Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seismic Data
2.2. Oceanic Data
2.3. Air Temperature
2.4. Electron Density
2.5. Tidal Force and Anomaly Detection
- Thermal anomalies emerge from the bottom. As the altitude increases, thermal anomalies tend to diminish.
- The distribution of thermal anomalies at each level coincides with the fault pattern.
- Thermal anomalies spread on the time scale, and therefore thermal anomalies should last two consecutive days at least.
3. Results
3.1. Seismic Thermal Anomalies
3.2. Sea Potential Temperature (SPT) and Sea Water Salinity (SWS)
3.2.1. Identification of Abnormal Upwelling
3.2.2. Confutation Analysis
3.3. Vertical Electron Density Variation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Davidenko, D.; Pulinets, S. Deterministic variability of the ionosphere on the eve of strong (M ≥ 6) earthquakes in the regions of Greece and Italy according to long-term measurements data. Geomagn. Aeron. 2019, 59, 493–508. [Google Scholar] [CrossRef]
- Shah, M.; Tariq, M.A.; Ahmad, J.; Naqvi, N.A.; Jin, S. Seismo ionospheric anomalies before the 2007 M7. 7 Chile earthquake from GPS TEC and DEMETER. J. Geodyn. 2019, 127, 42–51. [Google Scholar] [CrossRef]
- Choudhury, S.; Dasgupta, S.; Saraf, A.K.; Panda, S. Remote sensing observations of pre-earthquake thermal anomalies in Iran. Int. J. Remote Sens. 2006, 27, 4381–4396. [Google Scholar] [CrossRef]
- Cui, Y.; Ouzounov, D.; Hatzopoulos, N.; Sun, K.; Zou, Z.; Du, J. Satellite observation of CH4 and CO anomalies associated with the Wenchuan MS 8.0 and Lushan MS 7.0 earthquakes in China. Chem. Geol. 2017, 469, 185–191. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K. Comparative study of charged particle precipitation from Van Allen radiation belts as observed by NOAA satellites during a land earthquake and an ocean earthquake. Adv. Space Res. 2019, 64, 719–732. [Google Scholar] [CrossRef]
- Singh, R.P.; Dey, S.; Bhoi, S.; Sun, D.; Cervone, G.; Kafatos, M. Anomalous increase of chlorophyll concentrations associated with earthquakes. Adv. Space Res. 2006, 37, 671–680. [Google Scholar] [CrossRef]
- Genzano, N.; Filizzola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020108. [Google Scholar] [CrossRef]
- Adil, M.A.; Şentürk, E.; Pulinets, S.A.; Amory-Mazaudier, C. A lithosphere–atmosphere–ionosphere coupling phenomenon observed before M 7.7 Jamaica Earthquake. Pure Appl. Geophys. 2021, 178, 3869–3886. [Google Scholar] [CrossRef]
- Mehdi, S.; Shah, M.; Naqvi, N.A. Lithosphere atmosphere ionosphere coupling associated with the 2019 M w 7.1 California earthquake using GNSS and multiple satellites. Environ. Monit. Assess. 2021, 193, 501. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw> 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Shen, X. Land–atmosphere–meteorological coupling associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1267–1284. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Kuo, C.; Huba, J.; Joyce, G.; Lee, L. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. Space Phys. 2011, 116, A10317. [Google Scholar] [CrossRef]
- Kuo, C.; Lee, L.; Huba, J. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Weiyu, M.; Xuedong, Z.; Liu, J.; Yao, Q.; Zhou, B.; Yue, C.; Kang, C.; Lu, X. Influences of multiple layers of air temperature differences on tidal forces and tectonic stress before, during and after the Jiujiang earthquake. Remote Sens. Environ. 2018, 210, 159–165. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust satellite techniques (RST) for natural and environmental hazards monitoring and mitigation: Theory and applications. In Proceedings of the 2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–6. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Romanov, A.; Romanov, A.; Tsybulya, K.; Davidenko, D.; Kafatos, M.; Taylor, P. Atmosphere-ionosphere response to the M 9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results. Earthq. Sci. 2011, 24, 557–564. [Google Scholar] [CrossRef]
- Xiong, P.; Shen, X. Outgoing longwave radiation anomalies analysis associated with different types of seismic activity. Adv. Space Res. 2017, 59, 1408–1415. [Google Scholar] [CrossRef]
- Tramutoli, V.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Pergola, N. From visual comparison to Robust Satellite Techniques: 30 years of thermal infrared satellite data analyses for the study of earthquake preparation phases. Boll. Geofis. Teor. Appl. 2015, 56, 167–202. [Google Scholar]
- Zhang, X.; Kang, C.; Ma, W.; Ren, J.; Wang, Y. Study on thermal anomalies of earthquake process by using tidal-force and outgoing-longwave-radiation. Therm. Sci. 2018, 22, 767–776. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Q.; Wang, Z.; Lu, X.; Hu, D. Temperature variations in multiple air layers before the Mw 6.2 2014 Ludian earthquake, Yunnan, China. Remote Sens. 2021, 13, 884. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Yu, Y.; Zhang, S. Atmospheric anomaly analysis related to Ms> 6.0 earthquakes in China during 2020–2021. Remote Sens. 2021, 13, 4052. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Zhang, S.; Dai, R. Analysis of Potential Precursory Pattern at Earth Surface and the Above Atmosphere and Ionosphere Preceding Two Mw≥ 7 Earthquakes in Mexico in 2020–2021. Earth Space Sci. 2022, 9, e2022EA002267. [Google Scholar] [CrossRef]
- Heaton, T.H. Tidal triggering of earthquakes. Geophys. J. Int. 1975, 43, 307–326. [Google Scholar] [CrossRef]
- Su, Y.-C.; Liu, J.-Y.; Chen, S.-P.; Tsai, H.-F.; Chen, M.-Q. Temporal and spatial precursors in ionospheric total electron content of the 16 October 1999 Mw7. 1 Hector Mine earthquake. J. Geophys. Res. Space Phys. 2013, 118, 6511–6517. [Google Scholar] [CrossRef]
- Yan, X.; Sun, Y.; Yu, T.; Liu, J.Y.; Qi, Y.; Xia, C.; Zuo, X.; Yang, N. Stratosphere perturbed by the 2011 Mw9. 0 Tohoku earthquake. Geophys. Res. Lett. 2018, 45, 10050–10056. [Google Scholar] [CrossRef]
- Ahmed, J.; Shah, M.; Zafar, W.A.; Amin, M.A.; Iqbal, T. Seismoionospheric anomalies associated with earthquakes from the analysis of the ionosonde data. J. Atmos. Sol. Terr. Phys. 2018, 179, 450–458. [Google Scholar] [CrossRef]
- Dey, S.; Singh, R. Surface latent heat flux as an earthquake precursor. Nat. Hazards Earth Syst. Sci. 2003, 3, 749–755. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Okada, Y.; Mukai, S.; Singh, R. Changes in atmospheric aerosol parameters after Gujarat earthquake of January 26, 2001. Adv. Space Res. 2004, 33, 254–258. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Ant Colony Optimization detects anomalous aerosol variations associated with the Chile earthquake of 27 February 2010. Adv. Space Res. 2015, 55, 1754–1763. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, M.; Jing, F. Sea temperature variation associated with the 2021 Haiti M w 7.2 earthquake and possible mechanism. Geomat. Nat. Hazards Risk 2022, 13, 2840–2863. [Google Scholar] [CrossRef]
- Alvan, H.V.; Azad, F.H.; Omar, H.B. Chlorophyll concentration and surface temperature changes associated with earthquakes. Nat. Hazards 2012, 64, 691–706. [Google Scholar] [CrossRef]
- Mohamed, E.K.; Elrayess, M.; Omar, K. Evaluation of thermal anomaly preceding northern red sea earthquake, the 16th June 2020. Arab. J. Sci. Eng. 2022, 47, 7387–7406. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Qi, Y.; Ding, Y. Very-Short-Term Variations of Sea Surface and Atmospheric Parameters Before the Ms 6.2 Zhangbei (China) Earthquake in 1998. Front. Environ. Sci. 2022, 10, 906455. [Google Scholar] [CrossRef]
- Lellouche, J.; Legalloudec, O.; Regnier, C.; Levier, B.; Greiner, E.; Drevillon, M. Quality Information Document for Globa L Sea Physical Analysis and Forecasting Product, Global_Analysis_ForecaST_PHY_001_024; EU Copernicus Marine Service European Union: Brussels, Belgium, 2019; Volume 81. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V. The NCEP/NCAR 50-year reanalysis: Documentation and monthly-means CD-ROM. Bull. Am. Meteorol. Soc 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Chen, C.-H.; Lin, C.-Y. Detection of vertical changes in the ionospheric electron density structures by the radio occultation technique onboard the FORMOSAT-7/COSMIC2 mission over the eruption of the Tonga underwater volcano on 15 January 2022. Remote Sens. 2022, 14, 4266. [Google Scholar] [CrossRef]
- Davies, K. Ionospheric Radio; IET: London, UK, 1990. [Google Scholar]
- Wang, J.; Sun, Y.Y.; Yu, T.; Wang, Y.; Mao, T.; Yang, H.; Xia, C.; Yan, X.; Yang, N.; Huang, G. Convergence effects on the ionosphere during and after the annular solar eclipse on 21 June 2020. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030471. [Google Scholar] [CrossRef]
- Kilston, S.; Knopoff, L. Lunar–solar periodicities of large earthquakes in southern California. Nature 1983, 304, 21–25. [Google Scholar] [CrossRef]
- Dobrovolsky, I.; Zubkov, S.; Miachkin, V. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Wu, Y.; Wang, C. Precursors for rock fracturing and failure—Part II: IRR T-Curve abnormalities. Int. J. Rock Mech. Min. Sci. 2006, 43, 483–493. [Google Scholar] [CrossRef]
- Qu, T.; Mitsudera, H.; Yamagata, T. Intrusion of the north Pacific waters into the South China Sea. J. Geophys. Res. Ocean. 2000, 105, 6415–6424. [Google Scholar] [CrossRef]
- Dong, L.; Qi, J.; Yin, B.; Zhi, H.; Li, D.; Yang, S.; Wang, W.; Cai, H.; Xie, B. Reconstruction of Subsurface Salinity Structure in the South China Sea Using Satellite Observations: A LightGBM-Based Deep Forest Method. Remote Sens. 2022, 14, 3494. [Google Scholar] [CrossRef]
- Yi, D.L.; Melnichenko, O.; Hacker, P.; Potemra, J. Remote sensing of sea surface salinity variability in the South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2020JC016827. [Google Scholar] [CrossRef]
- Tronin, A.A.; Hayakawa, M.; Molchanov, O.A. Thermal IR satellite data application for earthquake research in Japan and China. J. Geodyn. 2002, 33, 519–534. [Google Scholar] [CrossRef]
- Panda, S.; Choudhury, S.; Saraf, A.K.; Das, J.D. MODIS land surface temperature data detects thermal anomaly preceding 8 October 2005 Kashmir earthquake. Int. J. Remote Sens. 2007, 28, 4587–4596. [Google Scholar] [CrossRef]
- Fu, C.-C.; Lee, L.-C.; Ouzounov, D.; Jan, J.-C. Earth’s outgoing longwave radiation variability prior to M≥ 6.0 earthquakes in the Taiwan area during 2009–2019. Front. Earth Sci. 2020, 8, 364. [Google Scholar] [CrossRef]
- Zoran, M. MODIS and NOAA-AVHRR l and surface temperature data detect a thermal anomaly preceding the 11 March 2011 Tohoku earthquake. Int. J. Remote Sens. 2012, 33, 6805–6817. [Google Scholar] [CrossRef]
- Genzano, N.; Filizzola, C.; Paciello, R.; Pergola, N.; Tramutoli, V. Robust Satellite Techniques (RST) for monitoring earthquake prone areas by satellite TIR observations: The case of 1999 Chi-Chi earthquake (Taiwan). J. Asian Earth Sci. 2015, 114, 289–298. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, S.; De Santis, A.; Qin, K.; Di Mauro, R.; Liu, S.; Rainone, M.L. Geosphere coupling and hydrothermal anomalies before the 2009 M w 6.3 L’Aquila earthquake in Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 1859–1880. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, H.; Li, H. Temperature changing process of the Hokkaido (Japan) earthquake on 25 September 2003. Nat. Hazards Earth Syst. Sci. 2008, 8, 985–989. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A Multi-parametric climatological approach to study the 2016 Amatrice–Norcia (Central Italy) earthquake preparatory phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 234. [Google Scholar]
- Hu, J.; Wang, X.H. Progress on upwelling studies in the China seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- Liu, J.; Mao, K.; Yan, M.; Zhang, X.; Shi, Y. The general distribution characteristics of Luzon cold eddy. Mar. Forecast. 2006, 23, 39–44. [Google Scholar]
- Qu, T. Upper-layer circulation in the South China Sea. J. Phys. Oceanogr. 2000, 30, 1450–1460. [Google Scholar] [CrossRef]
- Udarbe-Walker, M.J.B.; Villanoy, C.L. Structure of potential upwelling areas in the Philippines. Deep Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 1499–1518. [Google Scholar] [CrossRef]
- Hwang, C.; Chen, S.A. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J. Geophys. Res. Ocean. 2000, 105, 23943–23965. [Google Scholar] [CrossRef]
- Delcroix, T.; Radenac, M.H.; Cravatte, S.; Alory, G.; Gourdeau, L.; Léger, F.; Singh, A.; Varillon, D. Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck Seas. J. Geophys. Res. Ocean. 2014, 119, 2642–2657. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef]
- Marchetti, D.; Akhoondzadeh, M. Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw= 8.2) earthquake of 08 September 2017. Adv. Space Res. 2018, 62, 614–623. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed]
- Bondur, V.; Garagash, I.; Gokhberg, M.; Lapshin, V.; Nechaev, Y.V.; Steblov, G.; Shalimov, S. Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients. Dokl. Earth Sci. 2007, 414, 666–669. [Google Scholar] [CrossRef]
- Shinagawa, H.; Iyemori, T.; Saito, S.; Maruyama, T. A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004. Earth Planets Space 2007, 59, 1015–1026. [Google Scholar] [CrossRef]
- Astafyeva, E. Ionospheric detection of natural hazards. Rev. Geophys. 2019, 57, 1265–1288. [Google Scholar] [CrossRef]
Date | Time (UTC) | Latitude | Longitude | The Altitude of the Epicenter (m) | Depth (km) | Mw |
---|---|---|---|---|---|---|
27 July 2022 | 00:43:27 | 17.5207°N | 120.8181°E | 433 | 34 | 7.0 |
10 September 2022 | 23:47:00 | 6.2949°S | 146.5025°E | 584 | 116 | 7.6 |
Mw = 7.0 Earthquake | Mw = 7.6 Earthquake | |
---|---|---|
Duration of seismic thermal anomalies | 28 May–29 May 2022 | 11 July–13 July 2022 |
11 June–12 June 2022 | 20 July–23 July 2022 | |
25 June–26 June 2022 | 1 August–6 August 2022 | |
3 July–5 July 2022 | 9 August–10 August 2022 | |
9 July–11 July 2022 | 13 August–16 August 2022 | |
22 July–27 July 2022 | 21 August–22 August 2022 | |
12 August–15 August 2022 | 2 September–20 September 2022 | |
29 September–4 October 2022 |
Mw = 7.0 Earthquake | Mw = 7.6 Earthquake | |
---|---|---|
First pattern | 31 May–10 June 2022 | 28 July–2 August 2022 |
16 June–21 June 2022 | 11 August–16 August 2022 | |
29 June–4 July 2022 | 22 August–3 September 2022 | |
13 July–20 July 2022 | 24 September–4 October 2022 | |
29 July–5 August 2022 | ||
13 August–22 August 2022 | ||
Second pattern | 22 June–24 June 2022 | 15 July–19 July 2022 |
21 July–28 July 2022 | 24 July–27 July 2022 | |
6 August–8 August 2022 | 17 August–21 August 2022 | |
15 September–23 September 2022 | ||
6 October 2022 | ||
Third pattern | 27 May–30 May 2022 | 10 July–14 July 2022 |
11 June–15 June 2022 | 20 July–23 July 2022 | |
25 June–28 June 2022 | 3 August–10 August 2022 | |
5 July–12 July 2022 | 4 September–14 September 2022 | |
9 August–12 August 2022 | 4 October–5 October 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wang, L.; Chen, S. Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea. Remote Sens. 2023, 15, 4392. https://doi.org/10.3390/rs15184392
Xu X, Wang L, Chen S. Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea. Remote Sensing. 2023; 15(18):4392. https://doi.org/10.3390/rs15184392
Chicago/Turabian StyleXu, Xitong, Lei Wang, and Shengbo Chen. 2023. "Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea" Remote Sensing 15, no. 18: 4392. https://doi.org/10.3390/rs15184392
APA StyleXu, X., Wang, L., & Chen, S. (2023). Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea. Remote Sensing, 15(18), 4392. https://doi.org/10.3390/rs15184392