Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Lacticaseibacillus rhamnosus 4B15

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1916 KB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 611
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

12 pages, 1457 KB  
Article
Neuroprotective Effect of Lactobacillus gasseri MG4247 and Lacticaseibacillus rhamnosus MG4644 Against Oxidative Damage via NF-κB Signaling Pathway
by Ji Yeon Lee, Ju Hui Kim, Jeong-Yong Park, Byoung-Kook Kim, Ho Jin Heo and Soo-Im Choi
Fermentation 2025, 11(7), 385; https://doi.org/10.3390/fermentation11070385 - 3 Jul 2025
Viewed by 613
Abstract
Probiotics have recently gained attention as modulators of the gut–brain axis in neurodegenerative diseases such as Alzheimer’s disease. In this study, we identified probiotic strains with neuroprotective effects and investigated their mechanisms and safety. We screened strains based on their ability to inhibit [...] Read more.
Probiotics have recently gained attention as modulators of the gut–brain axis in neurodegenerative diseases such as Alzheimer’s disease. In this study, we identified probiotic strains with neuroprotective effects and investigated their mechanisms and safety. We screened strains based on their ability to inhibit acetylcholinesterase (AChE) activity and protect cells against H2O2-induced damage. The cell-free supernatants (CFS) of Lactobacillus gasseri MG4247 and Lacticaseibacillus rhamnosus MG4644 inhibited AChE activity and reduced cell damage and reactive oxygen species generation. These effects were mediated through inhibition of the MyD88/NF-κB pathway and modulation of the JNK/Bax-dependent apoptotic pathway in neuronal cells treated with H2O2. Whole-genome sequencing and antibiotic susceptibility testing confirmed the identity and safety of both strains. These findings suggest that MG4247 and MG4644, as probiotics, may help protect neuronal cells from oxidative stress and inflammation. Full article
Show Figures

Figure 1

33 pages, 4269 KB  
Article
Peroxisome Proliferator-Activated Receptors (PPARs) May Mediate the Neuroactive Effects of Probiotic Metabolites: An In Silico Approach
by Irving Parra, Alan Carrasco-Carballo, Victoria Palafox-Sanchez, Isabel Martínez-García, José Aguilera, José L. Góngora-Alfaro, Irma Isela Aranda-González, Yousef Tizabi and Liliana Mendieta
Int. J. Mol. Sci. 2025, 26(10), 4507; https://doi.org/10.3390/ijms26104507 - 9 May 2025
Viewed by 894
Abstract
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the [...] Read more.
It is well established that the gut-brain axis (GBA) is a bidirectional communication between the gut and the brain. This axis, critical in maintaining overall homeostasis, is regulated at the neuronal, endocrine, and immunological levels, all of which may be influenced by the gut microbiota (GM). Therefore, dysbiosis or disruption in the GM may have serious consequences including neuroinflammation due to overactivation of the immune system. Strategies to reestablish GM integrity via use of probiotics are being pursued as novel therapeutic intervention in a variety of central and peripheral diseases. The mechanisms leading to dysbiosis or efficacy of probiotics, however, are not fully evident. Here, we performed computational analysis on two major probiotics, namely Lactobacillus Lacticaseibacillus rhamnosus GG (formerly named Lactobacillus rhamnosus, L. rhamnosus GG) and Bifidobacterium animalis spp. lactis (B. lactis or B. animalis) to not only shed some light on their mechanism(s) of action but also to identify potential molecular targets for novel probiotics. Using the PubMed web page and BioCyc Database Collection platform we specifically analyzed proteins affected by metabolites of these bacteria. Our results indicate that peroxisome proliferator-activated receptors (PPARs), nuclear receptor proteins that are involved in regulation of inflammation are key mediators of the neuroactive effect of probiotics. Full article
Show Figures

Figure 1

17 pages, 2531 KB  
Article
Evaluation of Sensory Properties and Short-Chain Fatty Acid Production in Fermented Soymilk on Addition of Fructooligosaccharides and Raffinose Family of Oligosaccharides
by Minnu Sasi, Sandeep Kumar, Om Prakash, Veda Krishnan, Vinayaka, Govind Singh Tomar, Jigni Mishra, Arpitha S R, Parshant Kaushik, Virendra Singh Rana and Anil Dahuja
Fermentation 2025, 11(4), 194; https://doi.org/10.3390/fermentation11040194 - 5 Apr 2025
Cited by 2 | Viewed by 793
Abstract
High potential is attributed to the concomitant use of probiotics and prebiotics in a single food product, called “synbiotics”, where the prebiotic component distinctly favours the growth and activity of probiotic microbes. This study implemented a detailed comparison between the prebiotic effect of [...] Read more.
High potential is attributed to the concomitant use of probiotics and prebiotics in a single food product, called “synbiotics”, where the prebiotic component distinctly favours the growth and activity of probiotic microbes. This study implemented a detailed comparison between the prebiotic effect of Fructooligosaccharides (FOSs) and Raffinose family oligosaccharides (RFOs) on the viable count of bacteria, hydrolysis into monosaccharides, the biosynthesis of short-chain fatty acids and sensory attributes of soymilk fermented with 1% (v/v) co-cultures of Lacticaseibacillus rhamnosus JCM1136 and Weissella confusa 30082b. The highest viable count of 1.21 × 109 CFU/mL was observed in soymilk with 3% RFOs added as a prebiotic source compared with MRS broth with 3% RFOs (3.21 × 108) and 3% FOS (6.2 × 107 CFU/mL) when replaced against glucose in MRS broth. Raffinose and stachyose were extensively metabolised (4.75 and 1.28-fold decrease, respectively) in 3% RFOs supplemented with soymilk, and there was an increase in glucose, galactose, fructose (2.36, 1.55, 2.76-fold, respectively) in soymilk supplemented with 3% FOS. Synbiotic soymilk with 3% RFOs showed a 99-fold increase in methyl propionate, while the one supplemented with 3% FOS showed an increase in methyl butyrate. The highest acceptability based on the sensory attributes was for soymilk fermented with 2% RFOs + 2% FOS + 2% table sugar + 1% vanillin (7.87 ± 0.52) with high mouth feel, product consistency, taste, and flavour. This study shows that the simultaneous administration of soy with probiotic bacteria and prebiotic oligosaccharides like FOSs and RFOs enhance the synergistic interaction between them, which upgraded the nutritional and sensory quality of synbiotic soymilk. Full article
Show Figures

Figure 1

14 pages, 2815 KB  
Article
Effect of Lactiplantibacillus plantarum DSW3805 Isolated from Kimchi for Gut Health Attenuating Colonic Inflammation in a Dextran Sulfate Sodium-Induced Mouse Model
by Na-Kyoung Lee, Yunjung Lee, Da-Soul Shin, Yong-Min Choi, Jinhyeuk Lee, Eunju Park and Hyun-Dong Paik
Nutrients 2025, 17(7), 1259; https://doi.org/10.3390/nu17071259 - 3 Apr 2025
Viewed by 735
Abstract
Background/Objectives: Lactiplantibacillus plantarum DSW3805 was isolated from Korean kimchi samples to examine its effect in a dextran sulfate sodium (DSS)-induced mouse model. Methods: To induce colitis, mice were treated with DSS for one week before sacrifice (n = 8 per group, [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum DSW3805 was isolated from Korean kimchi samples to examine its effect in a dextran sulfate sodium (DSS)-induced mouse model. Methods: To induce colitis, mice were treated with DSS for one week before sacrifice (n = 8 per group, total n = 40). Lacticaseibacillus rhamnosus GG (109 CFU/day) or probiotics (L. plantarum DSW3805; 108 or 109 CFU/day) were administered for two weeks. To assess colitis damage, we evaluated the disease activity index, colon tissue, inflammatory factors, the microbiome, short-chain fatty acids, and intestine-related factors. Results: DSS induced colonic tissue damage (colon length, mucus thickness, and colonic crypts), and L. plantarum DSW3805 alleviated the tissue damage. Induced inflammation was reduced by inhibiting TNF-α, IFN-γ, IL-1β, IL-6, IgA, IgG, LTB4, PGE2, and NF-κB protein expression. The ratio of Firmicutes to Bacteroidetes in the PC group (DSS-treated control) was lower than that in the NC (DSS-nontreated control); L. plantarum DSW3805 increased the ratio. Higher concentrations of acetic, propionic, and butyric acids were detected in probiotic groups. In addition, harmful factors, such as calprotectin and β-glucuronidase, were reduced in the probiotic groups. Conclusions: L. plantarum DSW3805 alleviates gut damage by colitis; therefore, it can be used as a functional food to improve gut health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

24 pages, 3966 KB  
Article
Metaproteomic Analysis of Fermented Vegetable Formulations with Lactic Acid Bacteria: A Comparative Study from Initial Stage to 15 Days of Production
by Narisa Rueangsri, Sittiruk Roytrakul, Chawanphat Muangnoi, Kullanart Tongkhao, Sudathip Sae-Tan, Khemmapas Treesuwan and Jintana Sirivarasai
Foods 2025, 14(7), 1148; https://doi.org/10.3390/foods14071148 - 26 Mar 2025
Cited by 2 | Viewed by 1159
Abstract
Research in metagenomics and metaproteomics can reveal how microbiological interactions in fermented foods contribute to their health benefits. This study examined three types of fermented vegetables: a standard formulation, a probiotic formulation with Lacticaseibacillus rhamnosus GG, and a polyphenol formulation with vitexin from [...] Read more.
Research in metagenomics and metaproteomics can reveal how microbiological interactions in fermented foods contribute to their health benefits. This study examined three types of fermented vegetables: a standard formulation, a probiotic formulation with Lacticaseibacillus rhamnosus GG, and a polyphenol formulation with vitexin from Mung bean seed coat. Measurements were taken at day 0 (after 36 h of fermentation at room temperature) and after 15 days. We applied 16S rRNA sequencing to evaluate microbial diversity and utilized LC-MS/MS to investigate the proteomic profiles of specific genera (Lactobacillus and Weissella) and species (Lacticaseibacillus rhamnosus and Levilactobacillus brevis) of lactic acid bacteria (LAB). All of these taxa demonstrated significant relative abundance between 0 and 15 days of fermentation in our metagenomic analysis. Our findings from principal component analysis and clustering analysis categorically distinguished protein expression patterns at various stages of fermentation. By comparing samples from day 0 to day 15, we identified proteins associated with DNA replication and repair mechanisms, including transcription elongation factor GreA, tRNA pseudouridine synthase B, and helicases. We also observed their roles in protein synthesis, which encompasses oxidoreductases and aspartokinase. Furthermore, we identified strong correlations of specific proteins across the three formulations with antioxidant markers. In conclusion, the results of this study decisively enhance our understanding of the role of the proteins related to specific LAB in fermented foods, highlighting their potential to improve texture, flavor, nutritional quality, and health benefits. Full article
Show Figures

Graphical abstract

22 pages, 4072 KB  
Article
Oral Administration of Lactobacillus gasseri and Lacticaseibacillus rhamnosus Ameliorates Amyloid Beta (Aβ)-Induced Cognitive Impairment by Improving Synaptic Function Through Regulation of TLR4/Akt Pathway
by Hye Ji Choi, Hyo Lim Lee, In Young Kim, Yeong Hyeon Ju, Yu Mi Heo, Hwa Rang Na, Ji Yeon Lee, Soo-Im Choi and Ho Jin Heo
Antioxidants 2025, 14(2), 139; https://doi.org/10.3390/antiox14020139 - 24 Jan 2025
Cited by 3 | Viewed by 2018
Abstract
This study investigated the anti-amnesic effects of Lactobacillus gasseri (L. gasseri) MG4247 and Lacticaseibacillus rhamnosus (L. rhamnosus) MG4644 in amyloid beta (Aβ)-induced mice. We confirmed that oral administration of L. gasseri MG4247 and L. rhamnosus MG4644 ameliorated cognitive impairment [...] Read more.
This study investigated the anti-amnesic effects of Lactobacillus gasseri (L. gasseri) MG4247 and Lacticaseibacillus rhamnosus (L. rhamnosus) MG4644 in amyloid beta (Aβ)-induced mice. We confirmed that oral administration of L. gasseri MG4247 and L. rhamnosus MG4644 ameliorated cognitive impairment in Aβ-induced mice using Y-maze, passive avoidance, and Morris water maze tests. Oral administration of L. gasseri MG4247 and L. rhamnosus MG4644 protected the antioxidant system by regulating superoxide dismutase levels, reduced glutathione levels, and reduced malondialdehyde contents. Similarly, they attenuated mitochondrial function by decreasing mitochondrial reactive oxygen species levels and increasing mitochondrial membrane potential and ATP levels. In addition, they regulated neuroinflammation and neurotoxicity by modulating the Toll-like receptor 4 (TLR4)/protein kinase B (Akt) pathway. As a result, they enhanced synaptic function by regulating acetylcholine contents, acetylcholinesterase activity, and the expression of synaptic-function-related proteins such as AChE, ChAT, SYP, PSD-95, and GAP-43. Furthermore, the administration of L. gasseri MG4247 and L. rhamnosus MG4644 improved dysbiosis by promoting the growth of beneficial bacteria while suppressing the growth of harmful bacteria. Therefore, these results suggest that L. gasseri MG4247 and L. rhamnosus MG4644 may be used as probiotics to prevent cognitive impairment. Full article
(This article belongs to the Special Issue Oxidative Stress in Brain Function—2nd Edition)
Show Figures

Figure 1

9 pages, 1091 KB  
Communication
Inhibitory Effect of Probiotic Metabolites on Seborrheic Dermatitis and Acne-Related Pathogenic Bacteria
by Qingpeng Meng, Ciying Xiao, Zejian Wang and Yazhuo Shang
Cosmetics 2025, 12(1), 3; https://doi.org/10.3390/cosmetics12010003 - 31 Dec 2024
Cited by 1 | Viewed by 5046
Abstract
The topical application of probiotic metabolites has shown positive effects in the treatment of skin diseases; however, the effectiveness is strain dependent. Comparing the pathogen inhibitory effects of probiotic strains with different genetic backgrounds and analyzing their key metabolites can provide insights about [...] Read more.
The topical application of probiotic metabolites has shown positive effects in the treatment of skin diseases; however, the effectiveness is strain dependent. Comparing the pathogen inhibitory effects of probiotic strains with different genetic backgrounds and analyzing their key metabolites can provide insights about the potential of applying probiotics for skincare. In this study, we investigated the fermentation growth inhibition of 18 commercial probiotic strains on the skin pathogens Malassezia furfur (M. furfur) and Cutibacterium acnes (C. acnes) in vitro. We found that most Bifidobacterium animalis subsp. lactis (B. lactis) and Lacticaseibacillus rhamnosus (L. rhamnosus) strains exhibited strong inhibition of M. furfur and C. acnes, which lasted up to 100 h. The main antibacterial metabolites observed were molecules below 10,000 Da in molecular weight, including peptides and organic acids (lactic acid, acetic acid, propionic acid, and butyric acid). The synergistic effect of organic acid combinations lowered the minimum inhibitory concentration (MIC). The composition of these antimicrobial metabolites varied among strains, which demonstrated the strain-dependent pathogenic inhibitory effects. This study provides insights into the application potential of using probiotic metabolites against seborrheic dermatitis and acne-related pathogenic bacteria. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

20 pages, 5512 KB  
Article
Debranched Lentil Starch–Sodium Alginate-Based Encapsulated Particles of Lacticaseibacillus rhamnosus GG: Morphology, Structural Characterization, In Vitro Release Behavior, and Storage Stability
by Jinxiu Zhang, Xinzhong Hu and Zhen Ma
Foods 2024, 13(24), 4047; https://doi.org/10.3390/foods13244047 - 15 Dec 2024
Viewed by 1161
Abstract
Starches with different degrees of debranching (DBS30, DBS60, and DBS90) and sodium alginate were used as the wall material for encapsulating particles of Lacticaseibacillus rhamnosus GG (LGG). The structural characteristics of these encapsulated particles were examined, along with the impact of varying levels [...] Read more.
Starches with different degrees of debranching (DBS30, DBS60, and DBS90) and sodium alginate were used as the wall material for encapsulating particles of Lacticaseibacillus rhamnosus GG (LGG). The structural characteristics of these encapsulated particles were examined, along with the impact of varying levels of debranching on the encapsulation efficiency, the in vitro release of LGG under the simulated gastrointestinal environment, and the storage stability of the encapsulated particles. The results revealed a transformation in the crystalline polymorph from C- to B+V-type following debranching and retrogradation. This process also resulted in a significant decrease in molecular weight and polydispersity index, accompanied by an increase in amylose and resistant starch levels along with the relative crystallinity of the debranched lentil starch. Comparatively, DBS60-LGG and DBS90-LGG exhibited higher encapsulation efficiency and encapsulation yield than UDBS-LGG and DBS30-LGG. Furthermore, these encapsulated particles provided enhanced protection for LGG in both the simulated gastrointestinal environment and the storage process. It can be inferred that a superior encapsulation performance of the debranched lentil starch–sodium alginate-based encapsulated LGG particles was associated with higher debranching levels, a more uniform molecular weight distribution, and a more ordered multi-scale structure of the debranched lentil starch. Full article
Show Figures

Figure 1

12 pages, 454 KB  
Article
Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro
by Rogério Cury Pires, Julia da Costa Calumby, Roice Eliana Rosim, Rogério D’Antonio Pires, Aline Moreira Borowsky, Sher Ali, Esther Lima de Paiva, Ramon Silva, Tatiana Colombo Pimentel, Adriano Gomes da Cruz, Carlos Augusto Fernandes de Oliveira and Carlos Humberto Corassin
Foods 2024, 13(20), 3299; https://doi.org/10.3390/foods13203299 - 17 Oct 2024
Cited by 2 | Viewed by 1176
Abstract
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional [...] Read more.
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional yogurts (FY) at 0.5–4.0% (w/w) to adsorb aflatoxin B1 (AFB1) was evaluated in vitro. Higher adsorption percentages (86.9–91.2%) were observed in FY containing 1.0% LR + SC or 2.0% SC (w/w). The survival of mouse embryonic fibroblasts increased after exposure to yogurts containing LC + SC at 1.0–4.0% (w/w). No significant differences were noted in the physicochemical and sensory characteristics between aflatoxin-free FY and control yogurts (no biomass) after 30 days of storage. The incorporation of combined LRB and SCB into yogurts as vehicles for these inactivated biomasses is a promising alternative for reducing the exposure to dietary AFB1. The results of this trial support further studies to develop practical applications aiming at the scalability of using the biomasses evaluated in functional foods to mitigate aflatoxin exposure. Full article
Show Figures

Figure 1

12 pages, 2095 KB  
Article
Assessment of the Biological Activity of a Probiotic Fermented Milk Product with the Addition of Lactobacillus helveticus Cell-Free Supernatant
by Svetlana Anatolyevna Kishilova, Irina Vladimirovna Rozhkova, Anastasia Yurievna Kolokolova, Elena Anatolyevna Yurova, Victoria Alexandrovna Leonova and Vera Anatolyevna Mitrova
Fermentation 2024, 10(10), 503; https://doi.org/10.3390/fermentation10100503 - 30 Sep 2024
Cited by 1 | Viewed by 1569
Abstract
Products enriched with probiotic microorganisms have proven to possess immunomodulatory, antioxidant, hypo-cholesterolemic, hypotensive, and antimicrobial properties. Biologically active substances, which are by-products of microbial fermentation, have potential applications in various industries. Cell-free supernatants, depending on the microorganisms used and production conditions, can exhibit [...] Read more.
Products enriched with probiotic microorganisms have proven to possess immunomodulatory, antioxidant, hypo-cholesterolemic, hypotensive, and antimicrobial properties. Biologically active substances, which are by-products of microbial fermentation, have potential applications in various industries. Cell-free supernatants, depending on the microorganisms used and production conditions, can exhibit antimicrobial, antioxidant, bifidogenic, and other biological activities. This paper presents a study on the biological activity of a probiotic fermented milk product, supplemented with 0.01% lyophilized cell-free supernatant from Lactobacillus helveticus. The fermented milk product was developed based on a composition of Lacticaseibacillus rhamnosus F, Lactococcus cremoris CR201, and Propionibacterium shermanii E2. The research evaluated antimicrobial activity, Bifidobacteria growth stimulation, and the content of organic acids, amino acids, and B vitamins. It was found that adding lyophilized cell-free supernatant to the fermented milk product enhanced its biological activity. In particular, the experimental samples showed a threefold increase in vitamin B6 content compared to the control, reaching 22.412 μg/100 g. Additionally, the amino acid content in the experimental samples exhibited a significant increase of more than 100% in the essential amino acid tryptophan compared to the control. Notably, antimicrobial activity increased against several opportunistic strains. The experimental samples also showed a significant increase in lactic and formic acids, which may enhance the product’s inhibitory properties against pathogens. An increase in antioxidant activity was observed, potentially due to the higher content of tryptophan and vitamin B6. The positive effect of adding cell-free supernatant on the growth of Bifidobacteria was also demonstrated. Thus, the findings suggest that this cell-free supernatant can be recommended as an additive in the production of fermented milk products, food additives, dietary supplements, and animal feed. Full article
Show Figures

Figure 1

19 pages, 7437 KB  
Article
Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite
by Longrui Wang, Jiasheng Ju, Huichun Xie, Feng Qiao, Qiaoyu Luo and Lianyu Zhou
Microorganisms 2024, 12(10), 1937; https://doi.org/10.3390/microorganisms12101937 - 24 Sep 2024
Cited by 2 | Viewed by 1186
Abstract
Selenium (Se) has garnered increasing attention in the field of nutrition, as it is essential for both humans and animals. Certain microorganisms can enrich inorganic selenium and convert it into organic selenium. The growth and metabolomic profiles of six lactobacilli strains exposed to [...] Read more.
Selenium (Se) has garnered increasing attention in the field of nutrition, as it is essential for both humans and animals. Certain microorganisms can enrich inorganic selenium and convert it into organic selenium. The growth and metabolomic profiles of six lactobacilli strains exposed to 50 μg/mL of sodium selenite were performed using gas chromatography tandem time-off light mass spectrometry (GC-TOF-MS) analysis. The addition of selenium significantly increased both the population and weight of the Lacticaseibacillus rhamnosus PS5, Lbs. rhamnosus RT-B, Limosilactobacillus reuteri 3630, and Lmb. reuteri 1663 strains, while those of the other two strains decreased. A total of 271 metabolites were determined, with their concentrations ranked from highest to lowest as follows: organic acids and derivatives, oxygen compounds, lipids and lipid-like molecules, and benzenoids. In certain groups, the concentrations of serine, aspartic acid, trehalose, palmitic acid, methylthreonine, and melibiose increased significantly, whereas glucuronic acid, ribose, ornithine, and methionine were downregulated. The metabolic pathways were significantly associated with ABC transporters, glycine, serine, threonine metabolism, and aminobenzoate degradation and other pathways. Based on these findings, we concluded that the transport, absorption, assimilation, and stress response to selenium by lactobacilli in metabolomic changed. Furthermore, the metabolomic alterations among different types of lactobacilli varied primarily due to their distinct properties. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 2162 KB  
Article
Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability
by Helena Nuñez, Aldonza Jaques, Karyn Belmonte, Jamil Elitin, Mónika Valdenegro, Cristian Ramírez and Andrés Córdova
Foods 2024, 13(11), 1756; https://doi.org/10.3390/foods13111756 - 3 Jun 2024
Cited by 4 | Viewed by 1975
Abstract
The objective of this study was to develop a dried apple snack enriched with probiotics, evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus [...] Read more.
The objective of this study was to develop a dried apple snack enriched with probiotics, evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus rhamnosus and dried at 45 °C using RWTM and CD and FD. Total polyphenol content (TPC), color (∆E*), texture, and viable cell count were measured, and samples were stored for 28 days at 4 °C. Vacuum impregnation allowed for a probiotic inoculation of 8.53 log CFU/gdb. Retention values of 6.30, 6.67, and 7.20 log CFU/gdb were observed for CD, RWTM, and FD, respectively; the population in CD, RWTM remained while FD showed a decrease of one order of magnitude during storage. Comparing RWTM with FD, ∆E* was not significantly different (p < 0.05) and RWTM presented lower hardness values and higher crispness than FD, but the RWTM-dried apple slices had the highest TPC retention (41.3%). Microstructural analysis showed that RWTM produced a smoother surface, facilitating uniform moisture diffusion and lower mass transfer resistance. The effective moisture diffusion coefficient was higher in RWTM than in CD, resulting in shorter drying times. As a consequence, RWTM produced dried apple snacks enriched with probiotics, with color and TPC retention comparable to FD. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

22 pages, 14154 KB  
Article
RETRACTED: Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages
by Ana Karolina Sá, Fabiana Olímpio, Jessica Vasconcelos, Paloma Rosa, Hugo Caire Faria Neto, Carlos Rocha, Maurício Frota Camacho, Uilla Barcick, Andre Zelanis and Flavio Aimbire
Nutrients 2024, 16(10), 1509; https://doi.org/10.3390/nu16101509 - 16 May 2024
Cited by 2 | Viewed by 2144 | Retraction
Abstract
Background: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus [...] Read more.
Background: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. Objective: Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. Methods: Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. Results: Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. Conclusions: Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages. Full article
(This article belongs to the Special Issue Probiotics in Immunity and Inflammation)
Show Figures

Figure 1

10 pages, 1489 KB  
Article
Chemical Characterization and Effect of a Lactobacilli-Postbiotic on Streptococcus mutans Biofilm In Vitro
by Guilherme Bandeira Santana, Patrick Veras Quelemes, Enedina Rodrigues da Silva Neta, Sidney Gonçalo de Lima and Gláuber Campos Vale
Microorganisms 2024, 12(5), 843; https://doi.org/10.3390/microorganisms12050843 - 23 Apr 2024
Cited by 6 | Viewed by 2450
Abstract
Postbiotic is the term used to define the soluble factors, metabolic products, or byproducts released by live probiotic bacteria or after its lysis. The objective of this study was to carry out the chemical characterization of the postbiotic of Lacticaseibacillus rhamnosus LR-32 and [...] Read more.
Postbiotic is the term used to define the soluble factors, metabolic products, or byproducts released by live probiotic bacteria or after its lysis. The objective of this study was to carry out the chemical characterization of the postbiotic of Lacticaseibacillus rhamnosus LR-32 and to evaluate its in vitro effect on the development of the Streptococcus mutans biofilm. After the cultivation of the probiotic strain, the postbiotic was extracted by centrifuging the culture and filtering the supernatant. This postbiotic was characterized by using gas chromatography coupled with mass spectrometry (GC–MS), and then it was used to determine the growth inhibition of S. mutans in its planktonic form; additionally, its effects on the following parameters in 48 h biofilm were evaluated: viable bacteria, dry weight, and gene expression of glucosyltransferases and VicR gene. The control group consisted of the biofilm without any treatment. A paired t-test was performed for statistical analysis, with the p-value set at 5%. Seventeen compounds of various chemical classes were identified in the postbiotic, including sugars, amino acids, vitamins, and acids. The treatment with the postbiotic led to an inhibition of the growth of S. mutans in its planktonic form, as well as a decrease in the number of viable bacteria, reduction in dry weight, and a negative regulation of the gene expression of gtfB, gtfC, gtfD, and vicR in its biofilm state, compared with the nontreated group (p < 0.05). The postbiotic of L. rhamnosus impaired the development of S. mutans biofilm. Full article
(This article belongs to the Special Issue A Contemporary Look at Oral Microbe Management)
Show Figures

Figure 1

Back to TopTop