Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,195)

Search Parameters:
Keywords = LC-MSMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1630 KiB  
Article
Development of Cytisus Flower Extracts with Antioxidant and Anti-Inflammatory Properties for Nutraceutical and Food Uses
by Adela Alvaredo-López-Vizcaíno, Augusto Costa-Barbosa, Paula Sampaio, Pablo G. del Río, Claudia Botelho and Pedro Ferreira-Santos
Int. J. Mol. Sci. 2025, 26(15), 7100; https://doi.org/10.3390/ijms26157100 - 23 Jul 2025
Abstract
Plant flowers are recognized as a rich source of bioactive phenolic compounds. In this study, for the first time, the recovery of antioxidant phenolic compounds from Cytisus striatus flowers (CF) was optimized using microwave-assisted extraction (MAE). The variables (% of ethanol, temperature, and [...] Read more.
Plant flowers are recognized as a rich source of bioactive phenolic compounds. In this study, for the first time, the recovery of antioxidant phenolic compounds from Cytisus striatus flowers (CF) was optimized using microwave-assisted extraction (MAE). The variables (% of ethanol, temperature, and time) were studied using a response surface methodology (RSM). Extraction efficiency was assessed by total phenol content, total flavonoid content, and the antioxidant capacity through DPPH, ABTS, FRAP, and CUPRAC assays. Additionally, cytotoxicity and anti-inflammatory properties were evaluated in different cell lines. The optimal extraction conditions (87.6% ethanol, 160.8 °C and 8.76 min) yielded extracts rich in phenolics (85.9 mg GAE/g CF) and flavonoids (120.3 mg RE/g CF), with strong antioxidant capacity. LC-MS/MS analysis identified 27 phenolic compounds, including chrysin, apigenin, and quercetin derivatives. Cytotoxicity tests showed that CF extract maintained high viability (>80%) in human embryonic kidney (HEK293T) and human lung adenocarcinoma (A549) cells up to 2000 µg/mL, indicating low cytotoxicity. The anti-inflammatory potential was evidenced by a decrease in IL-1β levels and an increase in IL-10 cytokine production in LPS-stimulated macrophages. These results highlight the great potential of CF as a promising bioresource to obtain value-added compounds for the development of functional foods, nutraceuticals, and cosmetic products. Full article
Show Figures

Graphical abstract

21 pages, 3048 KiB  
Article
Transfersome-Based Delivery of Optimized Black Tea Extract for the Prevention of UVB-Induced Skin Damage
by Nadia Benedetto, Maria Ponticelli, Ludovica Lela, Emanuele Rosa, Flavia Carriero, Immacolata Faraone, Carla Caddeo, Luigi Milella and Antonio Vassallo
Pharmaceutics 2025, 17(8), 952; https://doi.org/10.3390/pharmaceutics17080952 (registering DOI) - 23 Jul 2025
Abstract
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize [...] Read more.
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize the extraction of theaflavins and thearubigins from black tea leaves and evaluate the efficacy of the extract against UVB-induced damage using a transfersome-based topical formulation. Methods: Extraction of theaflavins and thearubigins was optimized via response surface methodology (Box-Behnken Design), yielding an extract rich in active polyphenols. This extract was incorporated into transfersomes that were characterized for size, polydispersity, zeta potential, storage stability, and entrapment efficiency. Human dermal fibroblasts (NHDF) were used to assess cytotoxicity, protection against UVB-induced viability loss, collagen degradation, and expression of inflammatory (IL6, COX2, iNOS) and matrix-degrading (MMP1) markers. Cellular uptake of the extract’s bioactive marker compounds was measured via LC-MS/MS. Results: The transfersomes (~60 nm) showed a good stability and a high entrapment efficiency (>85%). The transfersomes significantly protected NHDF cells from UVB-induced cytotoxicity, restored collagen production, and reduced gene expression of MMP1, IL6, COX2, and iNOS. Cellular uptake of key extract’s polyphenols was markedly enhanced by the nanoformulation compared to the free extract. Conclusions: Black tea extract transfersomes effectively prevented UVB-induced oxidative and inflammatory damage in skin fibroblasts. This delivery system enhanced bioavailability of the extract and cellular protection, supporting the use of the optimized extract in cosmeceutical formulations targeting photoaging and UV-induced skin disorders. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

11 pages, 2590 KiB  
Article
Identification and Quantification of Pteridines in the Wild Type and the ambar Mutant of Orius laevigatus (Hemiptera: Anthocoridae)
by Yolanda Bel, Amador Rodríguez-Gómez, Pablo Bielza and Juan Ferré
Insects 2025, 16(8), 756; https://doi.org/10.3390/insects16080756 - 23 Jul 2025
Abstract
Nymphs of the ambar mutant of Orius laevigatus (Fieber) are orange-colored instead of the yellowish color of the wild-type individuals. Since there were no previous studies of the pigments of this species, we searched for differences in pigments of the pteridine family between [...] Read more.
Nymphs of the ambar mutant of Orius laevigatus (Fieber) are orange-colored instead of the yellowish color of the wild-type individuals. Since there were no previous studies of the pigments of this species, we searched for differences in pigments of the pteridine family between both strains. Fluorescent compounds from nymph extracts were separated by cellulose thin-layer chromatography (TLC) and by size exclusion chromatography, followed by LC/MS/MS. The present study has allowed the identification for the first time in O. laevigatus of erythropterin, leucopterin, 7-methylxanthopterin, xanthopterin, isoxanthopterin, pterin, and biopterin. The quantification was performed by fluorometry after elution of the pteridines previously separated by TLC. The results showed that the orange color in the ambar nymphs was due to the accumulation of the orange pigment erythropterin. Additionally, mutant nymphs exhibited significantly elevated levels of pterin and reduced levels of leucopterin. The possibility that these differences were due to differences in xanthine dehydrogenase (XDH) activity was tested; the results indicated that XDH deficiency is unlikely to be responsible for the mutant phenotype. Considering that the ambar mutation is recessive, the mutant phenotype should, most likely, be due to a disruption in downstream metabolic steps involved in erythropterin processing. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

17 pages, 13984 KiB  
Article
Isolation and Purification of Novel Antioxidant Peptides from Mussel (Mytilus edulis) Prepared by Marine Bacillus velezensis Z-1 Protease
by Jing Lu, Pujing Shi, Yutian Cao, Bingxin Shi, Huilin Shen, Shuai Zhao, Yuchen Gao, Huibing Chi, Lei Wang and Yawei Shi
Mar. Drugs 2025, 23(8), 294; https://doi.org/10.3390/md23080294 - 23 Jul 2025
Abstract
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and [...] Read more.
Mussels are nutrient-rich but perishable, resulting in substantial resource loss. A protease-producing strain (Bacillus velezensis Z-1, Mytilus edulis) isolated from marine sludge was used to hydrolyze mussels, producing Y-1, a hydrolysate with antioxidant activity. In this study, ultrafiltration, gel chromatography, and LC-MS/MS were employed to isolate and identify bioactive peptides from the hydrolysate. The results revealed that the hydrolysate exhibited antioxidant activity, pancreatic cholesterol esterase inhibitory activity, pancreatic lipase inhibitory activity, and α-glucosidase inhibitory activity. Molecular docking using AutoDock Tools 1.5.6 was performed to analyze the interactions of peptides with CD38 and Keap1, leading to the identification of five potentially bioactive peptides: VPPFY, IMLFP, LPFLF, FLPF, and FPRIM. These peptides formed hydrogen bonds and hydrophobic interactions with CD38 and Keap1, demonstrating strong DPPH radical scavenging and superoxide anion radical scavenging capacities. This study highlights the multifunctional bioactive potential of these peptides, offering insights into their therapeutic applications. The findings provide a novel approach for the effective utilization of mussel resources and highlight their potential application value in the development of functional foods. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

23 pages, 2437 KiB  
Article
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using [...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas. Full article
Show Figures

Figure 1

22 pages, 4596 KiB  
Article
Gut Microbiota Dysbiosis Remodels the Lysine Acetylome of the Mouse Cecum in Early Life
by Yubing Zeng, Jinying Shen, Xuejia He, Fan Liu, Yi Wang, Yi Wang, Yanan Qiao, Pei Pei and Shan Wang
Biology 2025, 14(8), 917; https://doi.org/10.3390/biology14080917 - 23 Jul 2025
Abstract
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. [...] Read more.
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. However, there are currently no reports on how gut microbiota dysbiosis affects host physiology in early life through global lysine acetylation. In this study, we constructed a mouse model of gut microbiota dysbiosis using antibiotic cocktail therapy (ABX). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the cecum, we analyzed the cecal lysine acetylome and proteome. As a result, we profiled the lysine acetylation landscape of the cecum and identified a total of 16,579 acetylation sites from 5218 proteins. Differentially acetylated proteins (DAPs) are involved in various metabolic pathways, including the citrate cycle (TCA cycle), butanoate metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis. Moreover, both glycolysis and gluconeogenesis are significantly enriched in acetylation and protein modifications. This study aimed to provide valuable insights into the epigenetic molecular mechanisms associated with host protein acetylation as influenced by early-life gut microbiota disturbances. It reveals potential therapeutic targets for metabolic disorders linked to gut microbiota dysbiosis, thereby establishing a theoretical foundation for the clinical prevention and treatment of diseases arising from such dysbiosis. Full article
Show Figures

Figure 1

14 pages, 896 KiB  
Article
Systemic Uremic Toxin Burden in Autism Spectrum Disorder: A Stratified Urinary Metabolite Analysis
by Joško Osredkar, Teja Fabjan, Uroš Godnov, Maja Jekovec-Vrhovšek, Joanna Giebułtowicz, Barbara Bobrowska-Korczak, Gorazd Avguštin and Kristina Kumer
Int. J. Mol. Sci. 2025, 26(15), 7070; https://doi.org/10.3390/ijms26157070 - 23 Jul 2025
Abstract
Autism spectrum disorder (ASD) is increasingly associated with microbial and metabolic disturbances, including the altered production of gut-derived uremic toxins. We investigated urinary concentrations of five representative uremic toxins—indoxyl sulfate (IS), p-cresyl sulfate (PCS), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine [...] Read more.
Autism spectrum disorder (ASD) is increasingly associated with microbial and metabolic disturbances, including the altered production of gut-derived uremic toxins. We investigated urinary concentrations of five representative uremic toxins—indoxyl sulfate (IS), p-cresyl sulfate (PCS), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA)—in 161 children with ASD and 71 healthy controls. Toxins were measured using LC-MS/MS and were normalized to creatinine. Subgroup analyses were performed by sex, age group (2–5.9 vs. 6–17 years), and autism severity based on the Childhood Autism Rating Scale (CARS). In addition to individual concentrations, we calculated the total toxin burden, proportional contributions, and functional ratios (IS/PCS, PCS/TMAO, and IS/ADMA). While individual toxin levels did not differ significantly between groups, stratified analyses revealed that PCS was higher in girls and in severe cases of ASD, whereas IS and TMAO were reduced in younger and more severely affected children. The functional ratios shifted consistently with severity—IS/PCS declined from 1.69 in controls to 0.99 in severe cases of ASD, while PCS/TMAO increased from 12.2 to 20.5. These patterns suggest a phenolic-dominant microbial signature and an altered host–microbial metabolic balance in ASD. Functional toxin profiling may offer a more sensitive approach to characterizing metabolic disturbances in ASD than concentration analysis alone. Full article
Show Figures

Figure 1

16 pages, 3373 KiB  
Article
Automated Workflow for High-Throughput LC–MS/MS-Based Therapeutic Monitoring of Cannabidiol and 7-Hydroxy-cannabidiol in Patients with Epilepsy
by Michela Palmisani, Francesca Dattrino, Paola Rota, Federica Tacchella, Guido Fedele, Ludovica Pasca, Carlo Alberto Quaranta, Valentina De Giorgis, Thomas Matulli Cavedagna, Chiara Cancellerini, Anna Butti, Gloria Castellazzi, Emilio Russo, Cristina Tassorelli, Pierluigi Nicotera and Valentina Franco
Int. J. Mol. Sci. 2025, 26(14), 6999; https://doi.org/10.3390/ijms26146999 (registering DOI) - 21 Jul 2025
Viewed by 29
Abstract
This study describes the development and validation of a fully automated workflow for serum sample preparation, enabling the quantitative determination of cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD, via liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Implemented on an automated platform, [...] Read more.
This study describes the development and validation of a fully automated workflow for serum sample preparation, enabling the quantitative determination of cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD, via liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Implemented on an automated platform, the workflow performs key steps such as solvent dispensing, mixing, centrifugation, filtration, and supernatant transfer, producing 96-well plates ready for analysis. Human serum samples were obtained from patients with epilepsy treated with CBD. All samples were processed using both manual and automated methods to evaluate method agreement. Quantification was performed by LC–MS/MS with CBD-d3 as the internal standard (IS). Method validation was conducted in accordance with European Medicine Agency (EMA) guidelines, confirming that the automated protocol meets the recommended acceptance criteria for both intraday and interday precision and accuracy. Calibration curves demonstrated excellent linearity across the concentration ranges. Comparative analysis using Passing–Bablok regression and Bland–Altman plots demonstrated strong agreement between the methods. These findings support the clinical applicability of the automated method for the therapeutic drug monitoring (TDM) of CBD and 7-hydroxy-CBD, and its robust performance and scalability provide a solid foundation for the development of an expanded analytical panel covering a broader range of antiseizure medications (ASMs), enabling more standardized TDM protocols in clinical practice. Full article
Show Figures

Figure 1

22 pages, 3921 KiB  
Article
Quantitative Proteomics Reveals Fh15 as an Antagonist of TLR4 Downregulating the Activation of NF-κB, Inducible Nitric Oxide, Phagosome Signaling Pathways, and Oxidative Stress of LPS-Stimulated Macrophages
by Albersy Armina-Rodriguez, Bianca N. Valdés Fernandez, Carlimar Ocasio-Malavé, Yadira M. Cantres Rosario, Kelvin Carrasquillo Carrión, Loyda M. Meléndez, Abiel Roche Lima, Eduardo L. Tosado Rodriguez and Ana M. Espino
Int. J. Mol. Sci. 2025, 26(14), 6914; https://doi.org/10.3390/ijms26146914 - 18 Jul 2025
Viewed by 118
Abstract
There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering [...] Read more.
There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering macrophages and a persistent cascade of inflammatory mediators. Our previous studies have demonstrated that Fh15, a recombinant member of the Fasciola hepatica fatty acid binding protein family, can significantly increase the survival rate by suppressing many inflammatory mediators induced by LPS in a septic shock mouse model. Although Fh15 has been proposed as a TLR4 antagonist, the specific mechanisms underlying its immunomodulatory effect remained unclear. In the present study, we employed a quantitative proteomics approach using tandem mass tag (TMT) followed by LC-MS/MS analysis to identify and quantify differentially expressed proteins that participate in signaling pathways downstream TLR4 of macrophages, which can be dysregulated by Fh15. Data are available via ProteomeXchange with identifier PXD065520. Based on significant fold change (FC) cut-off of 1.5 and p-value ≤ 0.05 criteria, we focused our attention to 114 proteins that were upregulated by LPS and downregulated by Fh15. From these proteins, TNFα, IL-1α, Lck, NOS2, SOD2 and CD36 were selected for validation by Western blot on murine bone marrow-derived macrophages due to their relevant roles in the NF-κB, iNOS, oxidative stress, and phagosome signaling pathways, which are closely associated with sepsis pathogenesis. These results suggest that Fh15 exerts a broad spectrum of action by simultaneously targeting multiple downstream pathways activated by TLR4, thereby modulating various aspects of the inflammatory responses during sepsis. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
Show Figures

Figure 1

19 pages, 2051 KiB  
Article
Urinary Extracellular Vesicle Signatures as Biomarkers in Prostate Cancer Patients
by Sigrun Lange, Darryl Ethan Bernstein, Nikolay Dimov, Srinivasu Puttaswamy, Ian Johnston, Igor Kraev, Sarah R. Needham, Nikhil Vasdev and Jameel M. Inal
Int. J. Mol. Sci. 2025, 26(14), 6895; https://doi.org/10.3390/ijms26146895 - 18 Jul 2025
Viewed by 376
Abstract
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study [...] Read more.
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study assessed U-EV profiles from individuals affected by PCa at Gleason scores 6–9, compared with healthy controls. U-EVs were characterised and assessed for proteomic cargo content by LC-MS/MS analysis. The U-EV proteomes were compared for enrichment of gene ontology (GO), KEGG, and Reactome pathways, as well as disease–gene associations. U-EVs ranged in size from 50 to 350 nm, with the majority falling within the 100–200 nm size range for all groups. U-EV protein cargoes from the PCa groups differed significantly from healthy controls, with 16 protein hits unique to the GS 6–7 and 88 hits to the GS 8–9 U-EVs. Pathway analysis showed increased enrichment in the PCa U-EVs of biological process GO (5 and 37 unique to GS 6–7 and GS 8–9, respectively), molecular function GO (3 and 6 unique to GS 6–7 and GS 8–9, respectively), and cellular component GO (10 and 22 unique to GS 6–7 and GS 8–9, respectively) pathways. A similar increase was seen for KEGG pathways (11 unique to GS 8–9) and Reactome pathways (102 unique to GS 8–9). Enrichment of disease–gene associations was also increased in the PCa U-EVs, with highest differences for the GS 8–9 U-EVs (26 unique terms). The pathway enrichment in the PCa U-EVs was related to several key inflammatory, cell differentiation, cell adhesion, oestrogen signalling, and infection pathways. Unique GO and KEGG pathways enriched for the GS 8–9 U-EVs were associated with cell–cell communication, immune and stress responses, apoptosis, peptidase activity, antioxidant activity, platelet aggregation, mitosis, proteasome, mRNA stability oxytocin signalling, cardiomyopathy, and several neurodegenerative diseases. Our findings highlight U-EVs as biomarkers to inform disease pathways in prostate cancer patients and offer a non-invasive biomarker tool for clinical use. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Functions of Extracellular Vesicles)
Show Figures

Figure 1

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 413
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

19 pages, 2337 KiB  
Article
Gas–Particle Partitioning and Temporal Dynamics of Pesticides in Urban Atmosphere Adjacent to Agriculture
by Dani Khoury, Supansa Chimjarn, Olivier Delhomme and Maurice Millet
Atmosphere 2025, 16(7), 873; https://doi.org/10.3390/atmos16070873 - 17 Jul 2025
Viewed by 105
Abstract
Air pollution caused by pesticide residues is an emerging concern in urban environments influenced by nearby agricultural activities. In this study, weekly air samples were collected between May 2018 and March 2020 in Strasbourg, France, to quantify 104 pesticides in both gas and [...] Read more.
Air pollution caused by pesticide residues is an emerging concern in urban environments influenced by nearby agricultural activities. In this study, weekly air samples were collected between May 2018 and March 2020 in Strasbourg, France, to quantify 104 pesticides in both gas and particle phases using GC-MS/MS and LC-MS/MS. Herbicides and fungicides were the most frequently detected classes, appearing in 98% of both phases followed by insecticides. Key compounds such as metalaxyl-M, diphenylamine, and bifenthrin were present in over 90% of samples. Concentrations ranged from 2.5 to 63 ng m−3 weekly, with cumulative annual loads exceeding 1200 ng m−3. Gas–particle partitioning revealed that highly volatile compounds like azinphos-ethyl favored the gas phase, while less volatile ones like bifenthrin and tebuconazole partitioned >95% into particles. A third-degree polynomial regression (R2 of 0.74) revealed a nonlinear relationship between Kₚ and particle-phase concentrations, highlighting a threshold above Kₚ of 0.025 beyond which compounds accumulate disproportionately in the particulate phase. Seasonal variability showed that 36% of the annual pesticide load occurred in autumn, with total airborne levels peaking near 400 ng m−3, while the lowest load occurred during summer. Principal component analysis identified rainfall and total suspended particles as major drivers of pesticide phase distribution. The inhalation health risk assessed yielded hazard index values < 1 × 10−7 for all population groups, suggesting negligible non-cancer risk. This study highlights the prevalence, seasonal dynamics, and partition behavior of airborne pesticides in urban air and underscores the need for regulatory attention to this overlooked exposure route. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 3313 KiB  
Article
Phosphoproteome Reveals the Role of Baicalin in Alleviating rPVL-Induced Cell Cycle Arrest in BMECs
by Ling Hou, Jun Li, Juqing Wang, Qin You, Dongtao Zhang and Xuezhang Zhou
Microorganisms 2025, 13(7), 1673; https://doi.org/10.3390/microorganisms13071673 - 16 Jul 2025
Viewed by 203
Abstract
Panton–Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus (S. aureus) and a significant virulence factor that plays a crucial role in the pathogenesis of dairy mastitis. Previous studies by our research group demonstrated that baicalin inhibits the apoptosis [...] Read more.
Panton–Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus (S. aureus) and a significant virulence factor that plays a crucial role in the pathogenesis of dairy mastitis. Previous studies by our research group demonstrated that baicalin inhibits the apoptosis and hyperphosphorylation of cytoskeletal proteins induced by recombinant Panton–Valentine leukocidin (rPVL) in bovine mammary epithelial cells (BMECs). However, the effects of baicalin on the proliferation of BMECs and the underlying mechanism remain unclear. Consequently, this study aimed to explore this underlying mechanism through an LC-MS/MS analysis performed in 4D data-independent acquisition (DIA) mode. Quantitative analysis identified 757 differentially expressed phosphoproteins, among which phosphorylation levels of proteins involved in BMEC proliferation and cell cycle regulation exhibited significant alterations (p < 0.05). rPVL inhibited BMEC proliferation in a dose-dependent manner and induced G0/G1 phase arrest and dephosphorylation of the cell-cycle-related proteins BCLAF1S285, CDK7T170, NF2S518, and PKM2S37. Preintervention with baicalin significantly upregulated the expression and phosphorylation of these proteins and alleviated the G0/G1 phase arrest induced by rPVL in BMECs in vitro. The establishment of the mitotic state in BMECs due to the effect of baicalin appears to be closely related to the regulation of the phosphorylation of CDK7, PKM2, BCLAF1, and NF2. Moreover, in vivo analysis revealed that S. aureus ATCC49775 and rPVL induced dramatic structural destruction and pathological impairment of mammary gland tissues in mice and that these histopathological changes were ameliorated after baicalin intervention. Quantitative immunohistochemical analysis revealed that baicalin mitigated the rPVL-induced dephosphorylation of the aforementioned cell-cycle-related proteins and increased their phosphorylation. Both in vitro and in vivo experimental evidence demonstrated that baicalin effectively reversed rPVL-induced G0/G1 phase arrest in BMECs (p < 0.01) by significantly increasing the phosphorylation levels of cell cycle regulatory proteins (p < 0.05). Additionally, baicalin alleviates pathological damage to mammary gland tissues in mouse models. These data suggest that baicalin possesses antibacterial and antitoxin effects, indicating that it is an effective preventive agent against bovine mastitis. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

14 pages, 992 KiB  
Article
Development and Validation of a Highly Sensitive LC–MS/MS Method for the Precise Quantification of Sitagliptin in Human Plasma and Its Application to Pharmacokinetic Study
by Yuna Song, Wang-Seob Shim, Eunseo Song, Yebeen Park, Bo-Hyung Kim, Sangmin Lee, Eun Kyoung Chung and Kyung-Tae Lee
Molecules 2025, 30(14), 2995; https://doi.org/10.3390/molecules30142995 - 16 Jul 2025
Viewed by 162
Abstract
Sitagliptin is an orally bioavailable selective DPP4 inhibitor that reduces blood glucose levels without significant increases in hypoglycemia. The aim of this study was to design and validate an innovative, rapid, and highly sensitive LC–MS/MS assay for the precise measurement of sitagliptin concentrations [...] Read more.
Sitagliptin is an orally bioavailable selective DPP4 inhibitor that reduces blood glucose levels without significant increases in hypoglycemia. The aim of this study was to design and validate an innovative, rapid, and highly sensitive LC–MS/MS assay for the precise measurement of sitagliptin concentrations in human plasma. This analytical method, utilizing sitagliptin-d4 as the internal standard, is performed using only 100 μL of plasma and a liquid–liquid extraction procedure based on methyl tert-butyl ether (MTBE). Chromatographic separation is expertly achieved with a Kinetex® C18 column under isocratic elution, employing a perfect 1:1 blend of 5 mM ammonium acetate (with 0.04% formic acid) and acetonitrile, and maintaining an efficient flow rate of 0.2 mL/min. Detection occurs in positive ionization mode through multiple reaction monitoring, precisely targeting transitions of m/z 408.2 → 193.0 for sitagliptin and 412.2 → 239.1 for the IS. The total runtime of this assay is under 2 min. Comprehensive validation in line with MFDS and FDA criteria demonstrates outstanding linearity (5–1000 ng/mL, r2 > 0.998), alongside impressive levels of accuracy, precision, recovery and sample stability. Due to its minimal sample requirement and high-throughput capability, the validated approach is highly appropriate for pharmacokinetic and bioequivalence assessments involving sitagliptin. Full article
(This article belongs to the Special Issue The Application of LC-MS in Pharmaceutical Analysis)
Show Figures

Figure 1

21 pages, 1945 KiB  
Article
Discovery of Species-Specific Peptide Markers for Superseed Authentication Using Targeted LC-MS/MS Proteomics
by Sorel Tchewonpi Sagu, Beatrice Schnepf, Peter Stenzel, Kapil Nichani, Alexander Erban, Joachim Kopka, Harshadrai M. Rawel and Andrea Henze
Molecules 2025, 30(14), 2993; https://doi.org/10.3390/molecules30142993 - 16 Jul 2025
Viewed by 174
Abstract
The increasing popularity of “superseeds” such as flax, sesame, amaranth and quinoa as functional foods raises the need for robust analytical methods for authentication purposes. In this work, a standardized workflow for the extraction, characterization and identification of unique peptides that may be [...] Read more.
The increasing popularity of “superseeds” such as flax, sesame, amaranth and quinoa as functional foods raises the need for robust analytical methods for authentication purposes. In this work, a standardized workflow for the extraction, characterization and identification of unique peptides that may be used as markers to distinguish superseed species was investigated. Ammonium bicarbonate/urea (Ambi/urea) extraction, sodium dodecyl sulfate (SDS) buffer and trichloroacetic acid (TCA) precipitation were initially implemented and, based on the level and composition of the extracted proteins, the SDS buffer protocol was selected. Electrophoresis analysis revealed consistent protein profiles between biological replicates from each of the eleven seed species, confirming the reproducibility of the SDS buffer protocol. Targeted mass spectrometry successfully identified species-specific peptide markers for six of eleven superseeds investigated, including peptides from conlinins in flaxseed (WVQQAK), 11S globulins in sesame (LVYIER), oleosin in quinoa (DVGQTIESK), agglutin-like lectins in amaranth (CAGVSVIR), as well as cupin-like proteins in poppy seeds (INIVNSQK) and edestins in hemp seeds (FLQLSAER). Moreover, proteome cross-analysis allowed us to disqualify the isomeric peptide LTALEPTNR from 11S globulins present in amaranth and quinoa. However, no reliable markers were identified for chia, canihua, basil, black cumin, and psyllium seeds under current conditions. While this targeted proteomics approach shows promise for superseed authentication, comprehensive method validation and alternative strategies for marker-deficient species are required before routine implementation. Full article
(This article belongs to the Special Issue Application of Analytical Chemistry in Food Science)
Show Figures

Graphical abstract

Back to TopTop