Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = LMWL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1960 KB  
Article
Dual-Isotope (δ2H, δ18O) and Bioelement (δ13C, δ15N) Fingerprints Reveal Atmospheric and Edaphic Drought Controls in Sauvignon Blanc (Orlești, Romania)
by Marius Gheorghe Miricioiu, Oana Romina Botoran, Diana Costinel, Ionuț Făurescu and Roxana Elena Ionete
Plants 2025, 14(24), 3816; https://doi.org/10.3390/plants14243816 - 15 Dec 2025
Viewed by 259
Abstract
Grapevine water relations are increasingly influenced by drought under climate change, with significant implications for yield, fruit composition and wine quality. Stable isotopes of hydrogen, oxygen, carbon and nitrogen (δ2H, δ18O, δ13C and δ15N) provide [...] Read more.
Grapevine water relations are increasingly influenced by drought under climate change, with significant implications for yield, fruit composition and wine quality. Stable isotopes of hydrogen, oxygen, carbon and nitrogen (δ2H, δ18O, δ13C and δ15N) provide sensitive tracers of plant water sources and physiological responses to stress. Here, we combined dual water isotopes (δ2H, δ18O), carbon and nitrogen isotopes (δ13C, δ15N), and high-resolution micrometeorological/soil observations to diagnose drought dynamics in Vitis vinifera cv. Sauvignon blanc (Orlești, Romania; 2023–2024). Dual-isotope relationships delineated progressive evaporative enrichment along the soil–plant–atmosphere continuum, with slopes LMWL ≈ 6.41 > stem ≈ 5.0 > leaf ≈ 2.2, consistent with kinetic fractionation during transpiration (leaf) superimposed on source-water signals (stem). Weekly leaf δ18O covaried strongly with relative humidity (RH; r = −0.69) and evapotranspiration (ET; r = +0.56), confirming atmospheric control of short-term enrichment, while stem isotopes showed buffered responses to soil water. We integrated Δ18O (leaf–stem), RH, ET, and soil matric potential at 60 cm (Soil60) into an Isotopic Drought Index (IDI), which captured the onset, intensity, and persistence of the July–August 2024 drought (IDI0–100 > 90; RH < 60%, ET > 40 mm wk−1, Soil60 > 100 cb). Carbon and nitrogen isotopes provided complementary, integrative diagnostics: δ13C increased (less negative) with drought (r = −0.52 with RH; +0.49 with IDI), reflecting higher intrinsic water-use efficiency, whereas δ15N rose with soil dryness and IDI (leaf: r ≈ +0.48 with Soil60; +0.42 with IDI), indicating constraints on N acquisition and enhanced internal remobilization. Together, multi-isotope and environmental data yield a mechanistic, field-validated framework linking atmospheric demand and edaphic limitation to vine physiological and biogeochemical responses and demonstrate the operational value of an isotope-informed drought index for precision viticulture. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 3963 KB  
Article
Hydrogeochemical and Isotopic Evaluation of Heavy Metal Contamination in Rural Groundwater: A Case Study from Tonosí, Panama
by Dina Henriquez-Rivera, Yazmin L. Mack-Vergara, Miguel Salceda-Gonzalez and Kathia Broce
Water 2025, 17(20), 2918; https://doi.org/10.3390/w17202918 - 10 Oct 2025
Viewed by 1028
Abstract
The primary source of drinking water for the people of Tonosí, Panama, is groundwater. This research evaluates the presence of heavy metals and possible hazards by combining geochemical and isotopic analyses. Total Reflection X-ray Fluorescence (TXRF) was used to measure metal levels in [...] Read more.
The primary source of drinking water for the people of Tonosí, Panama, is groundwater. This research evaluates the presence of heavy metals and possible hazards by combining geochemical and isotopic analyses. Total Reflection X-ray Fluorescence (TXRF) was used to measure metal levels in water and soil near wells and springs, while stable isotope ratios (δ2H and δ18O) identified the source of groundwater recharge. Isotopic signatures closely aligned with the Local Meteoric Water Line (LMWL), suggesting meteoric origin and limited evaporation. An analysis of Enrichment Factor (EF) for soil samples, utilizing background values from Coiba and Montijo, showed moderate to substantial enrichment of arsenic, chromium, and copper. Soil enrichment suggests possible dangers with environmental shifts like changes in land use or heavy rainfall. These findings highlight the necessity for continual groundwater observation in rural areas and show the benefits of integrating isotopic and geochemical methods to detect sources of contamination and guide protection strategies. This research improves comprehension of heavy metal exposure in tropical aquifers and offers evidence to aid environmental and public health policymaking. Full article
(This article belongs to the Special Issue Research on Isotope Investigations in Groundwater Studies)
Show Figures

Graphical abstract

23 pages, 8881 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Viewed by 1113
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
Show Figures

Figure 1

18 pages, 5477 KB  
Article
Impact of Sub-Cloud Evaporation on Precipitation in Tropical Monsoon Islands
by Haiyan Chen, Dalong Li, Lin Zhuang and Min Zhao
Sustainability 2025, 17(18), 8161; https://doi.org/10.3390/su17188161 - 10 Sep 2025
Viewed by 685
Abstract
Sub-cloud evaporation changes the isotopic composition of precipitation, which greatly reduces the reliability of precipitation isotopic data as precipitation simulation data. This study employed the precipitation isotope datasets of Haikou in northern Hainan Island from June 2020 to February 2024 to quantitatively study [...] Read more.
Sub-cloud evaporation changes the isotopic composition of precipitation, which greatly reduces the reliability of precipitation isotopic data as precipitation simulation data. This study employed the precipitation isotope datasets of Haikou in northern Hainan Island from June 2020 to February 2024 to quantitatively study the influence of sub-cloud evaporation on precipitation isotopes in tropical islands. Due to the sub-cloud evaporation, the slope of the local meteoric water line (LMWL: δ2H = 8.33δ18O + 14.33) is lower than the average slope of the theoretical LMWL (8.48). The average value of the residual ratios of raindrop after evaporation (f) is 86%. The complex and unstable sources of water vapor result in no obvious seasonal variations in the atmospheric humidity, which in turn leads to no obvious seasonal variations in Δd and f. The humid and hot environmental conditions reduced the impact of sub-cloud evaporation on precipitation isotopes. The two main uncertainties in the simulation of below-cloud evaporation are the influence of recycled water vapor on precipitation isotopes and the Stewart model’s assumption that raindrops at the cloud base achieve isotopic equilibrium with the surrounding water vapor, as it is difficult to realize. The results of this study are of great significance for improving the accuracy of precipitation simulation in tropical monsoon islands. Full article
Show Figures

Graphical abstract

18 pages, 1946 KB  
Article
Stable Water Isotopes Across Marsh, River, and Lake Environments in the Zoige Alpine Wetland on the Tibetan Plateau
by Yangying Zhan, Chunyi Li, Yu Ning, Guichun Rong, You Zhou, Kexin Liu, Junxuan Li and Haoyang Wang
Water 2025, 17(6), 820; https://doi.org/10.3390/w17060820 - 12 Mar 2025
Cited by 5 | Viewed by 1296
Abstract
Water isotope studies in alpine wetlands have revealed the dynamic characteristics of the hydrological cycle and evapotranspiration processes in the Zoige region through hydrogen and oxygen isotope ratios. However, the hydrological continuity between marshes, rivers, and lakes in wetlands is relatively understudied. The [...] Read more.
Water isotope studies in alpine wetlands have revealed the dynamic characteristics of the hydrological cycle and evapotranspiration processes in the Zoige region through hydrogen and oxygen isotope ratios. However, the hydrological continuity between marshes, rivers, and lakes in wetlands is relatively understudied. The study found that the Zoige Alpine Wetland local meteoric water line (LMWL) is δD = 8.33δ18O + 14.52 (R2 = 0.92) by using linear regression analysis to confirm the Craig temperature effect equation backwards. Comparison with the global and Chinese LMWLs revealed that the slope of the Zoige LMWL is significantly higher than those of the global and Chinese LMWLs, indicating that the oceanic warm and humid airflow and the southwest monsoon significantly influence this region. The δ18O ranges of rivers, lakes, and marshes in the Zoige wetland were −12.86‰ to −2.02‰, −12.9‰ to −2.22‰, and −15.47‰ to −7.07‰, respectively. In terms of δD, marshes had the lowest δD values, with a mean value of −89.58‰, while rivers and lakes had close δD values of about −72‰. Rivers had the most dramatic variation in d-excess values, ranging from −34.16‰ to 3.68‰, while marshes and lakes had more concentrated d-excess values, with particularly negative values in marshes. Regression analysis yielded a trend line of δD = 5.41δ18O − 29.57 for evaporation from the water bodies, further demonstrating the importance of evaporation effects in this region. By using the Rayleigh fractionation model and estimating the climatic conditions, we found that the lake water had the highest evaporation intensity (41%). Those of the river and marsh water were 40% and 36%, respectively. The results of this study provide new scientific insights into the hydrological connectivity, evaporation processes, and water source characteristics in the Zoige wetland. Future studies can shed more light on how climate change affects wetland hydrological systems and how they change over time and space. This will help to manage water resources in the region and protect the environment. Full article
Show Figures

Figure 1

10 pages, 2722 KB  
Article
Stable Isotope Investigations of Icicle Formation and Evolution
by Thomas Brubaker and R. V. Krishnamurthy
Hydrology 2025, 12(2), 30; https://doi.org/10.3390/hydrology12020030 - 9 Feb 2025
Viewed by 1416
Abstract
Icicles are elongated structures formed from water flowing over hangings and crystallizing in sub-freezing conditions. These features are ubiquitous in several parts of the world that experience severe to moderate winter seasons. It has been suggested that they could be a source of [...] Read more.
Icicles are elongated structures formed from water flowing over hangings and crystallizing in sub-freezing conditions. These features are ubiquitous in several parts of the world that experience severe to moderate winter seasons. It has been suggested that they could be a source of recharge to groundwater. Icicles are presumed to affect groundwater quality via incorporation of atmospheric and roof top contaminants. Relatively little attention has been paid to these wintry features, insofar as only a few theoretical models have attempted to describe their formation. Stable isotope measurements (δ18O and δ2H) of icicles that were melted stepwise into fractions are presented as support for the models that invoke the rapid formation of icicles. Icicles exhibit minimal fraction to fraction isotope variation, suggesting a lack of isotope equilibrium and that kinetic effects dominate the freezing process. Deviations from the Global Meteoric Water Line (GMWL), which is similar to the Local Meteoric Water Line (LMWL), indicate that post-depositional processes, namely sublimation, may occur throughout the freezing process. Isotopic evidence lends support to a “growth-cessation-growth” variation of the already proposed methods of rapid icicle formation, where a cessation period occurs between pulses of rapid freezing during icicle growth. Full article
(This article belongs to the Special Issue Isotope Hydrology in the U.S.)
Show Figures

Figure 1

16 pages, 2718 KB  
Article
In Search for Low-Molecular-Weight Ligands of Human Serum Albumin That Affect Its Affinity for Monomeric Amyloid β Peptide
by Evgenia I. Deryusheva, Marina P. Shevelyova, Victoria A. Rastrygina, Ekaterina L. Nemashkalova, Alisa A. Vologzhannikova, Andrey V. Machulin, Alija A. Nazipova, Maria E. Permyakova, Sergei E. Permyakov and Ekaterina A. Litus
Int. J. Mol. Sci. 2024, 25(9), 4975; https://doi.org/10.3390/ijms25094975 - 2 May 2024
Cited by 7 | Viewed by 2722
Abstract
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer’s disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ [...] Read more.
An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer’s disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aβ. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA–Aβ40 interaction: prednisone favors HSA–Aβ interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression. Full article
Show Figures

Figure 1

17 pages, 5001 KB  
Article
Study on Hydrochemical Characteristics and Interactions between Groundwater and Surface Water in the Dongting Lake Plain
by Pan Xiao, Junwei Wan, Jinhua Cheng, Xinfeng Wang and Xingyuezi Zhao
Water 2024, 16(7), 964; https://doi.org/10.3390/w16070964 - 27 Mar 2024
Cited by 5 | Viewed by 2055
Abstract
The Dongting Lake Plain is a major ecological reserve for river and lake wetlands in the Yangtze River Basin, with complex river and lake relationships and frequent water flow exchange. Studies on the hydrochemical characteristics and the mechanism of interaction between groundwater and [...] Read more.
The Dongting Lake Plain is a major ecological reserve for river and lake wetlands in the Yangtze River Basin, with complex river and lake relationships and frequent water flow exchange. Studies on the hydrochemical characteristics and the mechanism of interaction between groundwater and surface water will actively promote the scientific management, utilization of water resources, and protection of the ecological environment in the Dongting Lake Plain. Based on hydrogeochemical statistics, Gibbs diagrams, ion ratios, rock weathering end-element diagrams, hydrogen–oxygen isotope relationship diagrams, and other technical methods, the chemical characteristics, ion sources, and the distribution of hydrogen–oxygen isotopes of groundwater and surface water in “the Three Inlets” and “the Four Rivers” water system areas as well as the Dongting Lake water were analyzed. Additionally, the interactions between groundwater and surface water and the proportions of these contributions were discussed. The results show that both groundwater and surface water in the Dongting Lake Plain are weakly acidic or alkaline, and the anions are mainly HCO3, the cations are mainly Ca2+and Mg2+, with the hydrochemical types being mainly HCO3CaMg and HCO3Ca. The chemical characteristics of groundwater and surface water are mainly affected by the interaction between water and rock; the ions in surface water mainly come from the weathered dissolution of carbonate and silicate rocks, while the ions in groundwater mainly come from the weathered dissolution of carbonate and silicate rocks, with the dissolution of evaporite rocks locally. Groundwater and surface water are mainly distributed near the local meteoric water line (LMWL), and the slope of the local evaporation line is less than that of the LMWL, which indicates that atmospheric rainfall is an important recharge source for groundwater and surface water and that at the same time, it is affected by evaporation to a certain extent. Part of the groundwater in the Dongting Lake Plain is discharged into the surface rivers in “the Three Inlets” and “the Four Rivers” water system areas, and the other part is directly discharged into Dongting Lake. According to the mass balance relationship of isotopes, the proportions of surface water in “the Three Inlets” and “the Four Rivers” water system areas contributing to Dongting Lake’s water are 18.48% and 60.38%, respectively, and the proportion of groundwater in the lake plain contributing to Dongting Lake water is 21.14%. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 8267 KB  
Article
Characteristics of Runoff Components in the Mingyong Glacier Basin, Meili Snow Mountains
by Zichen Zhang, Lihua Wu, Jun Feng, Zhiwen Dong, Xiong Zhao, Yi Sun, Xiping Cheng, Liqin Dong and Tingting Liu
Water 2024, 16(7), 937; https://doi.org/10.3390/w16070937 - 24 Mar 2024
Cited by 4 | Viewed by 1950
Abstract
As an important hydrological ecosystem component, the glacier basin has great significance for climate and environment, and it is also linked to regional water sustainability. In this paper, the sampling and isotope analysis of glacial ice, ice-melt water, river water (river midstream and [...] Read more.
As an important hydrological ecosystem component, the glacier basin has great significance for climate and environment, and it is also linked to regional water sustainability. In this paper, the sampling and isotope analysis of glacial ice, ice-melt water, river water (river midstream and river downstream), groundwater (spring), and precipitation were carried out in a hydrological year of the Mingyong Glacier basin, which is located at the Meili Snow Mountains, Southeastern Tibetan Plateau. At the same time, the hydrograph separation of the recharge sources of the lower mountain pass is studied. The results show that the range of δD, δ18O, and d-excess (deuterium excess) in natural water bodies are significantly different, and the precipitation is the most obvious. The high values of δD and δ18O in the water samples all appeared in spring and summer, and the low values appeared in autumn and winter, while glacial ice showed opposite trends. Meanwhile, the local meteoric water line (LMWL) of the Mingyong Glacier basin is δD = 8.04δ18O + 13.06. The End-Member Mixing Analysis (EMMA) was adopted to determine the sources proportion of river water (river downstream) according to the δD, δ18O, and d-excess ratio relationships. The results showed that the proportion of ice-melt water, groundwater, and precipitation in the ablation period was 80.6%, 17.2%, and 2.2% as well as 19.2%, 73.1%, and 7.7% in the accumulation period, respectively. Ice-melt water has a higher conversion recharge rate to groundwater and indirectly recharges river water, especially in nonmonsoon seasons. In other words, the main recharge source of river water in the lower reaches of the Mingyong Glacier basin during the ablation period is ice-melt water. In the accumulation period, the main recharge source of river water in the lower reaches of the Mingyong Glacier basin is groundwater, while nearly half of the recharge of groundwater comes from ice-melt water. Therefore, regardless of the ablation period or the accumulation period, ice-melt water is sustainable and important to this region. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

17 pages, 2266 KB  
Article
An Assessment of Six Years of Precipitation Stable Isotope and Tritium Activity Concentration Records at Station Sv. Urban, Eastern Slovenia
by Polona Vreča, Tjaša Kanduč, Marko Štrok, Klara Žagar, Matteo Nigro and Michele Barsanti
Water 2024, 16(3), 469; https://doi.org/10.3390/w16030469 - 31 Jan 2024
Cited by 6 | Viewed by 2712
Abstract
We present data from six years (January 2016–December 2021) of monitoring the isotope composition of precipitation at the Sv. Urban station in Eastern Slovenia. The 68 precipitation samples were collected as a monthly composite. The complete dataset (193 data pints) includes information on [...] Read more.
We present data from six years (January 2016–December 2021) of monitoring the isotope composition of precipitation at the Sv. Urban station in Eastern Slovenia. The 68 precipitation samples were collected as a monthly composite. The complete dataset (193 data pints) includes information on the stable isotope composition of hydrogen (δ2H) and oxygen (δ18O) and tritium activity concentration (A), obtained using isotope ratio mass spectrometry (IRMS) and liquid scintillation counting (LSC) following electrolytic enrichment (EE), respectively. The isotope data, together with meteorological data, are reported. Calculations of the deuterium excess (d-excess), monthly, seasonal, and annual unweighted and precipitation-weighted means and local meteoric water lines (LMWLs) were conducted. The mean values for δ2H, δ18O, d-excess, and A, weighted by precipitation, were −59.9‰, −8.81‰, 10.6‰, and 7.7 TU. The disparities between unweighted and precipitation-weighted δ2H, δ18O, d-excess, A, and LMWLs underscore the significance of non-uniformly distributed precipitation. Annual variations in slope and intercept of the LMWLs emphasize the importance of longer data records (48+ months) to capture consistent trends, while combining data over longer periods may distort accuracy due to distinct isotope differences between individual years related to the variability of climate conditions typical for Slovenia. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 3243 KB  
Article
Soil Moisture Contribution to Winter Wheat Water Consumption from Different Soil Layers under Straw Returning
by Lishu Wang, Xiaoxiang Zhou, Yumiao Cui, Ke Zhou, Changjun Zhu and Qinghua Luan
Agronomy 2023, 13(11), 2851; https://doi.org/10.3390/agronomy13112851 - 20 Nov 2023
Cited by 1 | Viewed by 2092
Abstract
To study the contribution of moisture from different straw-treated and irrigated soil layers to the water consumption of winter wheat in dry farming, a 2-year straw treatment and regulated deficit irrigation experiment was implemented. The field experiment was carried out with 0% (S0), [...] Read more.
To study the contribution of moisture from different straw-treated and irrigated soil layers to the water consumption of winter wheat in dry farming, a 2-year straw treatment and regulated deficit irrigation experiment was implemented. The field experiment was carried out with 0% (S0), 1% (S1), and 2% (S2) straw returning amounts, and 75 mm (V3), 60 mm (V2), and 45 mm (V1) irrigation volumes. This experiment involved nine treatments, used to quantitatively analyze the ratio and variation of soil water use from different soil layers via the direct contrast method (DCM) and the multiple linear mixed model (MLMM). The results show the following: (1) The distribution of precipitation isotope compositions displayed a repeated trend of first decreasing and then increasing during the study period. Regression analysis showed that the local meteoric water line (LMWL): δD = 6.37δ18O − 3.77 (R2 = 0.832). (2) With increasing soil depth, the δ18O value decreased gradually, and the maximum δ18O value of the soil water within each growth period was distributed at 10 cm. (3) Under the same irrigation amount, δ 18O increased with increasing straw return at 0–20 cm and decreased with increasing straw return at 20–80 cm. (4) The comparison results of the DCM and MLMM were consistent. During the jointing and flowering stages, 0–30 cm soil water was the main source of water for winter wheat. The contribution of soil water below 30 cm had a decreasing trend from the jointing stage to the flowering stage. The average contribution rates of the 0–30 cm soil layer during the jointing and flowering stages were 23.07% and 23.15%, respectively. These findings have important implications for studying the soil water cycle in the context of farming. Full article
Show Figures

Figure 1

21 pages, 6492 KB  
Article
Characteristics of Hydrogen and Oxygen Isotope Composition in Precipitation, Rivers, and Lakes in Wuhan and the Ecological Environmental Effects of Lakes
by Ao Zhang, Xinwen Zhao, Jun He, Xuan Huang, Xingyuezi Zhao and Yongbo Zhao
Water 2023, 15(16), 2996; https://doi.org/10.3390/w15162996 - 19 Aug 2023
Cited by 2 | Viewed by 2563
Abstract
Wuhan has a dense network of rivers and lakes. Due to the city’s development, the water system has been fragmented, the degradation of lakes is becoming increasingly severe, and the eco-environment has been significantly damaged. By collecting samples of the central surface water [...] Read more.
Wuhan has a dense network of rivers and lakes. Due to the city’s development, the water system has been fragmented, the degradation of lakes is becoming increasingly severe, and the eco-environment has been significantly damaged. By collecting samples of the central surface water bodies in Wuhan, including Yangtze River water, Han River water, lake water, and precipitation, and by utilizing hydrogen and oxygen isotopes and multivariate statistical methods, the hydraulic connectivity and ecological environmental effects between the Yangtze River, the Han River, and the lakes were revealed. The results indicated the following: (1) The local meteoric water Line (LMWL) in the Wuhan area was δD = 7.47δ18O + 1.77. The river water line equation was approximately parallel to the atmospheric precipitation line in the Wuhan area. The intercept and slope of the lake waterline equation were significantly smaller. The enrichment degree of δ18O and δD was Yangtze River < Hanjiang River < lake water. (2) The cluster analysis showed that the lakes could be divided into two types, i.e., inner-flow degraded (IFD) lakes and outer-flow ecological (OFE) lakes. Urban expansion has resulted in fragmentation of the IFD lakes, changing the connectivity between rivers and lakes and weakening the exchange of water bodies between the Yangtze River and lakes. Simultaneously, evaporation has caused hydrogen and oxygen isotope fractionation, resulting in the relative enrichment of isotopes. The IFD lakes included the Taizi Lake, Yehu Lake, and the Shenshan Lake. The OFE lakes and the Yangtze River were active, evaporation was weak, and the hydrogen and oxygen isotopes were relatively depleted, mainly including the Huangjia Lake, the East Lake, the Tangxun Lake, etc. (3) The excessive deuterium (d-excess) parameter values in the Yangtze River and the Han River water were positive. In contrast, the d values in the lakes were mainly negative. In the case of a weakened water cycle, the effect of evaporation enrichment on lake water δ18O and δD had a significant impact. It is suggested that the water system connection project of “North Taizi Lake-South Taizi Lake-Yangtze River” and the small lakes connecting to large lakes project of “Wild Lake-Shenshan Lake-Tangxun Lake” should be implemented in time to restore the water eco-environment. Full article
Show Figures

Figure 1

16 pages, 3351 KB  
Article
Assessing Impacts of Mining-Induced Land Use Changes on Groundwater and Surface Water Quality Using Isotopic and Hydrogeochemical Signatures
by Rukaiya Kausher, Rambabu Singh, Anand Kumar Sinha, Satya Narayan Sethy, Sudhir Kumar, Shatrudhan Pandey, Adham E. Ragab and Ahmed Mohamed
Sustainability 2023, 15(14), 11041; https://doi.org/10.3390/su151411041 - 14 Jul 2023
Cited by 8 | Viewed by 3380
Abstract
The current investigation aimed to assess the impact of land use changes on groundwater quality because of the extensive mining activities in the coal mining province of the Mahan River catchment area, which is located in the Surguja district of Chhattisgarh, India. The [...] Read more.
The current investigation aimed to assess the impact of land use changes on groundwater quality because of the extensive mining activities in the coal mining province of the Mahan River catchment area, which is located in the Surguja district of Chhattisgarh, India. The water quality index (WQI), Collin’s ratio, stable isotope ratios of water molecules (δ18O and δD), and various physicochemical parameters were measured to determine the suitability of water for domestic purposes. Water samples collected from dug wells, tube wells, river water, and mine water were analyzed, and the results revealed that 28% of the samples were classified as excellent and 44%were classified as good during the pre-monsoon period. In the post-monsoon period, 50% of the samples were categorized as good, while 35% were classified as poor, whereas in mining areas, 54% of samples were found to be unsuitable during the pre-monsoon period, and this increased to 77% in the post-monsoon period. Stable isotope analysis was also conducted: samples were plotted to the right of the Local Meteoric Water Line (LMWL) in the isotope bivariate plot, and the observed slopes for all samples were smaller than that of the LMWL. The enrichment of the δ18O ratio and negative d-excess values at certain locations suggest the occurrence of non-equilibrium processes and mixing mechanisms. Full article
(This article belongs to the Special Issue Groundwater, Soil and Sustainability)
Show Figures

Figure 1

11 pages, 2145 KB  
Article
Analysis of Hydrochemical Characteristics and Causes of Drinking Water Sources in South China: A Case Study in Zhanjiang City
by Hang Wei, Qi Zou, Zhiliang Chen, Yingjie Cao, Shuang Wang, Fen Zhu and Xulong Liu
Processes 2023, 11(4), 1196; https://doi.org/10.3390/pr11041196 - 13 Apr 2023
Cited by 6 | Viewed by 2069
Abstract
The evaluation of groundwater environmental quality and the identification of recharge sources are very important for groundwater utilization. In this study, hydrochemistry and isotope analysis methods are used to investigate the recharge sources and hydrochemical processes of groundwater in Zhanjiang City. The results [...] Read more.
The evaluation of groundwater environmental quality and the identification of recharge sources are very important for groundwater utilization. In this study, hydrochemistry and isotope analysis methods are used to investigate the recharge sources and hydrochemical processes of groundwater in Zhanjiang City. The results show that all samples of groundwater were drawn on the left of the global meteoric water line (GMWL: δD = 8δ18O + 10) and local meteorological water lines (LMWL1: δD = 8.17δ18O + 11.74 and LMWL2: δD = 7.50δ18O + 6.18), indicating that the groundwater was mainly recharged by meteoric precipitation and influenced by the effect of evaporation. In the middle and deep confined aquifers, the isotope data depleted with the depth, indicating that there is a relatively weak hydraulic connection between them. In addition, compared with unconfined groundwater, the isotope data of confined groundwater showed relative depletion, indicating that the confined aquifer may be partially recharged from other confined aquifers. The main chemical types in the groundwater were Na*Ca-HCO3. There are three major natural hydrochemical processes controlling the source of groundwater ions: silicate weathering, carbonate dissolution, and the cation exchange reaction. In addition, the differences in physical and chemical properties between unconfined groundwater and confined groundwater are significant. Due to the differences in anthropogenic activities and land-use types, the nitrate of the unconfined groundwater exceeds the groundwater standards. Due to the geological background of Zhanjiang City, iron and manganese exceed the third standard of groundwater in confined groundwater. Due to groundwater exploitation, TDS levels in confined groundwater have been increasing. Closed groundwater extraction is not sustainable, and it is depleting ancient water reserves. This study highlights the effectiveness of hydrochemistry and isotope analysis methods for identifying the recharge area and recharge mode of groundwater, andit is significant for fully understanding groundwater hydrochemistry and scientifically managing and protecting groundwater. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 2nd Edition)
Show Figures

Figure 1

18 pages, 7067 KB  
Article
Estimation of Precipitation Fraction in the Soil Water of the Hillslope Vineyard Using Stable Isotopes of Water
by Zoran Kovač, Vedran Krevh, Lana Filipović, Jasmina Defterdarović, Borna-Ivan Balaž and Vilim Filipović
Water 2023, 15(5), 988; https://doi.org/10.3390/w15050988 - 4 Mar 2023
Cited by 3 | Viewed by 2795
Abstract
This paper presents research related to the estimation of the precipitation fraction in the soil water of a sloped vineyard at the SUPREHILL Critical Zone Observatory (CZO) in Zagreb, Croatia. Numerous investigations have shown that exploration of hillslope soils can be very challenging [...] Read more.
This paper presents research related to the estimation of the precipitation fraction in the soil water of a sloped vineyard at the SUPREHILL Critical Zone Observatory (CZO) in Zagreb, Croatia. Numerous investigations have shown that exploration of hillslope soils can be very challenging due to the existence of heterogeneity and different soil properties, as well as due to anthropogenically induced processes, which can affect precipitation infiltration and soil water flow. Within this research, physicochemical soil properties, soil water content (SWC), and isotopic composition of soil water and precipitation (δ2H and δ18O) have been examined. The isotopic signature of soil water was monitored in 24 points, at 4 depths, throughout the hillslope vineyard. Soil water isotopic composition from all monitoring points coincided with the Local Meteoric Water Line (LMWL), with almost no variability at 100 cm depth, which was consistent with the smallest variation of SWC at 80 cm depth and indicated that most of water mixing takes place in the shallower part of the hillslope. Results suggested the existence of heterogeneity, uneven erosion processes in the footslope of the observed vineyard, and different infiltration patterns. Fractions of precipitation varied significantly depending on the depth and position in the vineyard, from approximately 1% up to 98%, where more precipitation fraction has been determined in the surface and subsurface runoff. Additionally, statistical analysis and a more detailed evaluation of precipitation fractions at the 40 cm depth, where wick lysimeters are installed, have shown that Corg content is related to the silt fraction, while the first results indicate that the infiltration patterns were dependent on the common influence of all observed physicochemical properties. Full article
Show Figures

Figure 1

Back to TopTop