Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling
Abstract
:1. Introduction
- (1)
- The main frequency range of lithospheric direct radiation is located at ULF around f = 0.01 Hz (period = 100 s), probably because of the skin effect of wave propagation in the lithosphere.
- (2)
- Magnetic field intensity seems to exhibit an increase about one week (5–12 days) before an EQ, followed by a quiet period (quiescence), and an abrupt intensity increase just before (i.e., less than one day before) the EQ. The intensity ranges from a few nT to tens of nT.
- (3)
- The presence or absence (or detectability) of a ULF anomaly at a station is empirically expressed using the threshold of 0.025 R (epicentral distance (in km)) = M − 4.5 [29,50]; e.g., R = 70 km for M = 6, and R = 100 km for M = 7. The most peculiar feature of this ULF radiation is that ULF radiation observation itself is a typical “local” measurement; i.e., a ULF observatory can sense only the region close to the observatory (within 100 km or so).
- (1)
- A few days before an EQ, we observe a decrease in ground-based horizontal magnetic field fluctuations of nighttime irregular pulsations in the vicinity of local midnight.
- (2)
- This is essentially noticeable within the ULF frequencies, especially in the frequency ranges of 0.03–0.05 Hz.
- (3)
- The absolute value of ULF depression is found to depend linearly on the local seismicity (or M), exhibiting a scaling law that is more pronounced for larger M EQs.
- (4)
- Despite of the same local measurement with ULF lithospheric radiation, the sensing range of the ULF depression effect is likely to be much larger than that of lithospheric radiation.
2. EQs Used in This Paper
3. ULF Observation and Analysis Methodology
3.1. ULF Data
3.2. Methodology of ULF Data Analysis
3.2.1. Lithospheric ULF Radiation
3.2.2. ULF Magnetic Field Depression
4. ULF Observational Results
4.1. ULF Lithospheric Radiation
4.2. ULF Depression Effect
5. A Comparison of the Observational Results with Previous Results
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M.; Molchanov, O. (Eds.) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terrapub: Tokyo, Japan, 2002; p. 477. [Google Scholar]
- Pulinets, S.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; p. 315. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M. Seismo-Electromagnetics and Related Phenomena: History and Latest Results; TERRAPUB: Tokyo, Japan, 2008; p. 189. [Google Scholar]
- Hayakawa, M. Earthquake Prediction with Radio Techniques; John Wiley & Sons: Singapore, 2015; p. 294. [Google Scholar]
- Sorokin, V.; Chemyrev, V.V.; Hayakawa, M. Electrodynamic Coupling of Lithosphere-Atmosphere-Ionosphere of the Earth; Nova Science Pub. Inc.: New York, NY, USA, 2015; p. 326. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; AGU (American Geophysical Union) Geophysical Monograph, 234; Wiley: New York, NY, USA, 2018; p. 365. [Google Scholar]
- Conti, L.; Picozza, P.; Sotgiu, A. A critical review of ground-based observations of earthquake precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Picozza, P.; Conti, L.; Sotgiu, A. Looking for earthquake precursors from space: A critical review. Front. Earth Sci. 2021, 9, 676775. [Google Scholar] [CrossRef]
- Chen, H.; Han, P.; Hattori, K. Recent advances and challenges in the seismo-electromagnetic study: A brief review. Remote Sens. 2022, 14, 5893. [Google Scholar] [CrossRef]
- Hayakawa, M. Probing the lower ionosphere by means of subionospheric VLF propagation. Earthq. Sci. 2011, 24, 609–637. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Asano, T.; Rozhnoi, A.; Solovieva, M. Very-low- and low-frequency sounding of ionospheric perturbations and possible association with earthquakes. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU Geophysical Monograph; Wiley: New York, NY, USA, 2018; Chapter 16; pp. 277–304. [Google Scholar]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res. 2010, 115, A09305. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Solovieva, M.S.; Molchanov, O.A.; Hayakawa, M. Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Phys. Chem. Earth 2004, 29, 589–598. [Google Scholar] [CrossRef]
- Politis, D.Z.; Potirakis, S.M.; Contoyiannis, Y.F.; Biswas, S.; Sasmal, S.; Hayakawa, M. Statistical and criticality analysis of the lower ionosphere prior to the 30 October 2020 Samos (Greece) earthquake (M6.9), based on VLF electromagnetic propagation data as recorded by a new VLF/LF receiver installed in Athens (Greece). Entropy 2021, 23, 676. [Google Scholar] [CrossRef]
- Liu, J.Y. Earthquake precursors observed in the ionospheric F-region. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 187–204. [Google Scholar]
- Liu, J.Y.; Hattori, K.; Chen, Y.I. Application of total electron content derived from the global navigation satellite system for detecting earthquake precursors. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU Geophysical Monograph; Wiley: New York, NY, USA, 2018; pp. 305–317. [Google Scholar]
- Parrot, M.; Li, M. Statistical analysis of the ionospheric density recorded by the DEMETER satellite during seismic activity. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU Geophysical Monograph; Wiley: New York, NY, USA, 2018; pp. 319–328. [Google Scholar]
- Kon, S.; Nishihashi, M.; Hattori, K. Ionospheric anomalies possibly associated with M > 6.0 earthquakes in the Japan area during 1998–2010: Case studies and statistical study. J. Asian Earth Sci. 2011, 41, 410–420. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Zeng, L.; Yan, R.; Parrot, M.; Zhu, K.; Zhima, Z.; Liu, D.; Xu, S.; Lv, F.; Shen, X. Statistical research on seismo-ionospheri ion density enhancements observed via demeter. Atmosphere 2022, 13, 1252. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Piscini, A.; Campuzano, A.; Werneck, V. Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016-2017 seismic sequence in Central Italy. Remote Sens. Environ. 2019, 229, 93–99. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavon-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic field and electron density data analysis from Swarm satellites searching for ionospheric effects by great earthquakes: 12 case studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhao, X.; Yang, D.; Wu, Y.; Li, Q. A study to investigate the relationship between ionospheric disturbances and seismic activity based on Swarm satellite data. Phys. Earth Planet Inter. 2021, 323, 106826. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwiredi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient effects in atmosphere and ionosphere preceding the 2015 M7.8 and M7.3 Gorkha-Nepan earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Sasmal, S.; Chowdhury, S.; Kundu, S.; Politis, D.Z.; Potirakis, S.M.; Balasis, G.; Hayakawa, M.; Chakrabarti, S.K. Pre-seismic irregularities during the 2020 Samos (Greece) earthquake (M = 6.9) as investigated from multi-parameter approach by ground and space-based techniques. Atmosphere 2021, 12, 1059. [Google Scholar] [CrossRef]
- Hayakawa, M.; Izutsu, J.; Schekotov, A.; Yang, S.S.; Solovieva, M.; Budilova, E. Lithosphere-atmosphere-ionosphere coupling effects based on multiparameter precursor observations for February-March 2021 earthquakes (M~7) in the offshore of Tohoku area of Japan. Geosciences 2021, 11, 481. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-parameter observation of seismogenic phenomena related to the Tokyo earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- Ghamry, E.; Mohamed, E.K.; Sekertikin, A.; Fathy, A. Investigation of multiple earthquake precursors before large earthquakes: A case study of 25 April 2015 Nepal. J. Atmos. Sol.-Terr. Phys. 2023, 242, 105982. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P.; Hobara, Y. Seismogenic ULF/ELF wave phenomena: Recent advances and future perspectives. Open J. Earthq. Res. 2023, 12, 45–113. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P. Sesimogenic effects in ULF/ELF/VLF electromagnetic waves. Int. J. Electron. Appl. Res. 2019, 6, 1–86. [Google Scholar]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.H.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.Y.; Yoshida, S. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. Space Phys. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Hirrooka, M.; Zhuang, J.; Chen, C.H.; Febriani, F.; Yamaguchi, H.; YoshIno, C.; Liu, J.Y.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int. 2017, 208, 482–490. [Google Scholar] [CrossRef]
- Masci, F.; Thomas, J. Are there any new findings in the research for ULF magnetic precursors to earthquakes? J. Geophys. Res. Space Phys. 2015, 120, 10289–10304. [Google Scholar] [CrossRef] [Green Version]
- Schekotov, A.; Hayakawa, M. ULF/ELF Electromagnetic Phenomena for Short-term Earthquake Prediction; LAP Lambert Academic Publishing: Beau Bassin, Mauritius, 2017; p. 102. [Google Scholar]
- Singh, V.; Hobara, Y. Simultaneous study of VLF/ULF anomalies associated with earthquakes in Japan. Open J. Earthq. Res. 2020, 9, 201–215. [Google Scholar] [CrossRef]
- Yusof, K.A.; Abdallah, M.; Hamid, N.S.A.; Ahadi, S. Correlations between earthquake properties and characteristics of possible ULF geomagnetic precursor over multiple earthquakes. Universe 2022, 7, 20. [Google Scholar] [CrossRef]
- Stanica, D.A.; Stanica, D. ULF pre-seismic geomagnetic anomalous 2017, A signal related to Mw8.1 offshore Chiapas earthquake, Mexico on 8 September 2017. Entropy 2019, 21, 29. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, F.; Wang, J.; Luo, Q.; Jin, T. Study on the ULF geomagnetic field generated by earth currents relating to large earthquakes. Radio Sci. 2019, 56, e2019RS006992. [Google Scholar] [CrossRef]
- Warden, S.; MacLean, L.; Lemon, J.; Schneider, D. Statistical analysis of pre-earthquake electromagnetic anomalies in the ULF range. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027955. [Google Scholar] [CrossRef]
- Feng, L.; Qu, R.; Ji, Y.; Zhu, W.; Zhu, Y.; Feng, Z.; Fan, W.; Guan, Y.; Xie, C. Multistationary geomagnetic vertical intensity polarization anomalies for predicting M ≥ 6 earthquakes in Qinghai, China. Appl. Sci. 2022, 12, 8888. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Ma, Z.; Teng, C.; Li, Z.; Shao, Z. Ultra-low frequency electromagnetic emissions registered during the 21 May 2021 Yangbi Ms 6.4 earthquake in China. Nat. Sci. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Bulusu, J.; Arora, K.; Singh, S.; Edara, A. Simultaneous electric, magnetic and ULF anomalies associated with moderate earthquakes in Kumaun Himalaya. Nat. Hazards 2023, 116, 3925–3955. [Google Scholar] [CrossRef]
- Heavin, W.D.; Kappler, K.; Yang, L.; Fan, M.; Hickey, J.; Lemon, J.; MacLean, L.; Bleier, T.; Riley, P.; Schneider, D. Case-concept study on a decade of ground-based magnetometers in California reveals modest signal 24-72 h prior to earthquakes. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024109. [Google Scholar] [CrossRef]
- Kasdi, A.S.; Bouzid, A.; Hamoudi, M.; Abtout, A. Singular spectral analysis applied to magnetotelluric time series collected at Medea geomagnetic observatory (Algeria)- an attempt to discriminate earthquake-related signal. Arab. J. Geosci. 2022, 15, 1178. [Google Scholar] [CrossRef]
- Moore, G.W. Magnetic disturbances preceding the 1964 Alaska earthquake. Nature 1964, 203, 508–509. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Kopytenko, Y.A.; Matiashvily, T.G.; Voronov, P.M.; Kopytenko, E.A.; Molchanov, O.A. Detection of ULF emission connected with the Spitak earthquake and its aftershock activity based on geomagnetic pulsations data at Dusheti and Vardziya observatories. Phys. Earth Planet. Inter. 1990, 77, 85–95. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Kopytenko, Y.A.; Voronov, P.M.; Kopytenko, E.A.; Matiashvily, T.G.; Fraser-Smith, A.C.; Bernardi, A. Results of ULF magnetic field measurements near the epicenters of the Spitac (Ms = 6.9) and Loma Prieta (Ms = 7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. 1992, 19, 1495–1498. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hattori, K.; Ohta, K. Monitoring of ULF (ultra low frequency) geomagnetic variations associated with earthquakes. Sensors 2007, 7, 1108–1122. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Hobara, Y.; Ohta, K.; Hattori, K. The ultra-low-frequency magnetic disturbances associated with earthquakes. Earthq. Sci. 2011, 24, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Hattori, K. ULF geomagnetic changes associated with large earthquakes. Terr. Atmos. Ocean. Sci. 2004, 15, 329–360. [Google Scholar] [CrossRef] [Green Version]
- Hattori, K. ULF geomagnetic changes associated with earthquakes. In Earthquake Prediction Studies: Seismo Electromagnetics; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 2013; pp. 129–152. [Google Scholar]
- Shrivastava, A. Are pre-seismic ULF electromagnetic emissions as a reliable earthquake prediction? Curr. Sci. 2014, 107, 596–600. [Google Scholar]
- Piriyev, R. Electromagnetic earthquake precursory signatures in the ULF range: Perspectives of the studies. Geophysics 2021, 1, 48–57. [Google Scholar] [CrossRef]
- Currie, J.L.; Waters, C.L. On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J. Geophys. Res. Space Phys. 2014, 119, 992–1003. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Schekotov, A.Y.; Fedorov, E.N.; Belyaev, G.G.; Gordeev, E.E. Preseismic ULF electromagnetic effect from observation at Kamchatka. Nat. Hazards Earth Syst. Sci. 2003, 3, 1–7. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Schekotov, A.Y.; Fedorov, E.; Belyaev, G.; Solovieva, M.S.; Hayakawa, M. Preseismic ULF effect and possible interpretation. Ann. Geophys. 2004, 47, 119–131. [Google Scholar]
- Schekotov, A.; Molchanov, O.; Hattori, K.; Fedorov, E.; Gladyshev, V.A.; Belyaev, G.G.; Chebrov, V.; Sinitsin, V.; Gordeev, E.; Hayakawa, M. Seismo-ionospheric depression of the ULF geomagnetic fluctuations at Kamchatka and Japan. Phys. Chem. Earth 2006, 31, 313–318. [Google Scholar] [CrossRef]
- Schekotov, A.; Fedorov, E.; Hobara, Y.; Hayakawa, M. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. J. Atmos. Electr. 2013, 33, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Schekotov, A.; Fedorov, E.; Hobara, Y. On the ultra-low-frequency magnetic field depression for three huge oceanic earthquakes in Japan and in the Kurile islands. Earth Sci. Res. 2013, 2, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Rozhnoi, A.; Solovieva, M.; Hobara, Y.; Ohta, K. The lower ionospheric perturbation as a precursor to the 11 March 2011 Japan earthquake, Geomatics. Nat. Hazards Risk 2013, 4, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Schekotov, A.; Chebrov, D.; Hayakawa, M.; Belyaev, G.; Berseneva, N. Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. Nat. Hazards 2020, 100, 735–755. [Google Scholar] [CrossRef]
- Schekotov, A.; Fedorov, E.; Molchanov, O.A.; Hayakawa, M. Low frequency electromagnetic precursors as a prospect for earthquake prediction. In Earthquake Prediction Studies: Seismo Electromagnetics; Hayakawa, M., Ed.; TERRAPUB: Tokyo, Japan, 2013; pp. 81–99. [Google Scholar]
- Dobrovolsky, I.R.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1998, 117, 1025–1044. [Google Scholar] [CrossRef]
- Ruzhin, Y.Y.; Depueva, A.K. Seismoprecursors in space as plasma and wave anomalies. J. Atmos. Electr. 1996, 16, 271–288. [Google Scholar] [CrossRef]
- Bowman, D.D.; Ouillon, G.; Sammis, C.G.; Sornett, A.; Sornett, D. An observational test of the critical earthquake concept. J. Geophys. Res. Solid Earth 1998, 103, 24359–24372. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Rozhnoi, A.; Solovieva, M.; Hayakawa, M. Characteristic variations of VLF/LF signals during a high seismic activity in Japan in November 2016. Open J. Earthq. Res. 2017, 6, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Kundu, S.; Gosh, S.; Hayakawa, M.; Schekotov, A.; Potirakis, S.M.; Chakrabarti, S.K. Direct and indirect evidence of pre-seismic electromagnetic emissions associated with two large earthquakes in Japan. Nat. Hazards 2022, 112, 2403–2432. [Google Scholar] [CrossRef]
- Biswas, S.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M. Preseismic perturbations and their inhomogeneity as computed from ground- and space-based investigation during the 2016 Fukushima earthquake. J. Sens. 2023, 2023, 7159204. [Google Scholar] [CrossRef]
- Politis, Z.; Potirakis, S.M.; Kundu, S.; Chowdhury, S.; Sasmal, S.; Hayakawa, M. Critical dynamics in stratospheric potential energy variations prior to significant (M ≥ 6.7) earthquakes. Symmetry 2022, 14, 1939. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Potirakis, P.M.; Eftaxias, K. Critical features in ULF magnetic fields prior to the 2011 Tohoku earthquake. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2015, 91, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Potirakis, P.M.; Eftaxias, K.; Schekotov, A.; Yamaguchi, H.; Hayakawa, M. Critical features in ultra-low frequency magnetic fields prior to the 2013 Kobe earthquake. Ann. Geophys. 2016, 59, S0317. [Google Scholar]
- Mizutani, H.; Ishido, T. A new interpretation of magnetic field variation associated with Matsushiro earthquakes. J. Geomag. Geoelectr. 1976, 28, 179–188. [Google Scholar] [CrossRef]
- Mizutani, H.; Ishiso, T.; Yokokura, S. Ohnishi, Electrokinetic phenomena associated with earthquakes. Geophys. Res. Lett. 1976, 3, 365–368. [Google Scholar] [CrossRef]
- Fitterman, D.V. Theory of electrokinetic magnetic anomalies in faulted half-space. J. Geophys. Res. 1979, 84, 6031–6040. [Google Scholar] [CrossRef]
- Fenoglio, M.A.; Johnston, M.J.S.; Byerlee, J.D. Magnetic and electric fields associated with changes in high pore pressure in fault zone -application to the Loma Prieta ULF emissions. J. Geophys. Res. Solid Earth 1995, 100, 12951–12958. [Google Scholar] [CrossRef]
- Dudkin, F.; De Santis, A.; Korepanov, V. Active EM souding for early warning of earthquakes and volcanic eruption. Phys. Earth Planet. Inter. 2003, 139, 187–195. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Generation of ULF electromagnetic emissions by microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Tzanis, A.; Vallianatos, F. A.; Vallianatos, F. A physical model of electric earthquake precursors due to crack propagation and the motion of charged edge dislocations. In Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Hayakawa, M., Molchanov, O.A., Eds.; TERRAPUB: Tokyo, Japan, 2002; pp. 117–130. [Google Scholar]
- Surkov, V.; Molchanov, O.A.; Hayakawa, M. Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismogenic phenomena during microfracturing. J. Atmos. Sol.-Terr. Phys. 2003, 65, 31–46. [Google Scholar] [CrossRef]
- Kundu, S.; Chowdhury, S.; Ghosh, S.; Sasmal, S.; Politis, D.; Potirakis, S.M.; Yang, S.S.; Chakrabarti, S.K.; Hayakawa, M. Seismogenic anomalies in Atmospheric Gravity Waves observed from SABER/TIMED satellite during large earthquakes. J. Sens. 2022, 2022, 3201104. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Fedorov, E.N.; Schekotov, A.V.; Molchanov, O.A.; Hayakawa, M. Depression of the ULF pulsation related to ionospheric irregularities. Ann. Geophys. 2004, 47, 192–198. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; NASDA/UEC Team. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere-atmosphere-ionosphere coupling (LAIC) model-a unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yaschenko, A.K.; Hayakawa, M. Formation mechanism of the lower-ionospheric disturbances by the atmospheric electric current over a seismic region. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1260–1268. [Google Scholar] [CrossRef]
- Sorokin, V.; Hayakawa, M. Plasma and electromagnetic effects caused by the seismic-related disturbances of electric current in the global circuit. Mod. Appl. Sci. 2014, 8, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.G.; Alpin, K.L.; Rycroft, M.J. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Sol.-Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.A.; Hayakawa, M.; Miyaki, K. VLF/LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling. Adv. Polar Up. Atmos. Res. 2001, 15, 146–158. [Google Scholar]
- Miyaki, K.; Hayakawa, M.; Molchanov, O.A. The role of gravity waves in the lithosphere—ionosphere coupling, as revealed from the subionospheric LF propagation data. In Seismo Electromagnetics: Lithosphere—Atmosphere—Ionosphere Coupling; TERRAPUB: Tokyo, Japan, 2002; pp. 229–232. [Google Scholar]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.A.; Korepanov, V. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. J. Atmos. Electr. 2011, 31, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.A.; Mazhaeva, O.A.; Goliavin, A.N.; Hayakawa, M. Observations by the intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes. Ann. Geophys. 1993, 11, 431–440. [Google Scholar]
- Freund, F. Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 41–96. [Google Scholar]
- Denisenko, V.V. Estimate for the strength of the electric field penetration from the Earth’s surface to the ionosphere. Russ. J. Phys. Chem. 2015, 70, 2251–2253. [Google Scholar]
- Prokhorov, B.E.; Zolotov, O.V. Comment on “An improved coupling model for the lithosphere-atmosphere-ionosphere coupling system” by Kuo et al. (2014). J. Geophys. Res. Space Phys. 2017, 122, 4865–4868. [Google Scholar] [CrossRef] [Green Version]
- Yasuoka, Y. Radon anomalies prior to earthquakes. In The Frontier of Earthquake Prediction Studies; Hayakawa, M., Ed.; Nihon-Senmontosho-Shuppan: Tokyo, Japan, 2012; pp. 410–427. (In Japanese) [Google Scholar]
- Korepanov, V.; Hayakawa, M.; Yampolski, Y.; Lizunov, G. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth Parts A/B/C 2009, 34, 6–7, Special issue, Electromagnetic Phenomena Associated with Earthquakes and Volcanoes. Edited by Hayakawa, M.; Liu, J.Y.; Hattori, K.; Telesca, L. pp. 485–495. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Endoh, T.; Hobara, Y.; Asai, S. The observation of Doppler shifts of subionospheric LF signal in possible association with earthquakes. J. Geophys. Res. 2012, 117, A09304. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Korepanov, V.; Kasahara, Y.; Hobara, Y.; Hayakawa, M. An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations. J. Atmos. Electr. 2013, 33, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Yang, S.S.; Hayakawa, M. Gravity wave activity in the stratosphere before the 2011 Tohoku earthquake as the mechanism of lithosphere-atmosphere-ionosphere coupling. Entropy 2020, 22, 110. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Sun, Y.Y.; Zhang, X.; Gao, Y.; Wang, F.; Lin, K.; Tang, C.C.; Huang, R.; Xu, R.; Liu, J.; et al. Resonant signals in the lithosphere-atmosphere-ionosphere coupling. Sci. Rep. 2022, 12, 14587. [Google Scholar] [CrossRef]
- Xiong, P.; Long, C.; Zhou, H.; Battiston, R.; Zhang, X.; Shen, X. Identification of electromagnetic pre-earthquake perturbations from the DEMETER data by machine learning. Remote Sens. 2020, 12, 3643. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, M.; Schekotov, A.; Yamaguchi, H.; Hobara, Y. Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling. Atmosphere 2023, 14, 1255. https://doi.org/10.3390/atmos14081255
Hayakawa M, Schekotov A, Yamaguchi H, Hobara Y. Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling. Atmosphere. 2023; 14(8):1255. https://doi.org/10.3390/atmos14081255
Chicago/Turabian StyleHayakawa, Masashi, Alexander Schekotov, Hiroki Yamaguchi, and Yasuhide Hobara. 2023. "Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling" Atmosphere 14, no. 8: 1255. https://doi.org/10.3390/atmos14081255
APA StyleHayakawa, M., Schekotov, A., Yamaguchi, H., & Hobara, Y. (2023). Observation of Ultra-Low-Frequency Wave Effects in Possible Association with the Fukushima Earthquake on 21 November 2016, and Lithosphere–Atmosphere–Ionosphere Coupling. Atmosphere, 14(8), 1255. https://doi.org/10.3390/atmos14081255