Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals
2.2. Induction of COPD
2.3. Oral Feeding with Lacticaseibacillus rhamnosus
2.4. Isolation of Peripheral Blood Mononuclear Cells and Macrophage Differentiation
2.5. Macrophages Expose to Cigarette Smoke Extract and Treated with Butyrate
2.6. Treatment with GLPG-094, a Butyrate GPR43 Receptor Inhibitor
2.7. Treatment with Dexamethasone
2.8. Experimental Groups
2.9. Cell Viability
2.10. Cellularity in BALF
2.11. Histology and Morphometric Analysis
2.12. Pro-Inflammatory Mediators
2.13. Measurement of Pro-Oxidant and Antioxidant Agents and Lipid Peroxidation
2.14. Expression of NF-κB and Nrf2 in Lung
2.15. Statistical Analyses
3. Results
3.1. Cell Viability
3.2. Model of COPD Resistant to Corticoid
3.3. Probiotics Reduce Lung Inflammation and Airway Remodeling
3.4. Probiotics Mitigate Pro-Inflammatory Mediators in Lungs
3.5. Probiotics Modulate Oxidative Stress in Lungs
3.6. Butyrate Attenuates Pro-Inflammatory Mediator Secretion and Oxidative Stress in Steroid-Resistant Macrophages
3.7. GPR43 Receptor Inhibitor Partially Attenuates Effect on In Vivo Lr and In Vitro Butyrate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef] [PubMed]
- DI Stefano, A.; Gnemmi, I.; Dossena, F.; Ricciardolo, F.L.; Maniscalco, M.; Lo Bello, F.; Balbi, B. Pathogenesis of COPD at the cellular and molecular level. Minerva Med. 2022, 113, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Rustam, S.; Hu, Y.; Mahjour, S.B.; Rendeiro, A.F.; Ravichandran, H.; Urso, A.; D’Ovidio, F.; Martinez, F.J.; Altorki, N.K.; Richmond, B.; et al. A Unique Cellular Organization of Human Distal Airways and Its Disarray in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 207, 1171–1182. [Google Scholar] [CrossRef]
- Mitani, A.; Ito, K.; Vuppusetty, C.; Barnes, P.J.; Mercado, N. Restoration of Corticosteroid Sensitivity in Chronic Obstructive Pulmonary Disease by Inhibition of Mammalian Target of Rapamycin. Am. J. Respir. Crit. Care Med. 2016, 193, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013, 131, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Christenson, S.A.; van den Berge, M.; Faiz, A.; Inkamp, K.; Bhakta, N.; Bonser, L.R.; Zlock, L.T.; Barjaktarevic, I.Z.; Barr, R.G.; Bleecker, E.R.; et al. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. J. Clin. Investig. 2019, 129, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Huang, R.; Deng, D.; Tang, P.; Fu, Y.; Zheng, Y.; Wan, Y. Cryptotanshinone Reverses Corticosteroid Insensitivity by Inhibition of Phosphoinositide-3-Kinase-δ in Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Rinaldi, B.; Calabrese, C.; Belardo, C.; Calzetta, L.; Cazzola, M.; Page, C. The effect of combining an inhaled corticosteroid and a long-acting muscarinic antagonist on human airway epithelial cells in vitro. Respir. Res. 2024, 25, 104. [Google Scholar] [CrossRef]
- Adcock, I.M.; Ito, K.; Barnes, P.J. Histone deacetylation: An important mechanism in inflammatory lung diseases. COPD J. Chronic Obstr. Pulm. Dis. 2005, 2, 445–455. [Google Scholar] [CrossRef]
- Malhotra, R.; Kurian, N.; Zhou, X.H.; Jiang, F.; Monkley, S.; DeMicco, A.; Clausen, I.G.; Dellgren, G.; Edenro, G.; Ahdesmäki, M.J.; et al. Altered regulation and expression of genes by BET family of proteins in COPD patients. PLoS ONE 2017, 12, e0173115, Erratum in PLoS ONE 2017, 12, e0175997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leus, N.G.; van den Bosch, T.; van der Wouden, P.E.; Krist, K.; Ourailidou, M.E.; Eleftheriadis, N.; Kistemaker, L.E.; Bos, S.; Gjaltema, R.A.; Mekonnen, S.A.; et al. HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Sci. Rep. 2017, 7, 45047. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Li, C.; Chen, X.; Deng, Z.; Xie, T.; Huo, Z.; Wei, X.; Huang, Y.; Zeng, X.; Luo, Y.; et al. HDAC9 inhibition reduces skeletal muscle atrophy and enhances regeneration in mice with cigarette smoke-induced COPD. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167023. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.M.; Sadiku, P.; Coelho, P.; Watts, E.R.; Zhang, A.; Howden, A.J.M.; Sanchez-Garcia, M.A.; Bewley, M.; Cole, J.; McHugh, B.J.; et al. NRF2 Activation Reprograms Defects in Oxidative Metabolism to Restore Macrophage Function in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 207, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Las-Casas, L.O.; Marina, C.L.F.; de Castro, R.J.A.; Coelho, L.C.; Báo, S.N.; de Hoog, G.S.; Vicente, V.A.; Fernandes, L.; Bocca, A.L. Pathogenicity and Growth Conditions Modulate Fonsecaea Extracellular Vesicles’ Ability to Interact With Macrophages. Front. Cell. Infect. Microbiol. 2022, 12, 879018. [Google Scholar] [CrossRef] [PubMed]
- Amaral, E.P.; Lasunskaia, E.B.; D’Império-Lima, M.R. Innate immunity in tuberculosis: How the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect. 2016, 18, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Le, Y.; Cao, W.; Zhou, L.; Fan, X.; Liu, Q.; Liu, F.; Gai, X.; Chang, C.; Xiong, J.; Rao, Y.; et al. Infection of Mycobacterium tuberculosis Promotes Both M1/M2 Polarization and MMP Production in Cigarette Smoke-Exposed Macrophages. Front. Immunol. 2020, 11, 1902. [Google Scholar] [CrossRef] [PubMed]
- Lea, S.R.; Reynolds, S.L.; Kaur, M.; Simpson, K.D.; Hall, S.R.; Hessel, E.M.; Singh, D. The effects of repeated Toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Mulvanny, A.; Pattwell, C.; Beech, A.; Southworth, T.; Singh, D. Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD. Biomedicines 2022, 10, 1949. [Google Scholar] [CrossRef]
- Di Stefano, A.; Caramori, G.; Gnemmi, I.; Contoli, M.; Bristot, L.; Capelli, A.; Ricciardolo, F.L.; Magno, F.; D’Anna, S.E.; Zanini, A.; et al. Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax 2009, 64, 968–975. [Google Scholar] [CrossRef]
- Li, A.; Liu, Y.; Zhu, X.; Sun, X.; Feng, X.; Li, D.; Zhang, J.; Zhu, M.; Zhao, Z. Methylallyl sulfone attenuates inflammation, oxidative stress and lung injury induced by cigarette smoke extract in mice and RAW264.7 cells. Int. Immunopharmacol. 2018, 59, 369–374, Erratum in Int. Immunopharmacol. 2019, 72, 522. [Google Scholar] [CrossRef] [PubMed]
- Finicelli, M.; Digilio, F.A.; Galderisi, U.; Peluso, G. The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aridgides, D.S.; Mellinger, D.L.; Armstrong, D.A.; Hazlett, H.F.; Dessaint, J.A.; Hampton, T.H.; Atkins, G.T.; Carroll, J.L.; Ashare, A. Functional and metabolic impairment in cigarette smoke-exposed macrophages is tied to oxidative stress. Sci. Rep. 2019, 9, 9624. [Google Scholar] [CrossRef]
- Tomaki, M.; Sugiura, H.; Koarai, A.; Komaki, Y.; Akita, T.; Matsumoto, T.; Nakanishi, A.; Ogawa, H.; Hattori, T.; Ichinose, M. Decreased expression of antioxidant enzymes and increased expression of chemokines in COPD lung. Pulm. Pharmacol. Ther. 2007, 20, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Baker, J.; Higham, A.; Shah, R.; Montero-Fernandez, A.; Murray, C.; Cooper, N.; Lucas, C.; Fox, C.; Singh, D.; et al. COPD lung studies of Nrf2 expression and the effects of Nrf2 activators. Inflammopharmacology 2022, 30, 1431–1443. [Google Scholar] [CrossRef]
- Sul, O.J.; Choi, H.W.; Oh, J.; Ra, S.W. GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway. Food Chem. Toxicol. 2023, 177, 113795. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Huang, M.; Duan, X.; Liu, H.; Zhang, W.; Li, D. Compound glycyrrhiza oral solution alleviates oxidative stress and inflammation by regulating SRC/MAPK pathway in chronic obstructive pulmonary disease. Immunopharmacol. Immunotoxicol. 2022, 44, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Białas, A.J.; Sitarek, P.; Miłkowska-Dymanowska, J.; Piotrowski, W.J.; Górski, P. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxidative Med. Cell. Longev. 2016, 2016, 7808576. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, D.; Arezzini, B.; Pecorelli, A.; Valacchi, G.; Martorana, P.A.; Gardi, C. Reactivity of mouse alveolar macrophages to cigarette smoke is strain dependent. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298, L704–L713. [Google Scholar] [CrossRef] [PubMed]
- Dianat, M.; Radan, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Ahmadizadeh, M. Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: The role of Nrf2 antioxidant system in preventing oxidative stress. Respir. Res. 2018, 19, 58. [Google Scholar] [CrossRef]
- Yao, H.; Rahman, I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetiCSE in pathogenesis of chronic obstructive pulmonary disease. Toxicol. Appl. Pharmacol. 2011, 254, 72–85. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Lv, X.; Hu, Y.; Cui, K. Ginseng Saponin Rb1 Attenuates Cigarette Smoke Exposure-Induced Inflammation, Apoptosis and Oxidative Stress via Activating Nrf2 and Inhibiting NF-κB Signaling Pathways. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 1883–1897. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Yang, S.R.; Kode, A.; Rajendrasozhan, S.; Caito, S.; Adenuga, D.; Henry, R.; Edirisinghe, I.; Rahman, I. Redox regulation of lung inflammation: Role of NADPH oxidase and NF-kappaB signalling. Biochem. Soc. Trans. 2007, 35, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Wieczfinska, J.; Sitarek, P.; Skała, E.; Kowalczyk, T.; Pawliczak, R. Inhibition of NADPH Oxidase-Derived Reactive Oxygen Species Decreases Expression of Inflammatory Cytokines in A549 Cells. Inflammation 2019, 42, 2205–2214, Erratum in Inflammation 2020, 43, 1173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoenderdos, K.; Condliffe, A. The neutrophil in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2013, 48, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Hodge, G.; Hodge, S. Steroid Resistant CD8+CD28null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease. Front. Immunol. 2016, 7, 617. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, T.; Wadhwa, R.; Rohil, V.; Maurya, P.K. Biomarkers of oxidative stress and protein-protein interaction in chronic obstructive pulmonary disease. Arch. Physiol. Biochem. 2018, 124, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Ora, J.; Calzetta, L.; Rogliani, P.; Matera, M.G. The future of inhalation therapy in chronic obstructive pulmonary disease. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100092. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, J.A.; Mota, A.S.; Olímpio, F.; Rosa, P.C.; Damaceno-Rodrigues, N.; de Paula Vieira, R.; Taddei, C.R.; Aimbire, F. Lacticaseibacillus rhamnosus Modulates Lung Inflammation and Mitigates Gut Dysbiosis in a Murine Model of Asthma-COPD Overlap Syndrome. Probiotics Antimicrob Proteins, 2023; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jamalkandi, S.A.; Ahmadi, A.; Ahrari, I.; Salimian, J.; Karimi, M.; Ghanei, M. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease. Nutr. Res. Rev. 2021, 34, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, F.; Mao, L.; Feng, T.; Wang, K.; Xu, M.; Lv, B.; Wang, X. Bifico relieves irritable bowel syndrome by regulating gut microbiota dysbiosis and inflammatory cytokines. Eur. J. Nutr. 2023, 62, 139–155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, K.; Pali-Schöll, I.; Roth-Walter, F.; Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 2020, 42, 75–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loukides, S.; Bartziokas, K.; Vestbo, J.; Singh, D. Novel Anti-Inflammatory Agents in COPD: Targeting Lung and Systemic Inflammation. Curr. Drug Targets 2013, 14, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lim, A.Y.H.; Tan, W.S.D.; Abisheganaden, J.; Wong, W.S.F. Restoration of HADAC2 and Nrf2 by andrographolide overcomes corticosteroid resistance in chronic obstructive pulmonary disease. Br. J. Pharmacol. 2020, 177, 3662–3673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Royce, S.G.; Moodley, Y.; Samuel, C.S. Novel therapeutic strategies for lung disorders associated with airway remodeling and fibrosis. Pharmacol. Ther. 2014, 141, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, L.; Xie, Y.; Xu, Y.; Jiao, W.; Deng, X.; Fang, G.; Xue, Q.; Zheng, Y.; Gao, Z. Th1/Th17 Cytokine Profiles are Associated with Disease Severity and Exacerbation Frequency in COPD Patients. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1287–1299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ponce-Gallegos, M.A.; Ramírez-Venegas, A.; Falfán-Valencia, R. Th17 profile in COPD exacerbations. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1857–1865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Li, M.; Chen, Q.; Li, X.; Chen, L.; Dong, Z.; Yang, Y.; Liu, Z.; Chen, Q. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun. 2022, 13, 3432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karakula-Juchnowicz, H.; Rog, J.; Juchnowicz, D.; Loniewski, I.; Skonieczna-Zydecka, K.; Krukow, P.; Futyma-Zydecka, M.; Kaczmarczyk, M. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): A 12 week, randomized, double-blind, and placebo-controlled clinical study protocol. Nutr. J. 2019, 18, 50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Losol, P.; Choi, J.P.; Kim, S.H.; Chang, Y.S. The Role of Upper Airway Microbiome in the Development of Adult Asthma. Immune Netw. 2021, 21, e19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anatriello, E.; Cunha, M.; Nogueira, J.; Carvalho, J.L.; Sá, A.K.; Miranda, M.; Castro-Faria-Neto, H.; Keller, A.C.; Aimbire, F. Oral feeding of Lacticaseibacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: Relevance to the Th1/Th2 cytokines and STAT6/T-bet. Cell. Immunol. 2019, 341, 103928. [Google Scholar] [CrossRef] [PubMed]
- Mortaz, E.; Adcock, I.M.; Ricciardolo, F.L.; Varaham, M.; Jamaati, H.; Velayati, A.A.; Folkerts, G.; Garssen, J. Anti-inflammatory Effects of Lacticaseibacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages. PLoS ONE 2015, 10, e0136455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Carvalho, F.O.; Felipe, F.A.; de Meljp Costa, A.C.; Teixeira, L.G.; Silva, É.R.; Nunes, P.S.; Shanmugam, S.; de Lucca Junior, W.; Quintans, J.S.; de Souza Araújo, A.A. Inflammatory Mediators and Oxidative Stress in Animals Subjected to Smoke Inhalation: A Systematic Review. Lung 2016, 194, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.K.; Isaksson, S.; Öhman, L. The Anti-Inflammatory Immune Regulation Induced by Butyrate Is Impaired in Inflamed Intestinal Mucosa from Patients with Ulcerative Colitis. Inflammation 2019, 43, 507–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yip, W.; Hughes, M.R.; Li, Y.; Cait, A.; Hirst, M.; Mohn, W.W.; McNagny, K.M. Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Front. Immunol. 2021, 12, 628453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, J.; Chang, G.; Huang, J.; Wang, Y.; Ma, N.; Roy, A.C.; Shen, X. Sodium Butyrate Inhibits the Inflammation of Lipopolysaccharide-Induced Acute Lung Injury in Mice by Regulating the Toll-Like Receptor 4/Nuclear Factor κB Signaling Pathway. J. Agric. Food Chem. 2019, 67, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.T.; Cresci, G.A.M. The immunomodulatory Functions of Butyrate. J. Inflamm. Res. 2021, 14, 6025–6041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pham, M.T.; Yang, A.J.; Kao, M.S.; Gankhuyag, U.; Zayabaatar, E.; Jin, S.C.; Huang, C.M. Gut probiotic Lacticaseibacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. J. Nutr. Biochem. 2021, 98, 108821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, H.; Yang, L.; Liu, Y.; Yan, R.; Wang, R.; Zhang, P.; Bai, Z.; Liu, Y.; Ren, Y.; Li, Y.; et al. Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization via GPR43/HADAC-miRNAs axis in ApoE-/- mice. PLoS ONE 2023, 18, e0282685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Nava, G.A.; Méndez-Salazar, E.O.; Vázquez-Mellado, J.; Zamudio-Cuevas, Y.; Francisco-Balderas, A.; Martínez-Flores, K.; Fernández-Torres, J.; Lozada-Pérez, C.; Guido-Gómora, D.L.; Martínez-Gómez, L.E.; et al. The impact of short-chain fatty acid-producing bacteria of the gut microbiota in hyperuricemia and gout diagnosis. Clin. Rheumatol. 2022, 42, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, H.; Chen, Y.; Niu, Q.; Dong, Y.; Li, M.; Yuan, Y.; Yang, X.; Sun, Q. Butyrate protects against MRSA peneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization. mBio 2023, 14, e0198723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, G.; Du, Y.; Guan, H.; Jia, J.; Zhu, N.; Shi, Y.; Rong, S.; Yuan, W. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3KAkt/mTOR signals. Br. J. Pharmacol. 2021, 179, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Nakatani, A.; Hasegawa, S.; Irie, J.; Ozawa, K.; Tsujimoto, G.; Suganami, T.; Itoh, H.; Kimura, I. The short-chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 2017, 12, e0179696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Q.; Xu, J.; Wu, Y. Regulation of inflammation and apoptosis by GPR43 via JNK/ELK1 in acute lung injury. Inflamm. Res. 2022, 71, 603–614. [Google Scholar] [CrossRef] [PubMed]
- de Groot, L.; van der Veen, T.A.; Martinez, F.O.; Hamann, J.; Lutter, R.; Melgert, B.N. Oxidative stress and macrophages: Driving forces behind exacerbations od asthma and chronic obstructive pulmonary disease? Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L369–L384. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Bai, Z.; Ou, Y.; Liu, H.; Si, Z.; Liu, Y.; Liu, X.; Liu, X.; Zhang, Z.; Tan, N. beta-Hydroxybutyric acid upregulated by Suhuang antitussive capsule ameliorates cough variant asthma through GSK3beta/AMPK-Nrf2 signal axis. J. Ethnopharmacol. 2023, 307, 116013. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Li, C.; Kuang, M.; Shah, A.U.; Shafiq, M.; Ahmad, M.A.; Abdalmegeed, D.; Li, L.; Wang, G. Nrf2 Activation and NF-κB & caspase/bax signaling inhibition by sodium butyrate alleviates LPS-induced cell injury in bovine mammary epithelial cells. Mol. Immunol. 2022, 148, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Fock, E.; Parnova, R. Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023, 12, 657. [Google Scholar] [CrossRef] [PubMed]
cells in culture medium: | 100% |
CSE: | 95.33% |
dexamethasone: | 98.54% |
butyrate: | 99% |
GLPG-094: | 99.42% |
Cellularity in BALF (104 cells/mL) | Control | COPD | COPD + Dexamethasone |
---|---|---|---|
Total | 5.03 ± 1.19 | * 38.20 ± 1.21 | (ns) 33.49 ± 4.17 |
Neutrophils | 0.06 ± 0.05 | * 25.80 ± 2.85 | (ns) 21.86 ± 4.02 |
Macrophages | 3.73 ± 0.69 | * 14.72 ± 1.18 | (ns) 12.18 ± 1.03 |
Lymphocytes | 0.16 ± 0.12 | * 2.26 ± 0.39 | (ns) 1.97 ± 0.34 |
Cytokines (pg/mL) and NF-κB (mRNA) | Control | COPD | COPD + Dexamethasone |
---|---|---|---|
TNF-α | 50.15 ± 5.33 | * 358.21 ± 10.25 | (ns) 352.10 ± 10.12 |
IL-1β | 20.73 ± 2.55 | * 79.54 ± 7.21 | (ns) 76.80 ± 7.55 |
IL-6 | 12.31 ± 2.10 | * 62.18 ± 5.21 | (ns) 61.57 ± 5.20 |
GM-CSF | 55.67 + 4.22 | * 252. 71 ± 5.77 | (ns) 250.8 ± 6.33 |
TSLP | 33.8 ± 1.55 | * 125.81 ± 2.33 | (ns) 121.92 ± 3.71 |
NF-κB | 0.14 ± 0.01 | * 1.22 ± 0.21 | (ns) 1.20 ± 0.34 |
Airway Remodeling (%) | Control | COPD | COPD + Steroid |
---|---|---|---|
Airway Mucus | 1.15 ± 0.12 | * 32.78 ± 3.63 | (ns) 30.61 ± 3.60 |
Airway Collagen | 10.22 ± 1.17 | * 45.88 ± 3.20 | (ns) 42.19 ± 2.77 |
Parenchyma Collagen | 2.84 ± 0.10 | * 9.64 ± 1.07 | (ns) 9.55 ± 1.18 |
Cytokines (pg/mL) NF-κB (mRNA) | Control | CSE | CSE + Dexamethasone |
---|---|---|---|
MCP-1 | 5.33 ± 0.55 | * 80.94 ± 7.55 | (ns) 77.50 ± 7.82 |
MIP-1 | 8.22 ± 1.18 | * 36.91 ± 4.22 | (ns) 35.68 ± 5.20 |
RANTES | 7.40 ± 2.05 | * 177.50 ± 8.33 | (ns) 175. 30 ± 8.20 |
NF-κB | 0.2 ± 0.01 | * 0.57 ± 0.14 | (ns) 0.54 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sá, A.K.; Olímpio, F.; Vasconcelos, J.; Rosa, P.; Faria Neto, H.C.; Rocha, C.; Camacho, M.F.; Barcick, U.; Zelanis, A.; Aimbire, F. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients 2024, 16, 1509. https://doi.org/10.3390/nu16101509
Sá AK, Olímpio F, Vasconcelos J, Rosa P, Faria Neto HC, Rocha C, Camacho MF, Barcick U, Zelanis A, Aimbire F. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients. 2024; 16(10):1509. https://doi.org/10.3390/nu16101509
Chicago/Turabian StyleSá, Ana Karolina, Fabiana Olímpio, Jessica Vasconcelos, Paloma Rosa, Hugo Caire Faria Neto, Carlos Rocha, Maurício Frota Camacho, Uilla Barcick, Andre Zelanis, and Flavio Aimbire. 2024. "Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages" Nutrients 16, no. 10: 1509. https://doi.org/10.3390/nu16101509
APA StyleSá, A. K., Olímpio, F., Vasconcelos, J., Rosa, P., Faria Neto, H. C., Rocha, C., Camacho, M. F., Barcick, U., Zelanis, A., & Aimbire, F. (2024). Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients, 16(10), 1509. https://doi.org/10.3390/nu16101509