Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = LDH synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5899 KB  
Article
Multimetallic Layered Double Hydroxides as OER Catalysts for High-Performance Water Electrolysis
by Yiqin Zhan, Linsong Wang, Tao Yang, Shuang Liu, Liming Yang, Enhui Wang, Xiangtao Yu, Hongyang Wang, Kuo-Chih Chou and Xinmei Hou
J. Compos. Sci. 2025, 9(10), 540; https://doi.org/10.3390/jcs9100540 - 2 Oct 2025
Viewed by 395
Abstract
Water electrolysis represents a viable and scalable green hydrogen production technology, which mitigates carbon emissions and contributes to environmental sustainability. Transition metal-based layered double hydroxides (LDHs) exhibit excellent oxygen evolution reaction (OER) efficiency, attributed to their adjustable interlayer spacing combined with abundant active [...] Read more.
Water electrolysis represents a viable and scalable green hydrogen production technology, which mitigates carbon emissions and contributes to environmental sustainability. Transition metal-based layered double hydroxides (LDHs) exhibit excellent oxygen evolution reaction (OER) efficiency, attributed to their adjustable interlayer spacing combined with abundant active sites. Here, we report a uniform multimetallic catalyst, demonstrating robust and efficient OER performance for high-performance water splitting. SEM and TEM confirmed its ultrathin hierarchical nanosheet structure. The characteristic peaks of LDH in XRD and Raman spectra further verified the successful synthesis of the LDH material. Fe-CoZn LDH delivers exceptional OER performance in 1 M KOH, requiring overpotentials of just 209, 238, and 267 mV to reach 10, 100, and 400 mA cm−2, respectively. The catalyst also demonstrates exceptional hydrogen evolution reaction (HER) performance, achieving 10 mA cm−2 at 119 mV. It also has excellent stability, with stable operation for up to 100 h under 100 mA cm−2 in 1 M KOH electrolyte solution. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

18 pages, 3305 KB  
Article
Removal of Cu(II) from Aqueous Medium with LDH-Mg/Fe and Its Subsequent Application as a Sustainable Catalyst
by Edgar Oswaldo Leyva Cruz, Ricardo Lopez-Medina, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(10), 930; https://doi.org/10.3390/catal15100930 - 1 Oct 2025
Viewed by 343
Abstract
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced [...] Read more.
In this work, the removal of Cu(II) ions from an aqueous effluent was studied using an Mg/Fe layered double hydroxide (LDH) as the adsorbent. The material was synthesized and characterized before and after the adsorption process to identify structural and morphological changes induced by copper uptake. Techniques such as X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and nitrogen physisorption (BET) were employed to confirm the interaction between the metal ions and the LDH surface. The LDH-Mg/Fe exhibited a high maximum adsorption capacity of 526 mg/g, and the adsorption kinetics followed a pseudo-second-order model, achieving over 90% removal of Cu(II) within 2.5 h. The Cu(II)-loaded material was subsequently evaluated as a sustainable catalyst in two applications: (i) an organic synthesis via “click” chemistry, reaching yields of up to 85%, and (ii) the decoloration of Congo Red via a Fenton-like process, achieving a decoloration efficiency of at least 84%. These dual uses demonstrate the potential of Cu(II)-loaded LDH as a cost-effective and environmentally friendly approach to simultaneous pollutant removal and catalytic valorization. Full article
Show Figures

Graphical abstract

46 pages, 615 KB  
Review
Unveiling Metabolic Signatures as Potential Biomarkers in Common Cancers: Insights from Lung, Breast, Colorectal, Liver, and Gastric Tumours
by Kha Wai Hon and Rakesh Naidu
Biomolecules 2025, 15(10), 1376; https://doi.org/10.3390/biom15101376 - 28 Sep 2025
Viewed by 702
Abstract
Reprogramming is a hallmark of cancer, enabling tumour cells to sustain rapid proliferation, resist cell death, and adapt to hostile microenvironments. This review explores the expression profiles of key metabolic enzymes and transporters involved in glucose, amino acid, and lipid metabolism across the [...] Read more.
Reprogramming is a hallmark of cancer, enabling tumour cells to sustain rapid proliferation, resist cell death, and adapt to hostile microenvironments. This review explores the expression profiles of key metabolic enzymes and transporters involved in glucose, amino acid, and lipid metabolism across the five most deadly cancers worldwide: lung, breast, colorectal, liver, and gastric cancers. Through a comparative analysis, we identify consistent upregulation of glycolytic enzymes such as LDHA, PKM2, and HK2, as well as nutrient transporters like GLUT1, ASCT2, and LAT1, which contribute to cancer progression, metastasis, and therapy resistance. The role of enzymes involved in glutaminolysis (e.g., GLS1, GDH), one-carbon metabolism (e.g., SHMT2, PHGDH), and fatty acid synthesis (e.g., FASN, ACLY) is also examined, with emphasis on their emerging relevance as diagnostic, prognostic, and predictive biomarkers. While several metabolic proteins show strong potential for clinical translation, only a few, such as tumour M2-pyruvate kinase (TuM2-PK) and serum LDH measurement, have progressed into clinical use or trials. This review addresses some of the challenges in biomarker development. Ultimately, our findings underscore the importance of metabolic proteins not only as functional drivers of malignancy but also as promising candidates for biomarker discovery. Advancing their clinical implementation could significantly enhance early detection, treatment stratification, and personalized oncology. Full article
16 pages, 2460 KB  
Article
First Look at Chemopreventive Properties of Chlorella pyrenoidosa Water Extract in Human Endometrial Adenocarcinoma Cells—Preliminary In Vitro Study
by Weronika Rzeska, Michał Chojnacki, Aneta Adamiak-Godlewska, Andrzej Semczuk and Marta Kinga Lemieszek
Int. J. Mol. Sci. 2025, 26(18), 9142; https://doi.org/10.3390/ijms26189142 - 19 Sep 2025
Viewed by 446
Abstract
Chlorella species are classified as functional food, with great anticancer effects. Despite the huge popularity of Chlorella-based products, there is a lack of evidence showing their usefulness in the prevention and treatment of endometrial cancer. The study presented here aimed to enrich knowledge [...] Read more.
Chlorella species are classified as functional food, with great anticancer effects. Despite the huge popularity of Chlorella-based products, there is a lack of evidence showing their usefulness in the prevention and treatment of endometrial cancer. The study presented here aimed to enrich knowledge resources in this area. The chemopreventive effect of water extracts of Chlorella pyrenoidosa was investigated in human endometrial adenocarcinoma HEC-1-B, KLE and EDC cells using MTT, BrdU, LDH, Wound assays, Cell Death Detection ELISA and nuclear double staining. C. pyrenoidosa extract inhibited the metabolic activity, DNA synthesis and migratory capacity of endometrial cancer cells. Moreover, the extract eliminated cancer cells, causing damage to their cell membranes and inducing apoptosis. The cells most resistant to chlorella extract were EDC cells (low grade), while the best response to the treatment was noted in KLE cells (high grade). The performed study revealed the chemopreventive properties of C. pyrenoidosa extract based on inhibition of endometrial cancer cell viability, proliferation and migratory capacity, as well as induction of cytotoxicity and apoptosis. Collected data suggested enhancement of extract chemopreventive properties with increasing advancement and malignancy of cancer cells. Obtained results encourage future clinical research and detailed chemical evaluation to specify the extract’s phytochemical composition. Full article
Show Figures

Figure 1

19 pages, 15130 KB  
Article
Protective Mechanism of Broad Bean Extract on Parkinson’s Disease Model Cells
by Xuhao Chen, Qiang Gao, Tingting Li, Jiajia Zhao, Yujiao Liu, Xuejun Wang, Mingcong Fan, Haifeng Qian, Yan Li and Li Wang
Foods 2025, 14(18), 3244; https://doi.org/10.3390/foods14183244 - 18 Sep 2025
Viewed by 1021
Abstract
Broad beans, natural sources of L-DOPA and bioactive phenolics show promise for Parkinson’s disease intervention. This study investigated broad bean extracts’ protective mechanisms against PD pathogenesis. Among screened varieties, QC25 extract exhibited optimal protection in MPP+-injured PC12 cells, improving viability, reducing [...] Read more.
Broad beans, natural sources of L-DOPA and bioactive phenolics show promise for Parkinson’s disease intervention. This study investigated broad bean extracts’ protective mechanisms against PD pathogenesis. Among screened varieties, QC25 extract exhibited optimal protection in MPP+-injured PC12 cells, improving viability, reducing LDH release, and mitigating cell cycle arrest. QC25 extract rescued mitochondrial dysfunction by suppressing ROS, restoring membrane potential, normalizing Ca2+ homeostasis, and recovering ATP synthesis. Metabolomics identified glycerophospholipid metabolism as the core protective pathway, mediating mitochondrial membrane stabilization. QC25 extract further activated PINK1/Parkin-mediated mitophagy, upregulating PINK1 and Parkin expression. Crucially, 6-gingerol—uniquely detected in QC25 extract—synergized with L-DOPA, enhancing cell viability and amplifying mitophagy through complementary mitochondrial repair mechanisms. These findings demonstrate QC25 broad bean variety exerts’ protective effects on PD model cells by regulating mitochondrial function and mitophagy, and its unique component 6-gingerol synergizes with L-DOPA to strengthen these effects. This study provides a theoretical basis for the development of QC25 as a functional food ingredient for neurological health maintenance. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

54 pages, 28708 KB  
Review
Recent Progress in the Synthesis of Layered Double Hydroxides and Their Surface Modification for Supercapacitor Application
by Ganesan Sriram, Karmegam Dhanabalan and Tae Hwan Oh
Energies 2025, 18(18), 4846; https://doi.org/10.3390/en18184846 - 11 Sep 2025
Viewed by 505
Abstract
The need for energy storage and the rapid development of new electronic platforms have prompted intense research into small and secure energy storage devices, particularly supercapacitors (SCs). Layered double hydroxides (LDHs) are potential electrode materials for SCs because of their excellent physicochemical and [...] Read more.
The need for energy storage and the rapid development of new electronic platforms have prompted intense research into small and secure energy storage devices, particularly supercapacitors (SCs). Layered double hydroxides (LDHs) are potential electrode materials for SCs because of their excellent physicochemical and electrical characteristics. They involve interlayer spacing, high oxidation states, simplicity of synthesis, and distinct morphologies. Despite their potential, several kinds of LDHs still face constraints, such as particle aggregation, moderate surface area, and high resistance, which limit their use in energy storage. To overcome these challenges and enhance the electrochemical performance of LDHs, they have used strategies such as anion intercalation, oxygen vacancy, heteroatom, surfactant, fluorine, and metal doping, which have been demonstrated as electrode materials for SCs. Therefore, this review discusses recent advances in different LDHs and studies comparing bare and modified LDH for three- and two-electrode systems, with an emphasis on their morphologies, surface areas, and electrical properties for SC applications. It was found that modified LDHs achieve enhanced electrochemical performance in comparison to their corresponding bare LDHs. Consequently, there are potential opportunities to modify the surface of the recently invented LDHs for electrochemical investigations, which could result in improving their performance. This review also presents future perspectives on LDH-based energy storage devices for supercapacitors. Full article
(This article belongs to the Special Issue Advanced Energy Materials: Innovations and Challenges)
Show Figures

Figure 1

19 pages, 4596 KB  
Article
Neuroprotective Effects of Low-Dose Graphenic Materials on SN4741 Embryonic Stem Cells Against ER Stress and MPTP-Induced Oxidative Stress
by David Vallejo Perez, Monica Navarro, Beatriz Segura-Segura, Rune Wendelbo, Sara Bandrés-Ciga, Miguel A. Arraez, Cinta Arraez and Noela Rodriguez-Losada
Int. J. Mol. Sci. 2025, 26(18), 8821; https://doi.org/10.3390/ijms26188821 - 10 Sep 2025
Viewed by 398
Abstract
In this study, we explore the neuroprotective and modulatory potential of graphenic materials (GMs) in terms of the maturation of dopaminergic neurons and their capacity to counteract the cellular stress induced by toxins such as MPP+ (1-methyl-4-phenylpyridinium) and Tunicamycin. We found that [...] Read more.
In this study, we explore the neuroprotective and modulatory potential of graphenic materials (GMs) in terms of the maturation of dopaminergic neurons and their capacity to counteract the cellular stress induced by toxins such as MPP+ (1-methyl-4-phenylpyridinium) and Tunicamycin. We found that GMs promote significant morphological changes in neuronal cells after prolonged exposure, enhancing both differentiation and cellular adhesion. Through structural analysis, we unveiled a complex organization of GMs and a marked upregulation of tyrosine hydroxylase (TH), a key marker of mature dopaminergic neurons. Under oxidative stress induced by MPP+, GMs significantly reduced the release of lactate dehydrogenase (LDH), indicating protection against mitochondrial damage. Moreover, GMs substantially decreased the levels of α-synuclein (α-Syn), a protein closely associated with neurodegenerative disorders such as Parkinson’s disease. Notably, partially reduced graphene oxide (PRGO) and fully reduced graphene oxide (FRGO) films were particularly effective at reducing α-Syn-associated toxicity compared to positive controls. Under conditions of endoplasmic reticulum (ER) stress triggered by Tunicamycin, GMs—especially PRGO microflakes—modulated the unfolded protein response (UPR) pathway. This effect was evidenced by the increased expression of BIP/GRP78 and the decreased phosphorylation of stress sensors such as PERK and eIF2α; this suggests that a protective role is played against ER stress. Additionally, GMs enhanced the synthesis of Torsin 1A, a chaperone protein involved in correcting protein folding defects, with PRGO microflakes showing up to a fivefold increase relative to the controls. Through the cFos analysis, we further revealed a pre-adaptive cellular response in GM-treated cells exposed to MPP+, with PRGO microflakes inducing a significant twofold increase in cFos expression compared to the positive control, indicating partial protection against oxidative stress. In conclusion, these results underscore GMs’ capacity to modulate the critical cellular pathways involved in oxidative, mitochondrial, and ER stress responses, positioning them as promising candidates for future neuroprotective and therapeutic strategies. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

17 pages, 2631 KB  
Article
Adsorption of Phosphates from Wastewater Using MgAlFe-Layered Double Hydroxides
by Oanamari Daniela Orbuleţ, Liliana Bobirică, Mirela Enache (Cişmaşu), Ramona Cornelia Pațac, Magdalena Bosomoiu and Cristina Modrogan
Environments 2025, 12(9), 316; https://doi.org/10.3390/environments12090316 - 7 Sep 2025
Viewed by 1011
Abstract
Phosphates pollution, primarily from agricultural runoff and wastewater discharge, is a major contributor to water eutrophication, adversely affecting aquatic ecosystems. This study reports the synthesis, characterization, and phosphates adsorption performance of a MgAlFe-layered double hydroxide (MgAlFe-LDH) with a 2:1:1 cationic ratio. The material [...] Read more.
Phosphates pollution, primarily from agricultural runoff and wastewater discharge, is a major contributor to water eutrophication, adversely affecting aquatic ecosystems. This study reports the synthesis, characterization, and phosphates adsorption performance of a MgAlFe-layered double hydroxide (MgAlFe-LDH) with a 2:1:1 cationic ratio. The material was prepared via co-precipitation and characterized using digital microscopy, XRD, BET, XPS, and FTIR. Adsorption experiments were conducted at pH 3 and 9 to investigate equilibrium, kinetics, and reusability. The MgAlFe-LDH exhibited a high maximum adsorption capacity (q_max ≈ 215 mg/g) largely independent of pH, with adsorption well described by the Langmuir model. Kinetic studies revealed a pseudo-first-order mechanism, indicating that adsorption is dominated by surface diffusion and electrostatic interactions. Phosphate removal occurs through a dual mechanism involving rapid electrostatic attraction at protonated surface sites and slower ion exchange in the LDH interlayers. The material retained over 75% of its adsorption capacity after five consecutive adsorption–desorption cycles, highlighting its potential for sustainable phosphate recovery. Overall, the MgAlFe-LDH represents a promising, reusable adsorbent for phosphorus removal from wastewater, supporting circular economy strategies. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

23 pages, 3715 KB  
Article
Synthesis of Porous Materials on Hybrid Wormlike Micelles of Zwitterionic and Anionic Surfactants for Efficient Oilfield Wastewater Treatment
by Fei Liu, Zhenzhen Li, Chenye Yang, Ya Wu and Ying Tang
Gels 2025, 11(9), 714; https://doi.org/10.3390/gels11090714 - 5 Sep 2025
Viewed by 345
Abstract
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and [...] Read more.
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and sodium dodecyl sulfate (SLS) into zwitterionic, anionic, shear-responsive viscoelastic gels. This gel-templating approach yielded an LDH structure featuring a hierarchical pore network spanning 1–80 nm and a notably high specific surface area of 199.82 m2/g, as characterized by SEM and BET. The resulting MgFe-LDH demonstrated exceptional efficacy, achieving a SL removal efficiency exceeding 96% and a maximum adsorption capacity of 90.68 mg/g at neutral pH. Adsorption kinetics were best described by a pseudo-second-order model (R2 > 0.99), with intra-particle diffusion identified as the rate-determining step. Equilibrium adsorption data conformed to the Langmuir isotherm, signifying monolayer uptake. Thermodynamic analysis confirmed the process was spontaneous (ΔG < 0) and exothermic (ΔH = −20.09 kJ/mol), driven primarily by electrostatic interactions and ion exchange. The adsorbent exhibited robust recyclability, maintaining over 79% of its initial capacity after three adsorption–desorption cycles. This gel-directed synthesis presents a sustainable pathway for developing high-performance adsorbents targeting complex contaminants in oilfield effluents. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

16 pages, 1739 KB  
Article
Synthesis and Characterization of Visible-Light-Responsive TiO2/LDHs Heterostructures for Enhanced Photocatalytic Degradation Performance
by Jing Wei and Liying Ren
Water 2025, 17(17), 2582; https://doi.org/10.3390/w17172582 - 1 Sep 2025
Viewed by 1006
Abstract
A novel composite material comprising titanium dioxide and layered double hydroxides (TiO2/LDHs) was innovatively proposed and prepared using the co-precipitation method to overcome the shortcomings of titanium dioxide, such as low efficiency in separating electron–hole pairs induced by light and a [...] Read more.
A novel composite material comprising titanium dioxide and layered double hydroxides (TiO2/LDHs) was innovatively proposed and prepared using the co-precipitation method to overcome the shortcomings of titanium dioxide, such as low efficiency in separating electron–hole pairs induced by light and a low utilization rate of visible light. This material was used to study the visible-light-driven photocatalytic degradation of methylene blue. The experimental results show that by constructing efficient heterojunction structures through the alignment of interface band energies and regulating the interface charge transfer pathways, the recombination rate of photogenerated electron–hole pairs is significantly reduced, and the photocatalytic activity is greatly enhanced. Among the tested samples, the TiO2/LDHs composite material with an aluminum-to-titanium molar ratio of 1:1 (AT11) demonstrated the best photocatalytic performance. Within 70 min of simulated sunlight exposure, the degradation rate of methylene blue reached 98.2%, and the optimal concentration of the catalyst was 1 g/L. The photocatalytic process follows a first-order kinetic model. After four cycles of use, the degradation efficiency of methylene blue by the AT11 composite material was 78.93%, demonstrating good stability. The free radical capture experiments indicated that the main active substances for the photocatalytic degradation of methylene blue were h+ and ·OH. The constructed TiO2/LDHs heterostructure system significantly enhanced the photocatalytic performance of TiO2 materials, which was conducive to the efficient utilization of solar energy. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification, 2nd Edition)
Show Figures

Figure 1

25 pages, 4002 KB  
Article
Layered Double Hydroxides Modified with Carbon Quantum Dots as Promising Materials for Pharmaceutical Removal
by Fernanda G. Corrêa, Rebecca J. P. Araujo, Vanessa N. S. Campos, Maria do Socorro C. Silva, Elaine S. M. Cutrim, Alex Rojas, Mayara M. Teixeira, Marco A. S. Garcia and Ana C. S. Alcântara
Minerals 2025, 15(9), 899; https://doi.org/10.3390/min15090899 - 25 Aug 2025
Viewed by 657
Abstract
Pharmaceutical contaminants such as ibuprofen are increasingly detected in water sources due to widespread use and insufficient removal by conventional treatment processes. Given its persistence and adverse effects on human health and aquatic ecosystems, efficient removal technologies are needed. This study reports the [...] Read more.
Pharmaceutical contaminants such as ibuprofen are increasingly detected in water sources due to widespread use and insufficient removal by conventional treatment processes. Given its persistence and adverse effects on human health and aquatic ecosystems, efficient removal technologies are needed. This study reports the synthesis of a Mg/Al-layered double hydroxide (LDH) hybridized with carbon quantum dots (CQDs) via in situ co-precipitation to enhance adsorptive performance. The hybrid (LDH-CQD) was characterized by FTIR, XRD, DSC, TGA-DTG, SEM-EDS, BET, and pH in the point of zero charge (pHPZC) analysis. Results indicated a marked increase in surface area (2.89 to 66.9 m2/g), a shift in surface charge behavior (pHpzc from 8.57 to 6.21), and improved porosity. Adsorption experiments using ibuprofen as a model contaminant revealed superior performance of the hybrid compared to pristine Mg/Al-LDH, with a maximum capacity of 22.13 mg·g−1 (% Removal = 88.53%) at 25 ppm, and in lower concentrations (5 and 10 ppm), the hybrid showed 100% removal. Kinetic modeling followed a pseudo-second-order mechanism, and the isotherm was the SIPS model (maximum adsorption capacity = 24.150 mg.g−1). These findings highlight the potential of LDH-CQD hybrid as efficient and tunable adsorbents for removing emerging pharmaceutical pollutants from aqueous media. Full article
(This article belongs to the Special Issue Use of Clay Minerals in Adsorption and Photocatalysis Technologies)
Show Figures

Figure 1

39 pages, 5729 KB  
Review
Metabolism, a Blossoming Target for Small-Molecule Anticancer Drugs
by Michela Puxeddu, Romano Silvestri and Giuseppe La Regina
Molecules 2025, 30(17), 3457; https://doi.org/10.3390/molecules30173457 - 22 Aug 2025
Viewed by 1358
Abstract
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to [...] Read more.
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to modulate these hallmarks of cancer are gaining increasing attention in drug discovery. In this context, the present review explores recent progress in the development of small molecule inhibitors of key metabolic pathways, such as glycolysis, glutamine metabolism and fatty acid synthesis. In particular, different mechanisms of action of these compounds are analyzed, which can target distinct enzymes, including LDH, HK2, PKM2, GLS and FASN. The findings underscore the relevance of metabolism-based strategies in developing next-generation anticancer agents with potential for improved efficacy and reduced systemic toxicity. Full article
(This article belongs to the Special Issue Small-Molecule Drug Design and Discovery)
Show Figures

Graphical abstract

24 pages, 8010 KB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 618
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

10 pages, 1798 KB  
Article
Amperometric Determination of Glucose at Physiological pH by an Electrode Modified with a Composite Ni/Al-Layered Double Hydroxide and Electrochemically Reduced Graphene Oxide
by Domenica Tonelli
Nanomaterials 2025, 15(15), 1172; https://doi.org/10.3390/nano15151172 - 30 Jul 2025
Viewed by 471
Abstract
Films of a Ni/Al-layered double hydroxide intercalated with reduced graphene oxide were deposited, by means of a simple and rapid electrochemical synthesis, on Pt electrodes previously submitted to a special cleaning procedure. The aim of the research was to determine whether the better [...] Read more.
Films of a Ni/Al-layered double hydroxide intercalated with reduced graphene oxide were deposited, by means of a simple and rapid electrochemical synthesis, on Pt electrodes previously submitted to a special cleaning procedure. The aim of the research was to determine whether the better electrocatalytic properties of the Ni(III)/Ni(II) couple, due to the presence of the carbon nanomaterial, as compared to the Ni/Al-LDH alone, could allow glucose detection at physiological pHs, as normally LDHs work as redox mediators in basic solutions. Chronoamperometric experiments were carried out by applying a potential of 1.0 V vs. SCE to the electrode soaked in solutions buffered at pHs from 5.0 to 9.0 to which glucose was continuously added. The steady-state currents increased as the pH solution increased, but at pH = 7.0 the modified electrode exhibited a fast and rather sensitive response, which was linear up to 10.0 mM glucose, with a sensitivity of 0.56 A M−1 cm−2 and a limit of detection of 0.05 mM. Our results suggest the potential application of Ni/Al-LDH(ERGO) composite for the non-enzymatic detection of glucose or other oxidizable analytes under biological conditions. Full article
Show Figures

Graphical abstract

37 pages, 14524 KB  
Review
Recent Developments in Layered Double Hydroxides as Anticorrosion Coatings
by Alessandra Varone, Riccardo Narducci, Alessandra Palombi, Subhan Rasulzade, Roberto Montanari and Maria Richetta
Materials 2025, 18(15), 3488; https://doi.org/10.3390/ma18153488 - 25 Jul 2025
Viewed by 955
Abstract
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly [...] Read more.
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly important. Among these coatings, Layered Double Hydroxides (LDHs) have shown unique properties, such as ion exchange, high adhesion, and hydrophobicity, particularly useful for biomedical applications. In this review, after a detailed exposition of the LDHs’ synthesis processes, the most recent corrosion protection methods are illustrated. Intercalation of corrosion inhibitors and release kinetics of intercalates are presented. Although this work is mainly focused on laboratory-scale investigations and fundamental research, the problems inherent to large-scale industrial manufacturing and application are outlined and briefly discussed. Full article
(This article belongs to the Special Issue Advanced Coating Research for Metal Surface Protection)
Show Figures

Figure 1

Back to TopTop