Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = LVDC microgrid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2025 KiB  
Article
Optimized Submodule Capacitor Ripple Voltage Suppression of an MMC-Based Power Electronic Transformer
by Jinmu Lai, Zijian Wu, Xianyi Jia, Yaoqiang Wang, Yongxiang Liu and Xinbing Zhu
Electronics 2025, 14(12), 2385; https://doi.org/10.3390/electronics14122385 - 11 Jun 2025
Viewed by 352
Abstract
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution [...] Read more.
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution networks. To address this issue, this study introduces an optimized method for suppressing the submodule capacitor ripple voltage in MMC-based PET systems under normal and grid fault conditions. First, an MMC–PET topology featuring upper and lower arm coupling is proposed. Subsequently, a double-frequency circulating current injection strategy is incorporated on the MMC side to eliminate the double-frequency ripple voltage of the submodule capacitor. Furthermore, a phase-shifting control strategy is applied in the isolation stage of the dual-active bridge (DAB) to transfer the submodule capacitor selective ripple voltages to the isolation stage coupling link, effectively eliminating the fundamental frequency ripple voltage. The optimized approach successfully suppresses capacitor ripples without increasing current stress on the isolated-stage DAB switches, even under grid fault conditions, which are not addressed by existing ripple suppression methods, thereby reducing device size and cost while ensuring reliable operation. Specifically, the peak-to-peak submodule capacitor ripple voltage is reduced from 232 V to 10 V, and the peak current of the isolation-stage secondary-side switch is limited to ±90 A. The second harmonic ripple voltage on the LVDC bus can be decreased from ±5 V to ±1 V with the proposed method under the asymmetric grid voltage condition. Subsequently, a system simulation model is developed in MATLAB/Simulink. The simulation results validated the accuracy of the theoretical analysis and demonstrated the effectiveness of the proposed method. Full article
Show Figures

Figure 1

28 pages, 16912 KiB  
Article
Power Flow and Voltage Control Strategies in Hybrid AC/DC Microgrids for EV Charging and Renewable Integration
by Zaid H. Ali and David Raisz
World Electr. Veh. J. 2025, 16(2), 104; https://doi.org/10.3390/wevj16020104 - 14 Feb 2025
Viewed by 1105
Abstract
This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections [...] Read more.
This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections through a shared DC circuit. This arrangement enables the integration of various DC generation sources, such as photovoltaic systems, as well as DC consumers, like electric vehicle chargers, supported by DC/DC converters. Significant advancements include sensorless current estimation for grid-forming inverters, which removes the necessity for conventional current sensors by employing mathematical models and established system parameters. The experimental findings validate the system’s effectiveness in grid-connected and isolated microgrid modes, demonstrating its ability to sustain energy quality and system stability under different conditions. Our results highlight the considerable potential of integrating grid-forming functionalities in inverters to improve microgrid operations. Full article
Show Figures

Figure 1

22 pages, 6069 KiB  
Article
Research on Power Efficiency of DC Microgrids Considering Fire Protection Systems
by Ju-Ho Park and Sang-Yong Park
Energies 2025, 18(2), 230; https://doi.org/10.3390/en18020230 - 7 Jan 2025
Viewed by 846
Abstract
Due to the development of power semiconductors and the increase in digital loads, DC microgrids are receiving attention, and their application scope is rapidly expanding. As the technological stability of high-voltage direct current (HVDC) continues to rise, the potential of low-voltage direct current [...] Read more.
Due to the development of power semiconductors and the increase in digital loads, DC microgrids are receiving attention, and their application scope is rapidly expanding. As the technological stability of high-voltage direct current (HVDC) continues to rise, the potential of low-voltage direct current (LVDC) distribution systems is becoming increasingly intriguing. Many researchers are actively conducting safety and efficiency research on DC distribution systems and power grids. In LVDC distribution systems, small-scale DC microgrids are formed by renewable energy sources supplying DC power. This paper analyzes the efficiency improvement that can be achieved by integrating a fire protection system into a DC microgrid. This research analyzed the changes when fire protection systems such as receivers, transmitters, fire alarms, emergency lighting, and evacuation guidance, which have traditionally used AC power, were converted to DC circuits. As a result, the power supply infrastructure within the DC microgrid can be simplified, energy loss can be reduced, and the stability of the power system can be improved. The research results of this paper suggest that DC circuit-based fire protection facilities can positively impact future smart grid and renewable energy goals. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

17 pages, 2720 KiB  
Article
Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study
by Rémy Cleenwerck, Hakim Azaioud, Majid Vafaeipour, Thierry Coosemans and Jan Desmet
Energies 2023, 16(7), 3205; https://doi.org/10.3390/en16073205 - 2 Apr 2023
Cited by 14 | Viewed by 3463
Abstract
This paper presents an in-depth comparison of the benefits and limitations of using a low-voltage DC (LVDC) microgrid versus an AC microgrid with regard to the integration of low-carbon technologies. To this end, a novel approach for charging electric vehicles (EVs) on low-voltage [...] Read more.
This paper presents an in-depth comparison of the benefits and limitations of using a low-voltage DC (LVDC) microgrid versus an AC microgrid with regard to the integration of low-carbon technologies. To this end, a novel approach for charging electric vehicles (EVs) on low-voltage distribution networks by utilizing an LVDC backbone is discussed. The global aim of the conducted study is to investigate the overall energy losses as well as voltage stability problems on DC and AC microgrids. Both architectures are assessed and compared to each other by performing a power flow analysis. Along this line, an actual low-voltage distribution network with various penetration levels of EVs, combined with photovoltaic (PV) systems and battery energy storage systems is considered. Obtained results indicate significant power quality improvements in voltage imbalances and conversion losses thanks to the proposed backbone. Moreover, the study concludes with a discussion of the impact level of EVs and PVs penetration degrees on energy efficiency, besides charging power levels’ impact on local self-consumption reduction of the studied system. The outcomes of the study can provide extensive insights for hybrid microgrid and EV charging infrastructure designers in a holistic manner in all aspects. Full article
(This article belongs to the Special Issue Load Modelling of Power Systems II)
Show Figures

Figure 1

16 pages, 4564 KiB  
Article
Fault Detecting and Isolating Schemes in a Low-Voltage DC Microgrid Network from a Remote Village
by Pascal Hategekimana, Adria Junyent Ferre, Joan Marc Rodriguez Bernuz and Etienne Ntagwirumugara
Energies 2022, 15(12), 4460; https://doi.org/10.3390/en15124460 - 19 Jun 2022
Cited by 12 | Viewed by 3231
Abstract
Fault detection and isolation are important tasks to improve the protection system of low voltage direct current (LVDC) networks. Nowadays, there are challenges related to the protection strategies in the LVDC systems. In this paper, two proposed methods for fault detection and isolation [...] Read more.
Fault detection and isolation are important tasks to improve the protection system of low voltage direct current (LVDC) networks. Nowadays, there are challenges related to the protection strategies in the LVDC systems. In this paper, two proposed methods for fault detection and isolation of the faulty segment through the line and bus voltage measurement were discussed. The impacts of grid fault current and the characteristics of protective devices under pre-fault normal, under-fault, and post-fault conditions were also discussed. It was found that within a short time after fault occurrence in the network, this fault was quickly detected and the faulty line segment was efficiently isolated from the grid, where this grid was restored to its normal operating conditions. For analysing the fault occurrence and its isolation, two algorithms with their corresponding MATLAB/SIMULINK platforms were developed. The findings of this paper showed that the proposed methods would be used for microgrid protection by successfully resolving the fault detection and grid restoration problems in the LVDC microgrids, especially in rural villages. Full article
Show Figures

Figure 1

23 pages, 18879 KiB  
Article
Development of New Protection Scheme in DC Microgrid Using Wavelet Transform
by Hun-Chul Seo
Energies 2022, 15(1), 283; https://doi.org/10.3390/en15010283 - 1 Jan 2022
Cited by 18 | Viewed by 2363
Abstract
The demand for a low voltage direct current (LVDC) microgrid is increasing by the increase of DC-based digital loads and renewable resources and the rapid development of power electronics technology. For the stable operation of an LVDC microgrid, it is necessary to develop [...] Read more.
The demand for a low voltage direct current (LVDC) microgrid is increasing by the increase of DC-based digital loads and renewable resources and the rapid development of power electronics technology. For the stable operation of an LVDC microgrid, it is necessary to develop a protection method. In this paper, the new protection scheme considering the fault section is proposed using wavelet transform (WT) in an LVDC microgrid. The fault sections are classified into DC side of the alternating current (AC)/DC converter, DC/DC converter connected to photovoltaic (PV) system, DC line, and DC bus. The characteristics of fault current at each fault section are analyzed. Based on these analyses, the new protection scheme including the fault section estimation is proposed using WT. The proposed scheme estimates the fault section using the detail component after performing WT and sends the trip signal to each circuit breaker according to the fault section. The proposed protection scheme is verified through various simulations according to the fault region and fault current using electromagnetic transient program (EMTP)/ATPDraw and MATLAB. The simulation results show that the fault section is accurately determined, and the corresponding circuit breaker (CB) operations are performed. Full article
Show Figures

Figure 1

30 pages, 8680 KiB  
Article
Coordinating Control of an Offshore LVDC Microgrid Based Renewable Energy Resources for Voltage Regulation and Circulating Current Minimization
by Walid Nassar, Olimpo Anaya-Lara and Khaled Ahmed
Energies 2021, 14(12), 3384; https://doi.org/10.3390/en14123384 - 8 Jun 2021
Cited by 9 | Viewed by 2087
Abstract
Multi-Use Platform (MUP) is a new topic addressed, extensively, under the EU funded projects that aim to exploit oceans in a sustainable way in order to reduce the costs of marine energy and to extract seafood. MUP’s electrical grid experiences many challenges, being [...] Read more.
Multi-Use Platform (MUP) is a new topic addressed, extensively, under the EU funded projects that aim to exploit oceans in a sustainable way in order to reduce the costs of marine energy and to extract seafood. MUP’s electrical grid experiences many challenges, being offshore. One of these challenges is that only Alternating Current (AC) systems are considered which are inefficient, expensive and require bulky components. Considering the advantages of Direct Current (DC) systems, this paper aims to study the feasibility of using the DC system to improve the electrical infrastructure of the MUP’s grid. Floating energy unit comprising tidal, wind and solar energy resources is considered as a base unit for the MUP’s grid. The paper proposes a new distributed controller for grid voltage regulation and minimizing circulating current among parallel-connected floating energy units in an offshore Low Voltage Direct Current (LVDC) microgrid. A mathematical model is derived for n-parallel floating energy units with the proposed controller. Additionally, stability analysis for the overall model of a single floating energy unit is also presented. The analysis and simulation of the proposed DC system demonstrate that the system is stable and fault-rejected at different operating conditions. Full article
(This article belongs to the Special Issue Energy and Exergy Analysis of Renewable Energy Conversion Systems)
Show Figures

Figure 1

16 pages, 5655 KiB  
Article
Analysis and Design of Coupled Inductor for Interleaved Buck-Type Voltage Balancer in Bipolar DC Microgrid
by Jung-min Park, Hyung-jun Byun, Bum-jun Kim, Sung-hun Kim and Chung-yuen Won
Energies 2020, 13(11), 2775; https://doi.org/10.3390/en13112775 - 1 Jun 2020
Cited by 10 | Viewed by 3126
Abstract
A voltage balancer (VB) can be used to balance voltages under load unbalance in either a bipolar DC microgrid or LVDC (Low voltage DC) distribution system. An interleaved buck-type VB has advantages over other voltage balance topologies for reduction in output current ripple [...] Read more.
A voltage balancer (VB) can be used to balance voltages under load unbalance in either a bipolar DC microgrid or LVDC (Low voltage DC) distribution system. An interleaved buck-type VB has advantages over other voltage balance topologies for reduction in output current ripple by an aspect of configuration of a physically symmetrical structure. Similarly, magnetic coupling such as winding two or more magnetic components into a single magnetic component can be selected to enhance the power density and dynamic response. In order to achieve these advantages in a VB, this paper proposes a VB with a coupled inductor (CI) as a substitute for inductors in a two-stage interleaved buck-type VB circuit. Based on patterns of switch poles under load variation, the variation in inductor currents under four switching patterns is induced. The proposed CI is derived from self-inductance based on the configuration structure that has a two-stage interleaved buck type and mathematical design results based on the coupling coefficient, where the coupling coefficient is a key factor in the determination of the dynamic response of the proposed VB in load variation. According to the results, a prototype scale is implemented to confirm the feasibility and effectiveness of the proposed VB. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

12 pages, 2278 KiB  
Article
Ground Fault Detection Using Hybrid Method in IT System LVDC Microgrid
by Kyung-Min Lee and Chul-Won Park
Energies 2020, 13(10), 2606; https://doi.org/10.3390/en13102606 - 20 May 2020
Cited by 10 | Viewed by 3718
Abstract
Low voltage direct current (LVDC) microgrid systems have many advantages over low voltage alternating current (LVAC) systems. Furthermore, LVDC microgrids are growing in use because they are easy to link to distributed energy resources (DER) and energy storage systems (ESS), etc. Currently, IT [...] Read more.
Low voltage direct current (LVDC) microgrid systems have many advantages over low voltage alternating current (LVAC) systems. Furthermore, LVDC microgrids are growing in use because they are easy to link to distributed energy resources (DER) and energy storage systems (ESS), etc. Currently, IT system LVDC microgrids are widely used in direct current (DC) railways, hospitals, photovoltaic (PV) systems, and so on. When a ground fault occurs in an IT system LVDC microgrid, the ground fault may not be detected because the fault current is very small and there is no current path. In this paper, ground fault detection is proposed using a hybrid method that comprises pulsation signal generator injection and detailed coefficients of discrete wavelet transform (DWT). The LVDC microgrid was modeled and simulated using power systems computer-aided design (PSCAD). In addition, the proposed hybrid method was implemented using MATLAB’s wave menu, a script m-file, and the PSCAD library. The proper threshold was selected and tested by fault resistance change and load variation. In order to verify the superiority of the proposed hybrid method, a comparative study with the conventional method was performed. The results of various simulations show that the proposed hybrid detection method has normal operation and accurately and rapidly detects ground faults. Full article
(This article belongs to the Special Issue Micro Grid Protection)
Show Figures

Figure 1

13 pages, 441 KiB  
Article
Study on Operational Characteristics of Protection Relay with Fault Current Limiters in an LVDC System
by Hyeong-Jin Lee, Jin-Seok Kim, Jae-Chul Kim, Sang-Yun Yun and Sung-Min Cho
Electronics 2020, 9(2), 322; https://doi.org/10.3390/electronics9020322 - 12 Feb 2020
Cited by 8 | Viewed by 3846
Abstract
As the application of low-voltage-direct-current system increases, fault analysis in the low-voltage-direct-current system has essential because the fault response has different from the conventional AC distribution system. Especially, the fault current by the discharge current of the capacitor in the low-voltage-direct-current distribution system [...] Read more.
As the application of low-voltage-direct-current system increases, fault analysis in the low-voltage-direct-current system has essential because the fault response has different from the conventional AC distribution system. Especially, the fault current by the discharge current of the capacitor in the low-voltage-direct-current distribution system has very large compared with the conventional AC distribution system. Therefore, this paper proposed the application of the superconducting fault current limiter for limiting the fault current on the low-voltage-direct-current system. As one of the protected methods against fault current, the superconducting fault current limiter which could quickly limit the fault current has been noticed as an attractive method. However, the protection relay may malfunction such as over current relay, selective protection relay due to limiting fault current by applying superconducting fault current limiter. Therefore, in this paper proposed a solution to malfunction problem of the protection relay using the voltage components of the high temperature superconductivity. This paper verified the effect of the proposed method through test modelling and PSCAD/EMTDC. Full article
(This article belongs to the Special Issue Emerging Technologies in Power Systems)
Show Figures

Figure 1

21 pages, 8664 KiB  
Article
A Unified Multimode Control of a DC–DC Interlinking Converter Integrated into a Hybrid Microgrid
by Oswaldo López-Santos, Yeison Alejandro Aldana-Rodríguez, Germain Garcia and Luis Martínez-Salamero
Electronics 2019, 8(11), 1314; https://doi.org/10.3390/electronics8111314 - 8 Nov 2019
Cited by 8 | Viewed by 3561
Abstract
DC–DC interlinking converters (ILCs) allow bidirectional energy exchange between DC buses of different voltage levels in microgrids. This paper introduces a multimode control approach of a half-bridge DC–DC converter interlinking an extra-low-voltage DC (ELVDC) bus of 48 VDC and a low-voltage DC (LVDC) [...] Read more.
DC–DC interlinking converters (ILCs) allow bidirectional energy exchange between DC buses of different voltage levels in microgrids. This paper introduces a multimode control approach of a half-bridge DC–DC converter interlinking an extra-low-voltage DC (ELVDC) bus of 48 VDC and a low-voltage DC (LVDC) bus of 240 VDC within a hybrid microgrid. By using the proposed control, the converter can transfer power between the buses when the other converters regulate them, or it can ensure the voltage regulation of one of the buses, this originating from its three operation modes. The proposed control scheme is very simple and provides a uniform system response despite the dependence of the converter dynamic on the operating point and the selected mode. Simulation and experimental results validated the theoretical development and demonstrated the usefulness of the proposed scheme. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

20 pages, 16114 KiB  
Article
Analysis of Effective Three-Level Neutral Point Clamped Converter System for the Bipolar LVDC Distribution
by Ju-Yong Kim, Ho-Sung Kim, Ju-Won Baek and Dong-Keun Jeong
Electronics 2019, 8(6), 691; https://doi.org/10.3390/electronics8060691 - 19 Jun 2019
Cited by 17 | Viewed by 5539
Abstract
Low-voltage direct current (LVDC) distribution has attracted attention due to increased DC loads, the popularization of electric vehicles, energy storage systems (ESS), and renewable energy sources such as photovoltaic (PV). This paper studies a ±750 V bipolar DC distribution system and applies a [...] Read more.
Low-voltage direct current (LVDC) distribution has attracted attention due to increased DC loads, the popularization of electric vehicles, energy storage systems (ESS), and renewable energy sources such as photovoltaic (PV). This paper studies a ±750 V bipolar DC distribution system and applies a 3-level neutral-point clamped (NPC) AC/DC converter for LVDC distribution. However, the 3-level NPC converter is fundamental in the neutral-point (NP) imbalance problem. This paper discusses the NP balance control method using zero-sequence voltage among various solutions to solve NP imbalance. However, since the zero-sequence voltage for NP balance control is limited, the NP voltage cannot be controlled to be balanced when extreme load differences occur. To maintain microgrid stability with bipolar LVDC distribution, it is necessary to control the NP voltage balance, even in an imbalance of extreme load. In addition, due to the bipolar LVDC distribution, the pole where a short-circuit condition occurs limits the short current until the circuit breaker operates, and a pole without a short-circuit condition must supply a stable voltage. Since the conventional 3-level NPC AC/DC converter alone cannot satisfy both functions, an additional DC/DC converter is proposed, analyzed, and verified. This paper is about a 3-level NPC AC/DC converter system for LVDC distribution. It can be used for the imbalance and short-circuit condition in bipolar LVDC distribution through the prototype of the 300 kW 3-level NPC AC/DC converter system and experimented and verified in various conditions. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

30 pages, 4356 KiB  
Review
System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections
by Waqas Javed, Dong Chen, Mohamed Emad Farrag and Yan Xu
Energies 2019, 12(6), 1001; https://doi.org/10.3390/en12061001 - 14 Mar 2019
Cited by 66 | Viewed by 7842
Abstract
Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty [...] Read more.
Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration. Full article
Show Figures

Figure 1

14 pages, 5311 KiB  
Article
A Virtual Inertia-Based Power Feedforward Control Strategy for an Energy Router in a Direct Current Microgrid Application
by Yuyang Li, Qiuye Sun, Danlu Wang and Sen Lin
Energies 2019, 12(3), 517; https://doi.org/10.3390/en12030517 - 6 Feb 2019
Cited by 16 | Viewed by 3792
Abstract
Due to the uncertainty of the power load and the randomness of distributed generations, low-voltage direct current (LVDC) bus voltage fluctuation will greatly affect the safety of an energy router-enabled direct current (DC) microgrid. In this paper, a power feedforward control strategy based [...] Read more.
Due to the uncertainty of the power load and the randomness of distributed generations, low-voltage direct current (LVDC) bus voltage fluctuation will greatly affect the safety of an energy router-enabled direct current (DC) microgrid. In this paper, a power feedforward control strategy based on a dual active bridge (DAB) DC/DC converter in an energy router-based DC Microgrid is proposed. Based on this strategy, the LVDC bus voltage is controlled by virtual inertia control of the DC microgrid, instead of by the DAB converter. Thus, two benefits of the proposed strategy can be achieved: the power feedforward control can be realized, to mitigate the voltage fluctuation range of the LVDC bus; and the modulation algorithm in the DAB converter can be simplified. Experimental results verify the correctness and effectiveness of the proposed control method. Full article
Show Figures

Figure 1

Back to TopTop