Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Lactic Acid Bacteria and Yeast Biomasses
2.2. Preparation of the Functional Yogurts
2.3. Adsorption Assays of Aflatoxin B1 in Functional Yogurts In Vitro
2.4. Survival of Mouse Embryonic Fibroblasts Exposed to Aflatoxin B1 in Functional Yogurts
2.5. Physicochemical and Sensory Evaluation of Functional Yogurts
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eskola, M.; Kos, G.; Elliolutt, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ruan, H.N.; Sun, X.Q.; Luo, J.Y.; Yang, M.H. Contamination status and health risk assessment of 31 mycotoxins in six edible and medicinal plants using a novel green defatting and depigmenting pretreatment coupled with LC-MS/MS. LWT Food Sci. Technol. 2022, 161, 113401. [Google Scholar] [CrossRef]
- Ismail, A.; Gonçalves, B.L.; Neeff, D.V.; Ponzilacqua, B.; Coppa, C.F.S.C.; Hintzsche, H.; Sajid, M.; Cruz, A.G.; Corassin, C.H.; Oliveira, C.A.F. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res. Int. 2018, 113, 74–85. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Monograph on the Evaluation of Carcinogenic Risk to Humans; International Agency for Research on Cancer: Lyon, France, 2002; Volume 82, p. 171. Available online: http://monographs.iarc.fr/ENG/Monographs/vol82/mono82.pdf (accessed on 16 May 2024).
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin exposure and associated human health effects, a review of epidemiological studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef]
- Nunes, V.M.R.; Moosavi, M.; Khaneghah, A.M.; Oliveira, C.A.F. Innovative modifications in food processing to reduce the levels of mycotoxins. Curr. Opin. Food Sci. 2020, 38, 155–161. [Google Scholar] [CrossRef]
- Pires, R.C.; Portinari, M.R.; Moraes, G.Z.; Khaneghah, A.M.; Gonçalves, B.L.; Rosim, R.E.; Oliveira, C.A.F.; Corassin, C.H. Evaluation of anti-aflatoxin M1 effects of heat-killed cells of Saccharomyces cerevisiae in Brazilian commercial yogurts. Qual. Assur. Saf. Crop. Foods 2022, 14, 75–81. [Google Scholar] [CrossRef]
- Bueno, D.J.; Casale, C.H.; Pizzolitto, R.P.; Salvano, M.A.; Oliver, G. Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. J. Food Prot. 2007, 70, 2148–2154. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Lucatto, J.N.; Silva-Buzanello, R.A.; Mendonça, S.N.T.G.; Lazarotto, T.C.; Sanchez, J.L.; Bona, E.; Drunkler, D.A. Performance of different microbial cultures in potentially probiotic and prebiotic yoghurts from cow and goat milks. Int. J. Dairy Technol. 2020, 73, 144–156. [Google Scholar] [CrossRef]
- Souza, H.F.; Carosia, M.F.; Pinheiro, C.; Carvalho, M.V.; Oliveira, C.A.F.; Kamimura, E.S. On probiotic yeasts in food development: Saccharomyces boulardii, a trend. Food Sci. Technol. 2022, 42, e92321. [Google Scholar] [CrossRef]
- Salehi, F. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Sci. Nutr. 2021, 9, 4666–4686. [Google Scholar] [CrossRef] [PubMed]
- Mindelo, L.J.; Moraes, J.S.; Glins, B.S.; Pereira, D.R.; Gomes, T.C.; Martins, J.B.; Favacho, C.B.; da Silva Reis, N.C. Sensorial analysis: A tool for the introduction of handicraft yogurt into the market. Braz. J. Dev. 2020, 6, 95795–95801. [Google Scholar] [CrossRef]
- Lee, N.K.; Park, Y.S.; Kang, D.K.; Paik, H.D. Paraprobiotics: Definition, manufacturing methods, and functionality. Food Sci. Biotechnol. 2023, 32, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021, 8, 1225. [Google Scholar] [CrossRef]
- Oliveira, C.A.F.; Muaz, K.; Møller, C.O.A.; Corassin, C.H.; Rattray, F.P. Probiotics and Mycotoxins. In Probiotics and Prebiotics in Foods: Challenges, Innovations, and Advances; Cruz, A.G., Ranadheera, C.S., Nazzaro, F., Mortazavian, A., Eds.; Academic Press: London, UK, 2021; pp. 309–325. [Google Scholar] [CrossRef]
- Abdel-Salam, A.M.; Badr, A.N.; Zaghloul, A.H.; Farrag, A.R.H. Functional yogurt aims to protect against the aflatoxin B1 toxicity in rats. Toxicol. Rep. 2020, 7, 1412–1420. [Google Scholar] [CrossRef]
- Soukoulis, C.; Panagiotidis, P.; Koureli, R.; Tzia, C. Industrial yogurt manufacture: Monitoring of fermentation process and improvement of final product quality. J. Dairy Sci. 2007, 90, 2641–2654. [Google Scholar] [CrossRef]
- Bovo, F.; Franco, L.T.; Rosim, R.E.; Trindade, C.S.F.; Oliveira, C.A.F. The ability of Lactobacillus rhamnosus in solution, spray-dried or lyophilized to bind aflatoxin B1. J. Food Res. 2014, 2, 35–42. [Google Scholar] [CrossRef]
- Bovo, F.; Franco, L.T.; Rosim, R.E.; Barbalho, R.; Oliveira, C.A.F. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1. Braz. J. Microbiol. 2015, 46, 577–581. [Google Scholar] [CrossRef]
- Liew, W.P.; Nurul-Adilah, Z.; Than, L.; Mohd-Redzwan, S. The binding efficiency and interaction of Lactobacillus casei Shirota toward aflatoxin B1. Front. Microbiol. 2018, 9, 1503. [Google Scholar] [CrossRef]
- Jager, A.V.; Tedesco, M.P.; Souto, P.C.; Oliveira, C.A.F. Assessment of aflatoxin intake in São Paulo, Brazil. Food Control. 2013, 33, 87–92. [Google Scholar] [CrossRef]
- Nones, J.; Solhaug, A.; Eriksen, G.S.; Macuvele, D.L.P.; Polid, A.; Soares, C.; Trentin, A.G.; Riella, H.G.; Nones, J. Bentonite modified with zinc enhances aflatoxin B1 adsorption and increase survival of fibroblasts (3T3) and epithelial colorectal adenocarcinoma cells (Caco-2). J. Hazard. Mater. 2017, 337, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef]
- Cunniff, P. Official Methods of Analysis of AOAC International; AOAC: Arlington, VA, USA, 1995. [Google Scholar]
- Mousavi, M.; Heshmati, A.; Garmakhany, A.D.; Vahidinia, A.; Taheri, M. Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. LWT-Food Sci. Technol. 2019, 102, 80–88. [Google Scholar] [CrossRef]
- Aktar, T. Physicochemical and sensory characterisation of different yoghurt production methods. Int. Dairy J. 2022, 125, 105245. [Google Scholar] [CrossRef]
- SAS. SAS/STAT® 9.1 User’s Guide: Statistics. Version 9.1; SAS Institute Incorporation: Cary, NC, USA, 2005. [Google Scholar]
- Corassin, C.H.; Bovo, F.; Rosim, R.E.; Oliveira, C.A.F. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control 2013, 31, 80–83. [Google Scholar] [CrossRef]
- Gonçalves, B.L.; Muaz, K.; Coppa, C.F.S.C.; Rosim, R.E.; Kamimura, E.S.; Oliveira, C.A.F.; Corassin, C.H. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Res. Int. 2020, 136, 109604. [Google Scholar] [CrossRef] [PubMed]
- Campagnollo, F.B.; Franco, L.T.; Rottinghaus, G.E.; Kobashigawa, E.; Ledoux, D.R.; Daković, A.; Oliveira, C.A. In vitro evaluation of the ability of beer fermentation residue containing Saccharomyces cerevisiae to bind mycotoxins. Food Res. Int. 2015, 77, 643–648. [Google Scholar] [CrossRef]
- Zolfaghari, H.; Khezerlou, A.; Ehsani, A.; Khosroushahi, A.Y. Detoxification of aflatoxin B1 by probiotic yeasts and bacteria isolated from dairy products of Iran. Adv. Pharm. Bull. 2020, 10, 482–487. [Google Scholar] [CrossRef]
- El-Nezami, H.; Kankaanpää, P.; Salminen, S.; Ahokas, J. Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J. Food Prot. 1998, 61, 466–468. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Yuan, L.; Li, J. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci. Technol. 2020, 96, 127–134. [Google Scholar] [CrossRef]
- Pourmohammadi, K.; Sayadi, M.; Abedi, E.; Mousavifard, M. Determining the adsorption capacity and stability of aflatoxin B1, ochratoxin A, and zearalenone on single and co-culture L. acidophilus and L. rhamnosus surfaces. J. Food Compos. Anal. 2022, 110, 104517. [Google Scholar] [CrossRef]
- Martinez, M.P.; Magnoli, A.P.; Pereyra, M.G.; Cavaglieri, L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon 2019, 172, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Frangiamone, M.; Cimbalo, A.; Alonso-Garrido, M.; Vila-Donat, P.; Manyes, L. In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem. Toxicol. 2022, 160, 112798. [Google Scholar] [CrossRef] [PubMed]
- Flynn, T.J.; Stack, M.E.; Troy, A.L.; Chirtel, S.J. Assessment of the embryotoxic potential of the total hydrolysis product of fumonisin B1 using cultured organogenesis-staged rat embryos. Food Chem. Toxicol. 1997, 35, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.M.; Piorczynski, T.B. Use of primary mouse embryonic fibroblasts in developmental toxicity assessments. Methods Mol. Biol. 2019, 1965, 7–17. [Google Scholar] [CrossRef]
- Gardner, N.M.; Riley, R.T.; Showker, J.L.; Voss, K.A.; Sachs, A.J.; Maddox, J.R.; Gelineau-Van Waes, J.B. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol. Appl. Pharmacol. 2016, 298, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Jaman, S.; Islam, M.Z.; Sojib, M.S.; Hasan, M.S.; Khandakar, M.M.; Bari, M.S.; Sarker, M.A.; Habib, R.; Siddiki, M.S.; Islam, M.A.; et al. Physicochemical characteristics, sensory profile, probiotic, and starter culture viability of synbiotic yogurt. J. Adv. Vet. Anim. Res. 2022, 9, 694. [Google Scholar] [CrossRef]
- Azari-Anpar, M.; Payeinmahali, H.; Garmakhany, A.D.; Mahounak, A.S. Physicochemical, microbial, antioxidant, and sensory properties of probiotic stirred yoghurt enriched with Aloe vera foliar gel. J. Food Process. Preserv. 2017, 41, 13209. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Hasani, S.; Khodadadi, I.; Heshmati, A. Viability of Lactobacillus acidophilus in rice bran-enriched stirred yoghurt and the physicochemical and sensory characteristics of product during refrigerated storage. Int. J. Food Sci. Technol. 2016, 51, 2485–2492. [Google Scholar] [CrossRef]
- Altuntaş, S.; Korukluoglu, M. The impact of different commercial probiotic cultures with starters on technological, physicochemical and sensorial properties of a traditional yogurt-based appetizer “Cacik”. Mljekarstvo 2019, 69, 193–205. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: Suitability of taxonomic units notified to EFSA until March 2020. EFSA J. 2020, 18, e06174. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, F.; Yang, M.; Lin, Y.; Han, S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals. Crit. Rev. Biotechnol. 2023, 44, 163–190. [Google Scholar] [CrossRef] [PubMed]
- De Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’ana, A.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
Treatment (Vat) | L. rhamnosus (%) | S. cerevisiae (%) | Aflatoxin B1 Level (µg/g) 2 | Reduction (%) 3 |
---|---|---|---|---|
1 (Control) | 0 | 0 | 0.978 ± 0.022 a | - |
2 | 0.5 | 0 | 0.897 ± 0.009 b | 11.3 f |
3 | 0 | 0.5 | 0.406 ± 0.008 d | 60.4 c |
4 | 0.5 | 0.5 | 0.357 ± 0.010 d | 65.3 c |
5 | 1.0 | 0 | 0.782 ± 0.011 b | 22.8 e |
6 | 0 | 1.0 | 0.147 ± 0.014 e | 84.8 b |
7 | 1.0 | 1.0 | 0.098 ± 0.006 f | 91.2 a |
8 | 2.0 | 0 | 0.723 ± 0.014 b | 28.7 e |
9 | 0 | 2.0 | 0.168 ± 0.009 f | 81.8 b |
10 | 2.0 | 2.0 | 0.125 ± 0.009 ef | 88.2 ab |
11 | 4.0 | 0 | 0.582 ± 0.011 c | 42.8 d |
12 | 0 | 4.0 | 0.127 ± 0.006 e | 83.6 b |
13 | 4.0 | 4.0 | 0.161 ± 0.012 e | 86.9 ab |
Treatment (Vat) | L. rhamnosus (%) | S. cerevisiae (%) | Fat (%) 2 | Protein (%) 2 | pH 2 |
---|---|---|---|---|---|
1 (Control) | 0 | 0 | 1.05 ± 0.02 | 4.11 ± 0.03 | 4.47 ± 0.01 |
2 | 0.5 | 0 | 1.03 ± 0.05 | 4.13 ± 0.02 | 4.53 ± 0.03 |
3 | 0 | 0.5 | 1.06 ± 0.03 | 4.20 ± 0.05 | 4.52 ± 0.01 |
4 | 0.5 | 0.5 | 1.04 ± 0.04 | 4.08 ± 0.04 | 4.49 ± 0.02 |
5 | 1.0 | 0 | 1.07 ± 0.04 | 4.09 ± 0.08 | 4.58 ± 0.03 |
6 | 0 | 1.0 | 1.09 ± 0.03 | 4.26 ± 0.07 | 4.52 ± 0.03 |
7 | 1.0 | 1.0 | 1.03 ± 0.01 | 4.18 ± 0.03 | 4.49 ± 0.02 |
8 | 2.0 | 0 | 1.05 ± 0.04 | 4.17 ± 0.01 | 4.46 ± 0.01 |
9 | 0 | 2.0 | 1.08 ± 0.03 | 4.23 ± 0.08 | 4.54 ± 0.02 |
10 | 2.0 | 2.0 | 1.07 ± 0.02 | 4.14 ± 0.03 | 4.47 ± 0.05 |
11 | 4.0 | 0 | 1.04 ± 0.02 | 4.12 ± 0.07 | 4.50 ± 0.03 |
12 | 0 | 4.0 | 1.01 ± 0.04 | 4.20 ± 0.01 | 4.52 ± 0.03 |
13 | 4.0 | 4.0 | 1.05 ± 0.03 | 4.10 ± 0.01 | 4.48 ± 0.02 |
Treatment (Vat) | L. rhamnosus (%) | S. cerevisiae (%) | Appearance | Consistency | Aroma | Taste |
---|---|---|---|---|---|---|
1 (Control) | 0 | 0 | 3.6 ± 0.8 | 3.8 ± 0.8 | 2.9 ± 0.7 | 3.0 ± 1.0 |
2 | 0.5 | 0 | 3.8 ± 0.4 | 3.8 ± 0.4 | 2.9 ± 0.7 | 2.6 ± 0.4 |
3 | 0 | 0.5 | 3.5 ± 0.5 | 4.0 ± 0.7 | 3.3 ± 0.4 | 3.0 ± 0.7 |
4 | 0.5 | 0.5 | 3.3 ± 0.8 | 3.5 ± 0.9 | 2.6 ± 0.4 | 3.2 ± 0.9 |
5 | 1.0 | 0 | 3.8 ± 0.4 | 3.8 ± 0.4 | 3.2 ± 0.5 | 2.8 ± 0.3 |
6 | 0 | 1.0 | 3.5 ± 0.5 | 3.8 ± 0.8 | 3.4 ± 0.6 | 3.3 ± 0.8 |
7 | 1.0 | 1.0 | 3.5 ± 0.5 | 3.6 ± 1.0 | 2.9 ± 0.2 | 3.1 ± 0.6 |
8 | 2.0 | 0 | 3.8 ± 0.4 | 3.8 ± 0.4 | 3.0 ± 0.1 | 2.8 ± 0.4 |
9 | 0 | 2.0 | 3.8 ± 0.4 | 3.9 ± 0.9 | 3.5 ± 0.6 | 3.6 ± 0.5 |
10 | 2.0 | 2.0 | 3.3 ± 0.4 | 3.3 ± 0.8 | 2.6 ± 0.4 | 2.8 ± 0.8 |
11 | 4.0 | 0 | 3.5 ± 0.5 | 3.8 ± 0.4 | 2.8 ± 0.5 | 3.2 ± 0.3 |
12 | 0 | 4.0 | 3.5 ± 0.9 | 4.0 ± 0.7 | 3.1 ± 0.5 | 3.0 ± 0.1 |
13 | 4.0 | 4.0 | 3.3 ± 0.4 | 3.3 ± 0.8 | 3.1 ± 0.7 | 3.3 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, R.C.; da Costa Calumby, J.; Rosim, R.E.; Pires, R.D.; Borowsky, A.M.; Ali, S.; de Paiva, E.L.; Silva, R.; Pimentel, T.C.; da Cruz, A.G.; et al. Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro. Foods 2024, 13, 3299. https://doi.org/10.3390/foods13203299
Pires RC, da Costa Calumby J, Rosim RE, Pires RD, Borowsky AM, Ali S, de Paiva EL, Silva R, Pimentel TC, da Cruz AG, et al. Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro. Foods. 2024; 13(20):3299. https://doi.org/10.3390/foods13203299
Chicago/Turabian StylePires, Rogério Cury, Julia da Costa Calumby, Roice Eliana Rosim, Rogério D’Antonio Pires, Aline Moreira Borowsky, Sher Ali, Esther Lima de Paiva, Ramon Silva, Tatiana Colombo Pimentel, Adriano Gomes da Cruz, and et al. 2024. "Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro" Foods 13, no. 20: 3299. https://doi.org/10.3390/foods13203299
APA StylePires, R. C., da Costa Calumby, J., Rosim, R. E., Pires, R. D., Borowsky, A. M., Ali, S., de Paiva, E. L., Silva, R., Pimentel, T. C., da Cruz, A. G., de Oliveira, C. A. F., & Corassin, C. H. (2024). Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro. Foods, 13(20), 3299. https://doi.org/10.3390/foods13203299