Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = LAIC mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3218 KB  
Article
Analysis of Ionospheric TEC Anomalies Using BDS High-Orbit Satellite Data: A Regional Statistical Study and a Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Hanyi Cao, Ranran Shen, Meiting Xin, Penggang Tian and Lin Pan
Remote Sens. 2025, 17(24), 4032; https://doi.org/10.3390/rs17244032 - 14 Dec 2025
Viewed by 409
Abstract
This study presents a comprehensive analysis of pre- and co-seismic ionospheric disturbances associated with the 2023 Ms6.2 Jishishan earthquake by leveraging the unique observational strengths of BDS, particularly its high-orbit satellites. A multi-parameter space weather index was employed to effectively isolate seismogenic signals [...] Read more.
This study presents a comprehensive analysis of pre- and co-seismic ionospheric disturbances associated with the 2023 Ms6.2 Jishishan earthquake by leveraging the unique observational strengths of BDS, particularly its high-orbit satellites. A multi-parameter space weather index was employed to effectively isolate seismogenic signals from geomagnetic disturbances, confirming that the main shock occurred during geomagnetically quiet conditions. Statistical analysis of 41 historical earthquakes (Mw ≥ 5.5) reveals that 47.2% were associated with detectable Total Electron Content (TEC) anomalies. An inverse correlation between earthquake magnitude and anomaly detectability within a 31-day window suggests prolonged precursor durations for larger events may produce longer-duration precursory signals, which challenge conventional detection methods. The synergistic capabilities of BDS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites were demonstrated: GEO satellites provide unprecedented temporal stability for continuous TEC monitoring, while IGSO satellites enable high-resolution spatial mapping of Co-seismic Ionospheric Disturbances (CIDs). The detected CIDs propagated at velocities below 1.6 km/s, consistent with acoustic gravity wave (AGW) mechanisms. A case study during a geomagnetically active period further reveals modulated CID propagation characteristics, indicating potential coupling between seismic forcing and space weather. Our findings validate BDS as a powerful and precise tool for ionospheric seismology and provide critical insights into Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) dynamics. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

41 pages, 7942 KB  
Article
Ionospheric Statistical Study of the ULF Band Electric Field and Electron Density Variations Before Strong Earthquakes Based on CSES Data
by Lei Nie, Xuemin Zhang, Hong Liu and Shukai Wang
Remote Sens. 2025, 17(15), 2677; https://doi.org/10.3390/rs17152677 - 2 Aug 2025
Viewed by 1703
Abstract
Anomalous ionospheric disturbances have been observed as potential precursors to earthquakes. This study utilized data from the CSES satellite to investigate anomalies in the ULF band ionospheric electric field and electron density preceding earthquakes with magnitudes of Ms ≥ 6.0 in China and [...] Read more.
Anomalous ionospheric disturbances have been observed as potential precursors to earthquakes. This study utilized data from the CSES satellite to investigate anomalies in the ULF band ionospheric electric field and electron density preceding earthquakes with magnitudes of Ms ≥ 6.0 in China and neighboring regions from 2019 to 2021. Comparative analysis with a randomly generated earthquake catalog indicated that these anomalies were spatially concentrated over the epicenter and temporally clustered on specific dates prior to the events. To assess the global relevance of these findings, the analysis was extended to earthquakes with Ms ≥ 7.0 worldwide during the same period, revealing consistent spatiotemporal patterns of ionospheric anomalies in both regional and global datasets. Furthermore, by combining the two earthquake catalogs and classifying events into oceanic and continental categories, additional statistical analyses were conducted to identify distinct ionospheric disturbance patterns associated with these different tectonic environments. These results provide a solid foundation for future research aimed at identifying and extracting ionospheric anomalies as potential pre-earthquake indicators. Full article
Show Figures

Figure 1

18 pages, 1578 KB  
Review
The Generation of Seismogenic Anomalous Electric Fields in the Lower Atmosphere, and Its Application to Very-High-Frequency and Very-Low-Frequency/Low-Frequency Emissions: A Review
by Masashi Hayakawa, Yasuhide Hobara, Koichiro Michimoto and Alexander P. Nickolaenko
Atmosphere 2024, 15(10), 1173; https://doi.org/10.3390/atmos15101173 - 30 Sep 2024
Cited by 3 | Viewed by 1820
Abstract
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in [...] Read more.
The purpose of this paper is, first of all, to review the previous works on the seismic (or earthquake (EQ)-related) direct current (DC) (or quasi-stationary) electric fields in the lower atmosphere, which is likely to be generated by the conductivity current flowing in the closed atmosphere–ionosphere electric circuit during the preparation phase of an EQ. The current source is electromotive force (EMF) caused by upward convective transport and the gravitational sedimentation of radon and charged aerosols injected into the atmosphere by soil gasses during the course of the intensification of seismic processes. The theoretical calculations predict that pre-EQ DC electric field enhancement in the atmosphere can reach the breakdown value at the altitudes 2–6 km, suggesting the generation of a peculiar seismic-related thundercloud. Then, we propose to apply this theoretical inference to the observational results of seismogenic VHF (very high frequency) and VLF/LF (very low frequency/low frequency) natural radio emissions. The formation of such a peculiar layer initiates numerous chaotic electrical discharges within this region, leading to the generation of VHF electromagnetic radiation. Earlier works on VHF seismogenic radiation performed in Greece have been compared with the theoretical estimates, and showed a good agreement in the frequency range and intensity. The same idea can also be applied, for the first time, to seismogenic VLF/LF lightning discharges, which is completely the same mechanism with conventional cloud-to-ground lightning discharges. In fact, such seismogenic VLF/LF lightning discharges have been observed to appear before an EQ. So, we conclude in this review that both seismogenic VHF radiation and VLF/LF lightning discharges are regarded as indirect evidence of the generation of anomalous electric fields in the lowest atmosphere due to the emanation of radioactive radon and charged aerosols during the preparation phase of EQs. Finally, we have addressed the most fundamental issue of whether VHF and VLF/LF radiation reported in earlier works is either of atmospheric origin (as proposed in this paper) or of lithospheric origin as the result of microfracturing in the EQ fault region, which has long been hypothesized. This paper will raise a question regarding this hypothesis of lithospheric origin by proposing an alternative atmospheric origin outlined in this review. Also, the data on seismogenic electromagnetic radiation and its inference on perturbations in the lower atmosphere will be suggested to be extensively integrated in future lithosphere–atmosphere–ionosphere coupling (LAIC) studies. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

12 pages, 3994 KB  
Article
Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording Station
by Ioannis Contopoulos, Janusz Mlynarczyk, Jerzy Kubisz and Vasilis Tritakis
Atmosphere 2024, 15(9), 1134; https://doi.org/10.3390/atmos15091134 - 19 Sep 2024
Cited by 4 | Viewed by 2541
Abstract
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such [...] Read more.
The Lithospheric–Atmospheric–Ionospheric Coupling (LAIC) mechanism stands as the leading model for the prediction of seismic activities. It consists of a cascade of physical processes that are initiated days before a major earthquake. The onset is marked by the discharge of ionized gases, such as radon, through subterranean fissures that develop in the lead-up to the quake. This discharge augments the ionization at the lower atmospheric layers, instigating disturbances that extend from the Earth’s surface to the lower ionosphere. A critical component of the LAIC sequence involves the distinctive perturbations of Extremely Low Electromagnetic Frequencies (ELF) within the Schumann Resonances (SR) spectrum of 2 to 50 Hz, detectable days ahead of the seismic event. Our study examines 10 earthquakes that transpired over a span of 3.5 months—averaging nearly three quakes monthly—which concurrently generated 45 discernible potential precursor seismic signals. Notably, each earthquake originated in Southern Greece, within a radius of 30 to 250 km from the observatory on Mount Parnon. Our research seeks to resolve two important issues. The first concerns the association between specific ELF signals and individual earthquakes—a question of significant importance in seismogenic regions like Greece, where earthquakes occur frequently. The second inquiry concerns the parameters that determine the detectability of an earthquake by a given station, including the requisite proximity and magnitude. Initial findings suggest that SR signals can be reliably linked to a particular earthquake if the observatory is situated within the earthquake’s preparatory zone. Conversely, outside this zone, the correlation becomes indeterminate. Additionally, we observe a differentiation in SR signals based on whether the earthquake took place over land or offshore. The latter category exhibits unique signal behaviors, potentially attributable to the water layers above the epicenter acting as a barrier to the ascending gases, thereby affecting the atmospheric–ionospheric ionization process. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

16 pages, 6069 KB  
Article
Analysis of Ionospheric Anomalies before Earthquakes of Mw6.5 and above in Japan from 2011 to 2022
by Zhen Li, Zhen Tao and Lianhai Cao
Atmosphere 2024, 15(8), 887; https://doi.org/10.3390/atmos15080887 - 25 Jul 2024
Cited by 1 | Viewed by 2462
Abstract
In this study, a TEC variation window value was selected based on the wavelet power spectrum method to analyze the seismic–ionospheric coupling relationship. In the full-time domain, a 27-day periodicity of the wavelet power spectrum was obtained that passed the 95% significance test. [...] Read more.
In this study, a TEC variation window value was selected based on the wavelet power spectrum method to analyze the seismic–ionospheric coupling relationship. In the full-time domain, a 27-day periodicity of the wavelet power spectrum was obtained that passed the 95% significance test. The sliding interquartile range method was used to analyze earthquakes above Mw6.5 in Japan from 2011 to 2022, excluding the hybrid effects between earthquakes close to one another. The sunspot number (SSN), 10.7 cm radio flux (F10.7), total solar irradiance (TSI), solar wind velocity (Vsw), geomagnetic activity index in the equatorial region (DST), and global geomagnetic activity index (KP) were used as indices representing solar and geomagnetic activity. After removing solar and geomagnetic interference from ionospheric anomaly changes using the sliding interquartile range method, the TEC anomaly changes before the earthquake were verified as being caused by the earthquake and analyzed. The statistical analysis of ionospheric total electron content (TEC) anomalies showed that earthquake magnitude was positively correlated with the amplitude of TEC anomalies but not linearly. The occurrence time of ionospheric anomalies lagged behind to some extent with the increase in earthquake magnitude. Additionally, abnormal changes on the 29th day (15 February 2022) before the 20th earthquake did not conform to previous research rules. According to the lithosphere–atmosphere–ionospheric coupling (LAIC) mechanism and global ionospheric map (GIM) studies, the TEC anomaly was consistent with the vertical projection of the epicenter with obvious regularity. The results show that these TEC anomalies may be related to earthquakes. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

22 pages, 18622 KB  
Article
Spatio–Temporal Evolution of Electric Field, Magnetic Field and Thermal Infrared Remote Sensing Associated with the 2021 Mw7.3 Maduo Earthquake in China
by Muping Yang, Xuemin Zhang, Meijiao Zhong, Yufan Guo, Geng Qian, Jiang Liu, Chao Yuan, Zihao Li, Shuting Wang, Lina Zhai, Tongxia Li and Xuhui Shen
Atmosphere 2024, 15(7), 770; https://doi.org/10.3390/atmos15070770 - 27 Jun 2024
Cited by 5 | Viewed by 1490
Abstract
This study presents the spatio–temporal evolution of the electric and magnetic fields recorded by the China Seismo–Electromagnetic Satellite (CSES) and the thermal infrared remote sensing data observed by the Chinese stationary meteorological satellites Feng Yun–2G (FY–2G) associated with the 2021 Mw7.3 Maduo earthquake. [...] Read more.
This study presents the spatio–temporal evolution of the electric and magnetic fields recorded by the China Seismo–Electromagnetic Satellite (CSES) and the thermal infrared remote sensing data observed by the Chinese stationary meteorological satellites Feng Yun–2G (FY–2G) associated with the 2021 Mw7.3 Maduo earthquake. Specifically, we analyzed the power spectrum density (PSD) data of the electric field in the extremely low frequency (ELF) band, the geomagnetic east–west vector data, and the temperature of brightness blackbody (TBB) data to investigate the spatio–temporal evolution characteristics under quiet space weather conditions (Dst > −30 nT and Kp < 3). Results showed that (1) the TBB radiation began to increase notably along the northern fault of the epicenter ~1.5 months prior to the occurrence of the earthquake. It achieved its maximum intensity on 17 May, and the earthquake occurred as the anomalies decreased. (2) The PSD in the 371 Hz–500 Hz and 700 Hz–871 Hz bands exhibited anomaly perturbations near the epicenter and its magnetic conjugate area on May 17, with particularly notable perturbations observed in the latter. The anomaly perturbations began to occur ~1 month before the earthquake, and the earthquake occurred as the anomalies decreased. (3) Both the magnetic –east–west component vector data and the ion velocity Vx data exhibited anomaly perturbations near the epicenter and the magnetic conjugate area on 11 May and 16 May. (4) The anomaly perturbations in the thermal infrared TBB data, CSES electric field, and magnetic field data all occurred within a consistent perturbation time period and spatial proximity. We also conducted an investigation into the timing, location, and potential causes of the anomaly perturbations using the Vx ion velocity data with magnetic field –east–west component vector data, as well as the horizontal –north–south and vertical component PSD data of the electric field with the magnetic field –east–west component vector data. There may be both chemical and electromagnetic wave propagation models for the “lithosphere—atmosphere—ionosphere” coupling (LAIC) mechanism of the Maduo earthquake. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

15 pages, 2454 KB  
Article
Thermal Anomalies Observed during the Crete Earthquake on 27 September 2021
by Soujan Ghosh, Sudipta Sasmal, Sovan K. Maity, Stelios M. Potirakis and Masashi Hayakawa
Geosciences 2024, 14(3), 73; https://doi.org/10.3390/geosciences14030073 - 9 Mar 2024
Cited by 10 | Viewed by 2801
Abstract
This study examines the response of the thermal channel within the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism during the notable earthquake in Crete, Greece, on 27 September 2021. We analyze spatio-temporal profiles of Surface Latent Heat Flux (SLHF), Outgoing Longwave Radiation (OLR), and Atmospheric Chemical [...] Read more.
This study examines the response of the thermal channel within the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism during the notable earthquake in Crete, Greece, on 27 September 2021. We analyze spatio-temporal profiles of Surface Latent Heat Flux (SLHF), Outgoing Longwave Radiation (OLR), and Atmospheric Chemical Potential (ACP) using reanalysis data from the National Oceanic and Atmospheric Administration (NOAA) satellite. Anomalies in these parameters are computed by removing the background profile for a non-seismic condition. Our findings reveal a substantial anomalous increase in these parameters near the earthquake’s epicenter 3 to 7 days before the main shock. The implications of these observations contribute to a deeper understanding of the LAIC mechanism’s thermal channel in seismic events. Full article
Show Figures

Figure 1

19 pages, 12222 KB  
Article
The Analysis of Ionospheric TEC Anomalies Prior to the Jiuzhaigou Ms7.0 Earthquake Based on BeiDou GEO Satellite Data
by Xinyi Jia, Jing Liu and Xuemin Zhang
Remote Sens. 2024, 16(4), 660; https://doi.org/10.3390/rs16040660 - 11 Feb 2024
Cited by 6 | Viewed by 3186
Abstract
The position between BeiDou geostationary Earth orbit (GEO) satellites and ground-based receiving stations can roughly be considered to be constant with negligible fluctuations; thus, the total electron content (TEC) data over a fixed ionospheric piercing point (IPP) can be continuously acquired, which is [...] Read more.
The position between BeiDou geostationary Earth orbit (GEO) satellites and ground-based receiving stations can roughly be considered to be constant with negligible fluctuations; thus, the total electron content (TEC) data over a fixed ionospheric piercing point (IPP) can be continuously acquired, which is advantageous for monitoring ionospheric disturbances. Focused on the Jiuzhaigou Ms7.0 earthquake that occurred on 8 August 2017, the TEC data inverted by the BeiDou GEO satellite were analyzed to extract ionospheric disturbances potentially associated with the earthquake. It was found that significant anomalies in ionospheric TEC occurred 10–11 days, 6–7 days, and 1–9 h prior to the earthquake, which was mainly located in the southeast and southwest directions within about 2500 km distance from the epicenter. Comparing the spatial and temporal characteristics between the ionospheric disturbance and the radon gas near the surface, the atmospheric electric field, and the spectrum of TEC data, it was considered that the chemical and acoustic–gravity wave pathway may play an important role in the lithosphere–atmosphere–ionosphere coupling (LAIC) mechanism. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

33 pages, 35035 KB  
Article
Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea
by Xitong Xu, Lei Wang and Shengbo Chen
Remote Sens. 2023, 15(18), 4392; https://doi.org/10.3390/rs15184392 - 6 Sep 2023
Cited by 3 | Viewed by 2101
Abstract
Scientific progress in the context of seismic precursors reveals a systematic mechanism, namely lithosphere–atmosphere–ionosphere coupling (LAIC), to elaborate the underlying physical processes related to earthquake preparation phases. In this study, a comprehensive analysis was conducted for two earthquakes that occurred on the sea [...] Read more.
Scientific progress in the context of seismic precursors reveals a systematic mechanism, namely lithosphere–atmosphere–ionosphere coupling (LAIC), to elaborate the underlying physical processes related to earthquake preparation phases. In this study, a comprehensive analysis was conducted for two earthquakes that occurred on the sea coast through tidal force fluctuation to investigate ocean–lithosphere–atmosphere–ionosphere coupling (OLAIC), based on oceanic parameters (i.e., sea potential temperature and seawater salinity), air temperature and electron density profiles. The interrupted enhancement and diffusion process of thermal anomalies indicate that the intensity of seismic anomalies in the atmosphere is affected by the extent of land near the epicenter. By observing the evolution of the ocean interior, we found that the deep water was lifted and formed upwelling, which then diffused along the direction of plate boundaries with an “intensification-peak-weakening” trend under the action of the accelerated subduction of tectonic plates. Furthermore, the analysis shows that the seismic anomalies have two propagation paths: (i) along active faults, with the surface temperature rising as the initial performance, then the air pressure gradient being generated, and finally the ionosphere being disturbed; (ii) along plate boundaries, upwelling, which is the initial manifestation, leading to changes in the parameters of the upper ocean. The results presented in this study can contribute to understanding the intrinsic characteristics of OLAIC. Full article
Show Figures

Figure 1

20 pages, 4096 KB  
Article
The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake
by Jiang Liu, Xuemin Zhang, Xianhe Yang, Muping Yang, Tiebao Zhang, Zhicheng Bao, Weiwei Wu, Guilan Qiu, Xing Yang and Qian Lu
Remote Sens. 2023, 15(16), 4042; https://doi.org/10.3390/rs15164042 - 16 Aug 2023
Cited by 13 | Viewed by 2870
Abstract
Taking the Luding Ms6.8 earthquake (EQ) on 5 September 2022 as a case study, we investigated the potential seismic anomalies of the ionosphere, infrared radiation, atmospheric electrostatic field (AEF), and hot spring ions in the seismogenic region. Firstly, we analyzed the multi-parameter anomalies [...] Read more.
Taking the Luding Ms6.8 earthquake (EQ) on 5 September 2022 as a case study, we investigated the potential seismic anomalies of the ionosphere, infrared radiation, atmospheric electrostatic field (AEF), and hot spring ions in the seismogenic region. Firstly, we analyzed the multi-parameter anomalies in the ionosphere around the epicenter and found synchronous anomalous disturbances in the ground parameters, namely the global ionospheric map (GIM), GPS, TEC, and satellite parameters, such as the He+ and O+ densities on 26 August under relatively quiet solar–geomagnetic conditions (F10.7 < 120 SFU; Kp < 3; Dst > −30 nT; |AE| < 500 nT). Next, both the anomaly analysis of the infrared radiation and AEF, and the survey results of the Luding EQ scientific expedition on the hot spring ions showed pre-seismic anomalous variations at different time periods in the seismogenic region. The characteristics of Earth’s multi-sphere coupling anomalies in temporal evolution and spatial distribution were obvious, which validated the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism. Finally, combining the analysis results and the LAIC mechanism, we suggested that the multi-sphere coupling anomalies were more likely associated with the Luding Ms6.8 EQ, and that the differential motion and the regional crustal stress accumulation between the Chuandian block and the Bayan Har block might have led to this EQ. Furthermore, remote sensing and ground-based monitoring technologies can play an important role in corroborating and compensating each other, while further study of the multi-sphere coupling mechanism will provide a clearer understanding of the seismogenic process for major EQs. Full article
Show Figures

Figure 1

15 pages, 1445 KB  
Article
Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling
by Masashi Hayakawa, Alexander Schekotov, Hiroki Yamaguchi and Yasuhide Hobara
Atmosphere 2023, 14(8), 1255; https://doi.org/10.3390/atmos14081255 - 7 Aug 2023
Cited by 10 | Viewed by 2526
Abstract
The study presents seismogenic ULF (ultra-low-frequency) wave effects, as observed at our own new magnetic observatory at Asahi (geographic coordinates: 35.770° N, 140.695° E) in Chiba Prefecture. Our target earthquake (EQ) is a huge one offshore of Fukushima prefecture (37.353° N, 141.603° E) [...] Read more.
The study presents seismogenic ULF (ultra-low-frequency) wave effects, as observed at our own new magnetic observatory at Asahi (geographic coordinates: 35.770° N, 140.695° E) in Chiba Prefecture. Our target earthquake (EQ) is a huge one offshore of Fukushima prefecture (37.353° N, 141.603° E) with a magnitude (M) of 7.4, which occurred at 20.59 h on November 21 UT, 2016. As a sampling frequency of 1 Hz was chosen for our induction magnetometer, we could detect both ULF wave effects: ULF radiation from the lithosphere, and the ULF depression effect, indicative of lower ionospheric perturbations. Observing the results of polarization analyses, we detected clear enhancements in ULF (frequency = 0.01–0.03 Hz) lithospheric radiation 14 days, 5 days, and 1 day before the EQ, and also observed a very obvious phenomenon of ULF (0.01–0.03 Hz) depression just 1 day prior to the EQ, which is regarded as the signature of lower ionospheric perturbations. These findings suggest that pre-EQ seismic activity must be present in the lithosphere, and also that the lower ionosphere was very much perturbed by the precursory effects of the Fukushima EQ. These new observational effects from our station have been compared with our previous investigations on different seismogenic topics for the same EQ, including the ULF observations at another magnetic observatory at Kakioka, belonging to the Japan Meteorological Agency (JMA), about 50 km north of our Asahi station, subionospheric VLF/LF propagation data (Japanese and Russian data), AGW (Atmospheric gravity wave) activity in the stratosphere, and satellite observation of particle precipitations. We have found that seismogenic anomalies of different parameters tend to happen just around the EQ day, but mainly before the EQ, and have found the chain-like tendency of the effects of the lithosphere, which seem to propagate upwards the lower ionosphere. Finally, we will try to gain a better understanding of the physical phenomena or mechanisms of the lithosphere–atmosphere–ionosphere coupling (LAIC) process during the EQ preparation phase. Full article
Show Figures

Figure 1

18 pages, 3294 KB  
Article
Deep Machine Learning Based Possible Atmospheric and Ionospheric Precursors of the 2021 Mw 7.1 Japan Earthquake
by Muhammad Umar Draz, Munawar Shah, Punyawi Jamjareegulgarn, Rasim Shahzad, Ahmad M. Hasan and Nivin A. Ghamry
Remote Sens. 2023, 15(7), 1904; https://doi.org/10.3390/rs15071904 - 2 Apr 2023
Cited by 32 | Viewed by 4256
Abstract
Global Navigation Satellite System (GNSS)- and Remote Sensing (RS)-based Earth observations have a significant approach on the monitoring of natural disasters. Since the evolution and appearance of earthquake precursors exhibit complex behavior, the need for different methods on multiple satellite data for earthquake [...] Read more.
Global Navigation Satellite System (GNSS)- and Remote Sensing (RS)-based Earth observations have a significant approach on the monitoring of natural disasters. Since the evolution and appearance of earthquake precursors exhibit complex behavior, the need for different methods on multiple satellite data for earthquake precursors is vital for prior and after the impending main shock. This study provided a new approach of deep machine learning (ML)-based detection of ionosphere and atmosphere precursors. In this study, we investigate multi-parameter precursors of different physical nature defining the states of ionosphere and atmosphere associated with the event in Japan on 13 February 2021 (Mw 7.1). We analyzed possible precursors from surface to ionosphere, including Sea Surface Temperature (SST), Air Temperature (AT), Relative Humidity (RH), Outgoing Longwave Radiation (OLR), and Total Electron Content (TEC). Furthermore, the aim is to find a possible pre-and post-seismic anomaly by implementing standard deviation (STDEV), wavelet transformation, the Nonlinear Autoregressive Network with Exogenous Inputs (NARX) model, and the Long Short-Term Memory Inputs (LSTM) network. Interestingly, every method shows anomalous variations in both atmospheric and ionospheric precursors before and after the earthquake. Moreover, the geomagnetic irregularities are also observed seven days after the main shock during active storm days (Kp > 3.7; Dst < −30 nT). This study demonstrates the significance of ML techniques for detecting earthquake anomalies to support the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) mechanism for future studies. Full article
(This article belongs to the Special Issue Satellite Observations of the Global Ionosphere and Plasma Dynamics)
Show Figures

Figure 1

21 pages, 4339 KB  
Viewpoint
The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm
by Jiang Liu, Xuemin Zhang, Weiwei Wu, Cong Chen, Mingming Wang, Muping Yang, Yufan Guo and Jun Wang
Atmosphere 2022, 13(11), 1745; https://doi.org/10.3390/atmos13111745 - 23 Oct 2022
Cited by 10 | Viewed by 3337
Abstract
Based on the multi-data of the global ionospheric map (GIM), ionospheric total electron content (TEC) inversed from GPS observations, the critical frequency of the F2 layer (fOF2) from the ionosonde, electron density (Ne), electron temperature (Te), and He+ [...] Read more.
Based on the multi-data of the global ionospheric map (GIM), ionospheric total electron content (TEC) inversed from GPS observations, the critical frequency of the F2 layer (fOF2) from the ionosonde, electron density (Ne), electron temperature (Te), and He+ and O+ densities detected by the China Seismo-Electromagnetic Satellite (CSES), the temporal and spatial characteristics of ionospheric multi-parameter perturbations were analyzed around the Maerkang Ms6.0 earthquake swarm on 9 June 2022. The results showed that the seismo-ionospheric disturbances were observed during 2–4 June around the epicenter under quiet solar-geomagnetic conditions. All parameters we studied were characterized by synchronous changes and negative anomalies, with a better consistency between ionospheric ground-based and satellite observations. The negative ionospheric anomalies for all parameters appeared 5–7 days before the Maerkang Ms6.0 earthquake swarm can be considered as significant signals of upcoming main shock. The seismo-ionospheric coupling mechanism may be a combination of two coupling channels: an overlapped DC electric field and an acoustic gravity wave, as described by the lithosphere–atmosphere–ionosphere coupling (LAIC). In addition, in order to make the investigations still more convincing, we completed a statistical analysis for the ionospheric anomalies of earthquakes over Ms6.0 in the study area (20°~40° N, 92°~112° E) from 1 January 2019 to 1 July 2022. The nine seismic events reveal that most strong earthquakes are preceded by obvious synchronous anomalies from ground-based and satellite ionospheric observations. The anomalous disturbances generally appear 1–15 days before the earthquakes, and the continuity and reliability of ground-based ionospheric anomaly detection are relatively high. Based on the integrated ionospheric satellite–ground observations, a cross-validation analysis can effectively improve the confidence level of anomaly identification and reduce the frequency of false anomalies. Full article
Show Figures

Figure 1

18 pages, 4733 KB  
Article
Critical Dynamics in Stratospheric Potential Energy Variations Prior to Significant (M > 6.7) Earthquakes
by Dimitrios Z. Politis, Stelios M. Potirakis, Subrata Kundu, Swati Chowdhury, Sudipta Sasmal and Masashi Hayakawa
Symmetry 2022, 14(9), 1939; https://doi.org/10.3390/sym14091939 - 18 Sep 2022
Cited by 13 | Viewed by 2543
Abstract
Lithosphere–atmosphere–ionosphere coupling (LAIC) is studied through various physical or chemical quantities, obtained from different sources, which are observables of the involved complex processes. LAIC has been proposed to be achieved through three major channels: the chemical, the acoustic, and the electromagnetic. Accumulated evidence [...] Read more.
Lithosphere–atmosphere–ionosphere coupling (LAIC) is studied through various physical or chemical quantities, obtained from different sources, which are observables of the involved complex processes. LAIC has been proposed to be achieved through three major channels: the chemical, the acoustic, and the electromagnetic. Accumulated evidence supporting the acoustic channel hypothesis has been published, while atmospheric gravity waves (AGWs) play a key role in LAIC as the leading mechanism for the transmission of energy from the lower atmosphere to the stratosphere and mesosphere, associated with atmospheric disturbances observed prior to strong earthquakes (EQs). The seismogenic AGW is the result of temperature disturbances, usually studied through stratospheric potential energy (EP). In this work, we examined 11 cases of significant EQs (M > 6.7) that occurred during the last 10 years at different geographic areas by analyzing the temperature profile at the wider location of each one of the examined EQs. The “Sounding of the Atmosphere using Broadband Emission Radiometry” (SABER) instrument, part of the “Thermosphere Ionosphere Mesosphere Energetics Dynamics” (TIMED) satellite, data were employed to compute the potential energy (EP) of the AGW. Using the temperature profile, we first calculated EP and determined the altitudes’ range for which prominent pre-seismic disturbances were observed. Subsequently, the EP time series at specific altitudes, within the determined “disturbed” range, were for the first time analyzed using the criticality analysis method termed the “natural time” (NT) method in order to find any evidence of an approach to a critical state (during a phase transition from a symmetric phase to a low symmetry phase) prior to the EQ occurrence. Our results show criticality indications in the fluctuation of EP a few days (1 to 15 days) prior to the examined EQs, except from one case. In our study, we also examined all of the temperature-related extreme phenomena that have occurred near the examined geographic areas, in order to take into account any possible non-seismic influence on the obtained results. Full article
(This article belongs to the Special Issue Symmetry in Nonlinear Dynamics and Chaos)
Show Figures

Figure 1

22 pages, 6103 KB  
Article
Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake
by Mehdi Akhoondzadeh, Angelo De Santis, Dedalo Marchetti and Ting Wang
Remote Sens. 2022, 14(7), 1582; https://doi.org/10.3390/rs14071582 - 25 Mar 2022
Cited by 24 | Viewed by 3991
Abstract
Since the appearance and evolution of earthquake ionospheric precursors are expected to show a nonlinear and complex behaviour, the use of nonlinear predictor models seems more appropriate. This paper proposes a new approach based on deep learning as a powerful tool for extracting [...] Read more.
Since the appearance and evolution of earthquake ionospheric precursors are expected to show a nonlinear and complex behaviour, the use of nonlinear predictor models seems more appropriate. This paper proposes a new approach based on deep learning as a powerful tool for extracting the nonlinear patterns from a time series of ionospheric precursors. A Long Short-Term Memory (LSTM) network as a type of Recurrent Neural Network (RNN) was used to investigate 52 six-month time series, deduced from the three Swarm satellite (Alpha (A), Bravo (B) and Charlie (C)) measurements, including electron density (Ne), electron temperature (Te), magnetic scalar and vector (X, Y, Z) components, Slant and Vertical Total Electron Content (STEC and VTEC), for day and night periods around the time and location of a seismic event. This new approach was tested on a strong Mw = 7.1 earthquake in Japan on 13 February 2021, at 14:07:50 UTC by comparing the results with two implemented methods, i.e., Median and LSTM methods. Furthermore, clear anomalies are seen by a voting classification method 1, 6, 8, 13, 31 and 32 days before the earthquake. A comparison with atmospheric data investigation is further provided, supporting the lithosphere–atmosphere–ionosphere coupling (LAIC) mechanism as a suitable theory to explain the alteration of upper geolayers in the earthquake preparation phase. In other words, using multi-method and multi-precursor analysis applied to 52 time series and also to the orbit-by-orbit investigation, the observed anomalies on the previous day and up to 32 days before the event in normal solar and quiet geomagnetic conditions could be considered as a striking hint of the forthcoming Japan earthquake. Full article
(This article belongs to the Special Issue Remote Sensing for Seismology)
Show Figures

Graphical abstract

Back to TopTop