r, z)ẑ (A2)

where m = np/nm is the ratio of the refractive index of the particle np and the surrounding
medium nm. The quantity Id(r, z) is the intensity distribution beyond the focusing lens,

where r is the radial coordinate in plane z. In Equation (A1), the gradient (
→
∇) operator

has longitudinal and radial components giving rise to a longitudinal gradient force and

a radial gradient force. Note that in Figure A1, the two forces (
→
F grad−1 and

→
F scat−1) are

noted in the region z < fL and (
→
F grad−2 and

→
F scat−2) are noted in the region z > fL. In

the next section, we will focus on the longitudinal components (r = 0) of the two forces
→
F scat and

→
F grad. In cases in which the incident laser beam is Gaussian, the on-axis intensity

distribution Id(0, z) is symmetric with respect to the plane z = fL. Consequently, in the

case of Gaussian illumination, we have
→
F scat−1 =

→
F scat−2 and

→
F grad−2 = −

→
F grad−1.

The condition that must be met in order to trap the particle is to fulfil the inequality∣∣∣Fgrad−2

∣∣∣ > |Fscat−2|, where Fgrad (Fscat) is the projection of
→
F grad (

→
F scat) in the ẑ direction.

The ratio Fgrad/Fscat is expressed as follows:

Fgrad

Fscat
= K

ẑ
→
∇z{Id(r, z)}

Id(r, z)
(A3)

with K =
3λ4

32π4nma3

[
m2 + 2
m2 − 1

]
(A4)

The objective is to set a phase object (PO) on the path of the incident beam (Figure 2),
achieving a restructuring of the laser beam in order to improve the performance of the
trap. For this, we define dimensionless factors characterising the longitudinal and radial
force improvements. For convenience, in the next section, we will express the stability of
the optical trap by a relevant quantity noted R, which is proportional to the ratio of the
backward axial gradient and the forward scattering forces [15]:

R =

−Kẑ.
[→
∇z(Id(0, z))

]
min

Id(0, zmin)
(A5)

zmin is the longitudinal position where the ratio Fgrad/(KFscat) is the minimum, as
shown in Figure A2 for the case of a pure Gaussian beam.
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Parameter R represents a kind of stability efficiency whose value is important for
the operation of the optical trap and can be controlled by the geometry of the laser beam
focusing. This point is relevant but is not central to our study since we are rather interested
in improving the value of parameter R thanks to the presence of a phase object (PO) set
on the path of the incident laser beam. In order to have a simple indicator allowing us to
estimate if the PO presence (with PO) improves or not the trap stability compared to the
case without the PO (without PO), it is convenient to have recourse to a dimensionless
quantity noted ZL and defined as follows:

ZL =
[R]with PO

[R]without PO
(A6)

The longitudinal stability of the trap is observed when the gradient force overcomes
the scattering force, thus bringing back the particle pushed by the scattering force so that
the particle is trapped. The longitudinal performance of the trap is enhanced (reduced) if
the dimensionless factor ZL is greater (smaller) than unity.

The radial trapping is due to a gradient force proportional to the radial gradient of the
intensity. In order to know if the spherical aberration added to the incident beam improves
or degrades the radial force, it is convenient to define a radial factor of merit ZR.

ZR =

{∣∣∣∣→∇r Id(r)
∣∣∣∣
max

}with PO

{∣∣∣∣→∇r Id(r)
∣∣∣∣
max

}without PO (A7)

ZR > 1 (ZR < 1) means that the presence of the phase object (PO) aberration has
improved (degraded) the radial force.

Another parameter noted pYR defines the radial enhanced factor with respect to the
case of an incident Gaussian beam.

pYR =

{∣∣∣∣→∇r Id(r)
∣∣∣∣
max

}with PO

p≥1{∣∣∣∣→∇r Id(r)
∣∣∣∣
max

}p=0

without PO

(A8)
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