Assessment of the Biological Activity of a Probiotic Fermented Milk Product with the Addition of Lactobacillus helveticus Cell-Free Supernatant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probiotic Association Used
2.2. Preparation of Cell-Free Supernatant
2.3. Obtaining Control and Experimental Samples of Probiotic Fermented Milk Product
2.4. Determination of the Biological Activity of Probiotic Fermented Milk Product
2.4.1. Determination of Antimicrobial Activity
2.4.2. Determination of Organic Acids, Amino Acids and Vitamins
2.4.3. Determination of Antioxidant Activity
2.4.4. Determination of the Ability of Experimental Samples to Stimulate the Growth of Bifidobacteria
2.4.5. Processing of Experimental Data
3. Results and Discussion
3.1. Determination of Antimicrobial Activity
3.2. Determination of Organic Acids, Amino Acids and Vitamins
3.3. Determination of Antioxidant Activity
3.4. Determination of the Ability of Control and Experimental Samples to Stimulate the Growth of Bifidobacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, H.; Ozogul, F.; Bartkiene, E.; Rocha, J.M. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit. Rev. Food Sci. Nutr. 2023, 63, 4819–4841. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, M.P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Rafique, N.; Jan, S.Y.; Dar, A.H.; Dash, K.K.; Sarkar, A.; Shams, R.; Pandey, V.K.; Khan, S.A.; Amin, Q.A.; Hussain, S.Z. Promising bioactivities of postbiotics: A comprehensive review. J. Agric. Food Res. 2023, 14, 100708. [Google Scholar] [CrossRef]
- Kruchinin, A.G.; Agarkova, E.Y. Biologically active peptides of milk: Review. Food Ind. 2020, 92–96. [Google Scholar]
- Agarkova, Y.; Fedotova, O.; Chilikin, A. The prospect of using natural psychobiotics in dairy products to stabilize the diet. In IOP Conference Series: Earth and Environmental Sciences; IOP Publishing: Bristol, UK, 2021; Volume 677, p. 032051. [Google Scholar]
- Erginkaya, Z.; Konuray-Altun, G. Potential biotherapeutic properties of lactic acid bacteria in foods. Food Biosci. 2022, 46, 46101544. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A step beyond pre-and probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Shenderov, B.A. Metabiotics is a new technology for the prevention of diseases associated with human microecological imbalance. J. Restor. Med. 2017, 4, 40. [Google Scholar]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Molaei, R.; Guimarães, J.T. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzym. Microb. Technol. 2021, 143, 109722. [Google Scholar] [CrossRef]
- Grigore-Gurgu, L.; Cotârleț, M.; Pihurov, M.; Păcularu-Burada, B.; Vasile, A.M.; Enachi, E.; Chițescu, C.L.; Petre, B.A.; Dumitrașcu, L.; Borda, D.; et al. Lactiplantibacillus plantarum and Lactiplantibacillus paraplantarum postbiotics: Assessment of the biotic-derived metabolites with cytocompatibility and antitumoral potential. Food Biosci. 2024, 59, 103863. [Google Scholar] [CrossRef]
- Moradi, M.; Mardani, K.; Tajik, H. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT 2019, 111, 457–464. [Google Scholar] [CrossRef]
- Nakamura, K.; Arakawa, K.; Kawai, Y.; Yasuta, N.; Chujo, T.; Watanabe, M.; Iioka, H.; Tanioka, M.; Nishimura, J.; Kitazawa, H.; et al. Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culture supernatant of Lactobacillus gasseri LA39. Anim. Sci. J. 2013, 84, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Hamad, G.; Botros, W.; Hafez, E. Combination of probiotic filtrates as antibacterial agent against selected some pathogenic bacteria in milk and cheese. Int. J. Dairy Sci. 2017, 12, 368–376. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef] [PubMed]
- Rozhkova, I.V.; Yurova, E.A.; Leonova, V.A. Evaluation of the amino acid composition and content of organic acids of complex postbiotic substances obtained on the basis of metabolites of probiotic bacteria Lacticaseibacillus paracasei ABK and Lactobacillus helveticus H9. Fermentation 2023, 9, 460. [Google Scholar] [CrossRef]
- Rozhkova, I.V.; Begunova, A.V.; Leonova, V.A. Bifidogenic and antioxidant properties of probiotic cultures’ postbiotics. Dairy Ind. 2022, 12, 20–21. [Google Scholar] [CrossRef]
- Begunova, A.V.; Rozhkova, I.V.; Zvereva, E.A.; Glazunova, O.A.; Fedorova, T.V. Lactic and propionic acid bacteria: The formation of a community for the production of functional products with bifidogenic and hypotensitive properties. Appl. Biochem. Microbiol. 2019, 55, 660–669. [Google Scholar] [CrossRef]
- Kolokolova, A.Y. Study of changes in the organoleptic profile of sour-milk products with the addition of postbiotic. Food Ind. 2024, 6, 52–55. [Google Scholar]
- ISO 20634-2018; Infant Formula and Adult Nutritionals. Determination of Vitamin B12 by Reversed Phase High Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2018.
- EN 14663-2014; Foodstuffs. Determination of Vitamin B Index 6 (Including Its Glycosylated Forms) by High Performance Liquid Chromatography. Available online: https://gostperevod.com/gost-en-14663-2014.html (accessed on 4 June 2014).
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Rice-Evans Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- ISO 29981-2013. Available online: https://www.russiangost.com/p-71349-gost-iso-29981-2013.aspx (accessed on 1 July 2015).
- Rozhkova, I.V.; Begunova, A.V.; Vasina, D.V.; Kubanova, M.K.; Krupenio, T.V.; Sharapchenko, S.O.; Fedorova, T.V.; Gabrielyan, N.I. Antagonistic activity of Lactobacillus spp. against hospital strains of Klebsiella spp. Bull. Transplantol. Artif. Organs 2018, 20, 180. [Google Scholar]
- Fedorova, T.V.; Vasina, D.V.; Begunova, A.V.; Rozhkova, I.V.; Raskoshnaya, T.A.; Gabrielyan, N.I. Antagonistic activity of lactic acid bacteria Lactobacillus spp. for clinical isolates of Klebsiella pneumoniae. Appl. Biochem. Microbiol. 2018, 54, 264–276. [Google Scholar] [CrossRef]
- Stoyanova, L.G.; Ustyugova, E.A.; Netrusov, A.I. Antimicrobial metabolites of lactic acid bacteria. Appl. Biochem. Microbiol. 2012, 48, 259–275. [Google Scholar] [CrossRef]
- Alvarez-Vieiro, P.; Montalban-Lopez, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Expansion of the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [PubMed]
- Kishilova, S.A. Prospects for the use of probiotic organisms for the development of alternative disinfection and prevention strategies. Food Meta Eng. 2023, 1. [Google Scholar] [CrossRef]
- Evgenievich, K.V.; Andreevna, N.E.; Alekseevna, S.N.; Vyacheslavovna, N.V.; Viktorovna, D.D.; Faritovna, N.R. The role of the essential amino acid tryptophan in the occurrence of sleep disorders and anxiety-depressive disorders. Man His Health 2022, 25, 13–23. [Google Scholar] [CrossRef]
- Kishilova, S.A.; Terekhova, R.P.; Rozhkova, I.V.; Yurova, E.A. Comparative assessment of the antagonistic activity of collection lactobacilli against multidrug-resistant Klebsiella pneumoniae. Nutr. Issues 2023, 92, 120–127. [Google Scholar] [CrossRef]
- Kishilova, S.A.; Kolokolova, A.Y.; Rozhkova, I.V. Antimicrobial activity of metabolite complexes of lactobacilli against Pseudomonas aeruginosa. Biophysics 2024, 69, 324–332. [Google Scholar] [CrossRef]
- Shatova, O.P.; Zabolotneva, A.A.; Mikin, I.E.; Bril, D.V.; Shestopalov, A.V.; Roumiantsev, S.A. A Oxidative stress and the use of antioxidants in neurology. The role of tryptophan metabolites in metabolism and pathogenesis of obesity. Prev. Med. 2022, 25, 97–103. [Google Scholar] [CrossRef]
- Shokri, D.; Khorasgani, M.R.; Mohkam, M.; Fatemi, S.M.; Ghasemi, Y.; Taheri-Kafrani, A. The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa. Probiotics Antimicrob. Proteins 2018, 10, 34–42. [Google Scholar] [CrossRef]
- Singh, R.B. Role of tryptophan in health and disease: Systematic review of the anti-oxidant, anti-inflammation, and nutritional aspects of tryptophan and its metabolites. World Heart J. 2019, 11, 161–178. [Google Scholar]
- Sheybak, V.M.; Pavlyukovets, A.Y. Tryptophan: A key metabolite of homeostasis and regulator of body functions. Hepatol. Gastroenterol. 2021, 5, 143–149. [Google Scholar] [CrossRef]
- Kolokolova, A.Y.; Kishilova, S.A.; Rozhkova, I.V.; Mitrova, V.A. Study of stimulation of the growth of bifidobacteria by a postbiotic complex of a fermented milk product as one of the factors in increasing its biological effectiveness. Food Metaeng. 2024, 2. [Google Scholar]
- Sokolova, O.V.; Fedotova, O.B. On the possibilities of enriching multicomponent ferrous dairy products with vitamins and amino acids in native form. In Proceedings of the International Scientific and Practical Conference Dedicated to the Memory of Vasily Matveevich Gorbatov; No. 1. Federal State Budgetary Scientific Institution ‘Federal Scientific Center for Food Systems named after V.I. Gorbatov RAS’, Moscow, Russia, 2015; Available online: https://eng.rudn.ru/cooperation/employment-partnerships/partners/federal-scientific-center-for-food-systems-na-vm-gorbatova-russian-academy-of-sciences-federal-state-budgetary-scientific-institution/ (accessed on 28 March 2023).
Organic Acids | Control | Experimental |
---|---|---|
mg/kg ± σ | ||
Formic acid | 31.8 ± 20% | 60.3 ± 20% |
Citric acid | 177.8 ± 20% | 161.5 ± 20% |
Acetic acid | 1071.5 ± 20% | 1106.7 ± 20% |
Propionic acid | 1333 ± 20% | 947.7 ± 20% |
Succinic acid | 51.2 ± 20% | 41.8 ± 20% |
Lactic acid | 5892.3 ± 20% | 6980 ± 20% |
Sample Type | Number of Bifidobacteria Cells CFU/mL | pH Unit |
---|---|---|
Control | 2.0 × 107 CFU/mL | 4.7 ± 0.1 |
Experimental | 1.4 × 108 CFU/mL | 4.5 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishilova, S.A.; Rozhkova, I.V.; Kolokolova, A.Y.; Yurova, E.A.; Leonova, V.A.; Mitrova, V.A. Assessment of the Biological Activity of a Probiotic Fermented Milk Product with the Addition of Lactobacillus helveticus Cell-Free Supernatant. Fermentation 2024, 10, 503. https://doi.org/10.3390/fermentation10100503
Kishilova SA, Rozhkova IV, Kolokolova AY, Yurova EA, Leonova VA, Mitrova VA. Assessment of the Biological Activity of a Probiotic Fermented Milk Product with the Addition of Lactobacillus helveticus Cell-Free Supernatant. Fermentation. 2024; 10(10):503. https://doi.org/10.3390/fermentation10100503
Chicago/Turabian StyleKishilova, Svetlana Anatolyevna, Irina Vladimirovna Rozhkova, Anastasia Yurievna Kolokolova, Elena Anatolyevna Yurova, Victoria Alexandrovna Leonova, and Vera Anatolyevna Mitrova. 2024. "Assessment of the Biological Activity of a Probiotic Fermented Milk Product with the Addition of Lactobacillus helveticus Cell-Free Supernatant" Fermentation 10, no. 10: 503. https://doi.org/10.3390/fermentation10100503
APA StyleKishilova, S. A., Rozhkova, I. V., Kolokolova, A. Y., Yurova, E. A., Leonova, V. A., & Mitrova, V. A. (2024). Assessment of the Biological Activity of a Probiotic Fermented Milk Product with the Addition of Lactobacillus helveticus Cell-Free Supernatant. Fermentation, 10(10), 503. https://doi.org/10.3390/fermentation10100503