The Analysis of Ionospheric TEC Anomalies Prior to the Jiuzhaigou Ms7.0 Earthquake Based on BeiDou GEO Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
3. Analysis Results
3.1. The Impacts of Ionospheric Background Environment
3.2. TEC Time Series Analysis of Stations near the Epicenter of the Earthquake
- The calculation of abnormal values (Ab) was carried out using Equation (8), which can highlight the anomalies. Values exceeding M + 1.5IQR were considered as positive anomalies, while values below M − 1.5IQR were negative anomalies. For values exceeding the threshold, we calculated the relative change (Ab%) between the observed data (Obs) and the threshold. We assigned the value of 0 to those that do not exceed the threshold value.
- To eliminate the interference of abrupt jumps and ensure that anomalies have a certain duration, disturbances with a non-zero Ab% value persisting for over 30 min were highlighted.
3.3. Spatial and Temporal Distribution of TEC Anomalies
4. Discussion
5. Conclusions
- In the context of relatively stable solar and geomagnetic activity, ionospheric disturbances were observed near the epicenter of the Jiuzhaigou earthquake—specifically, 10 to 11 days, 6 to 7 days, and 1 to 9 h before the earthquake.
- On the spatial distribution, the anomalous TEC data prior to the earthquake were predominantly located in the southeast and southwest directions from the epicenter, with the disturbances primarily concentrated within a range of 2500 km.
- Comparing the perturbation information of radon gas, atmospheric electric field, and TEC time–frequency with the TEC perturbation in terms of time and characteristics, it was concluded that both the chemical and acoustic pathways may play important roles in the gestation process of the Jiuzhaigou Ms7.0 earthquake.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.T. Earthquake prediction: Progress, difficulties and prospect. Seismol. Geomagn. Obs. Res. 2007, 28, 1–24. [Google Scholar]
- Teng, J.W. Opportunity challenge and developing frontiers: Geophysics in 21st century. Prog. Geophys. 2004, 19, 208–215. [Google Scholar]
- Kanamori, H. Earthquake prediction: An overview. Int. Geophys. 2003, 81, 1205–1216. [Google Scholar]
- Davies, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Ding, J.H.; Shen, X.H.; Pan, W.Y.; Zhang, J.; Yu, S.R.; Li, G.; Guan, H.P. Seismo-electromagnetism precursor research progress. Chin. J. Radio Sci. 2006, 21, 791–801. [Google Scholar]
- Le, H.J.; Liu, J.; Zhao, B.Q.; Liu, L.B. Recent progress in ionospheric earthquake precursor study in China: A brief review. J. Asian Earth Sci. 2015, 114, 420–430. [Google Scholar] [CrossRef]
- Cai, J.T.; Zhao, G.Z.; Zhan, Y.; Tang, J.; Chen, X.B. The study on ionospheric disturbances during earthquakes. Prog. Geophys. 2007, 22, 695–701. [Google Scholar]
- Li, J.Z.; Wang, L.H. Analysis of daily geomagnetic variation anomalies before the Jiuzhaigou 7.0, Jinghe 6.6, and Aksu 5.7 earthquakes. Recent Dev. World Seismol. 2019, 08, 152–153. [Google Scholar]
- Nayak, K.; Romero-Andrade, R.; Sharma, G.; Zavala, J.L.C.; Urias, C.L.; Trejo Soto, M.E.; Aggarwal, S.P. A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection: A case study for the Colima earthquake of 7.7 Mw, Mexico. Acta Geod. Geophys. 2023, 58, 515–538. [Google Scholar] [CrossRef]
- Ruan, Q.; Yuan, X.; Liu, H.; Ge, S. Study on co-seismic ionospheric disturbance of Alaska earthquake on July 29, 2021 based on GPS TEC. Sci. Rep. 2023, 13, 10679. [Google Scholar] [CrossRef]
- Pulinets, S.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Zhang, X.M.; Shen, X.H. The development in seismo-ionospheric coupling mechanism. Prog. Earthq. Sci. 2022, 52, 193–202. [Google Scholar]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef]
- Singh, O.P.; Chauhan, V.; Singh, V.; Singh, B. Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006–November 2007. Phys. Chem. Earth Parts A/B/C 2009, 34, 479–484. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw > 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 1–9. [Google Scholar] [CrossRef]
- Shah, M.; Jin, S. Pre-seismic ionospheric anomalies of the 2013 Mw = 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar] [CrossRef]
- Tariq, M.A.; Shah, M.; Hernández-Pajares, M.; Iqbal, T. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Space Res. 2019, 63, 2088–2099. [Google Scholar] [CrossRef]
- Ghimire, B.D.; Chapagain, N.P. Ionospheric Anomalies due to Nepal Earthquake-2015 as Observed from GPS-TEC Data. Geomagn. Aeron. 2022, 62, 460–473. [Google Scholar] [CrossRef]
- Takahashi, H.; Wrasse, C.M.; Denardini, C.M.; Pádua, M.B.; De Paula, E.R.; Costa, S.M.A.; Otsuka, Y.; Shiokawa, K.; Monico, J.F.G.; Ivo, A.; et al. Ionospheric TEC Weather Map over South America. Space Weather 2016, 14, 937–949. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, K.; Wang, C.; Zhang, T.; Fan, L.; Hu, Z.; Shi, C.; Jing, G. Near real-time modeling of global ionospheric vertical total electron content using hourly IGS data. Chin. J. Aeronaut. 2021, 34, 386–395. [Google Scholar] [CrossRef]
- Chen, X.L.; Li, S.L.; Liu, J.; Liu, Z.M. An Earthquake Emergency Command System Based on BeiDou Satellite Communication. China Earthq. Eng. J. 2020, 42, 1465–1472. [Google Scholar]
- Yang, Y.X. Progress Contribution and Challenges of Compass/Beidou Satellite Navigation System. Acta Geod. Cartogr. Sin. 2010, 39, 1–6. [Google Scholar]
- Wang, Z.J. Ionospheric Disturbance Based on Beidou Satellite Signal in Guilin. Master’s Thesis, Wuhan University, Wuhan, China, 2021. [Google Scholar]
- Ning, Z.H. Research on Ionospheric Monitoring Technology Based on Beidou Satellite Data. Master’s Thesis, Civil Aviation University of China, Tianjin, China, 2022. [Google Scholar]
- Wu, X.L.; Han, C.H.; Ping, J.S. Monitoring and analysis of regional ionosphere with GEO satellite observations. Acta Geod. Cartogr. Sin. 2013, 42, 13–18. [Google Scholar]
- Tang, J.; Gao, X.; Li, Y.J.; Zhong, Z.Y. Spatial-temporal variations of the ionospheric TEC during the August 2018 geomagnetic storm by BeiDou GEO Satellites. Acta Geod. Cartogr. Sin. 2022, 51, 317–326. [Google Scholar]
- Ming, F.X.; Ma, J.S. Study on Ionospheric Anomaly during Geomagnetic Storm by Beidou GEO Satellites. Geospat. Inf. 2023, 21, 100–103. [Google Scholar]
- Chen, C.H.; Sun, Y.Y.; Xu, R.; Lin, K.; Wang, F.; Zhang, D.X.; Zhou, Y.L.; Gao, Y.X.; Zhang, X.M.; Yu, H.Z.; et al. Resident Waves in the Ionosphere before the M6.1 Dali and M7.3 Qinghai Earthquakes of 21–22 May 2021. Earth Space Sci. 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.M.; Dong, L.; Liu, J.; Mao, Z.Q.; Lin, K.; Chen, C.-H. Monitoring Seismo-TEC Perturbations Utilizing the Beidou Geostationary Satellites. Remote Sens. 2023, 15, 2608. [Google Scholar] [CrossRef]
- Zhang, M.M.; Liu, Z.M.; Liu, P.; Cong, J.F. Analysis of ionospheric TEC anomlies before the Jiuzhaigou Ms7.0 earthquake. Eng. Surv. Mapp. 2018, 27, 24–30. [Google Scholar]
- Liu, J.; Chen, C.; He, F.X. Analysis of Ionospheric Nomalies before Wenchuan and Jiuzhaigou Earthquakes based on GPS data. Earthq. Res. Sichuan 2019, 04, 11–15+20. [Google Scholar]
- Xu, Y.L.; Wei, Q.; Tian, Y.D. Analysis of Ionospheric TEC Anomaly before M7.0 Earthquake in Jiuzhaigou. Stand. Surv. Mapp. 2021, 37, 50–53. [Google Scholar]
- Yang, J.; Zhang, Y.; Hu, L.C.; Wang, L.W.; Zhu, F.Y. Impending Ionospheric Anomalies before the 2017 Jiuzhaigou M7.0 Earthquake. Earthquake 2022, 42, 100–110. [Google Scholar]
- Zhu, J.T.; Zhao, M.X.; Gong, C.F.; Wang, L. Ionosphere abnormalities before the 2017 MS 7. 0 Jiuzhai Valley earthquake. J. Guilin Univ. Technol. 2020, 40, 372–378. [Google Scholar]
- Wen, J.; Wang, D.M.; Meng, Y.Y.; Fang, H.B. Application of BEIDOU navigation satellite system to geological survey. J. Geomech. 2012, 18, 213–223. [Google Scholar]
- Liu, J.Y. Status and Development of the Beidou Navigation Satellite System. J. Telem. Track Command. 2013, 34, 1–8. [Google Scholar]
- Bao, R. Performance Comparison of BeiDou Satellite Navigation System and Global Positioning System. Inf. Commun. 2013, 07, 3–4. [Google Scholar]
- Steigenberger, P.; Hugentobler, U.; Hauschild, A.; Montenbruck, O. Orbit and clock analysis of Compass GEO and IGSO satellites. J. Geod. 2013, 87, 515–525. [Google Scholar] [CrossRef]
- Gong, Y.Z.; Cai, C.S. A Calculation Method of Ionospheric TEC Using Triple-Frequency GNSS Observations. J. Geod. Geodyn. 2017, 37, 205–208+214. [Google Scholar]
- Wang, J.; He, H.M.; Dong, W.B. Analysis of ionospheric change characteristics based on Beidou satellites. Hous. Real Estate 2021, 15, 244–246. [Google Scholar]
- Wang, Q.; Zhu, J. Characteristic Analysis of the Differences between TEC Values in GIM Grids. Ann. Geophys. 2023, 25, 1–15. [Google Scholar]
- Liu, J.Y.; Chen, Y.I.; Jhuang, H.K.; Lin, Y.H. Ionospheric foF2 and TEC Anomalous Days Associated with M >= 5.0 Earthquakes in Taiwan during 1997–1999. Terr. Atmos. Ocean. Sci. 2004, 15, 371–383. [Google Scholar] [CrossRef]
- Ryu, K.; Lee, E.; Chae, J.S.; Parrot, M.; Pulinets, S. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. J. Geophys. Res. Space Phys. 2014, 119, 8524–8542. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.H.; Parrot, M.; Zhang, X.M.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.P.; Lu, H.X.; Guo, F.; et al. Primary Joint Statistical Seismic Influence on Ionospheric Parameters Recorded by the CSES and DEMETER Satellites. J. Geophys. Res. Space Phys. 2020, 125, 1–13. [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.M.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol.-Terr. Phys. 2020, 205, 1–20. [Google Scholar] [CrossRef]
- Yao, L.; Shen, X.H.; Zhang, X.M. Analysis of Ionospheric Anomalies Preceding the 2010 Yushu Ms7.1 Earthquake. Earthquake 2014, 34, 74–85. [Google Scholar]
- Chen, D.; Meng, D.; Wang, F.; Gou, Y. A study of ionospheric anomaly detection before the August 14, 2021 Mw7.2 earthquake in Haiti based on sliding interquartile range method. Acta Geod. Geophys. 2023, 58, 539–551. [Google Scholar] [CrossRef]
- Yang, K.K.; Liu, L.L.; Chen, J. Abnormality of ionospheric TEC during earthquake based on sliding interquartile rang method. J. Guilin Univ. Technol. 2019, 39, 427–432. [Google Scholar]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. Space Phys. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Colonna, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Tramutoli, V. Optimal Setting of Earthquake-Related Ionospheric TEC (Total Electron Content) Anomalies Detection Methods: Long-Term Validation over the Italian Region. Geosciences 2023, 13, 150. [Google Scholar] [CrossRef]
- Sharma, G.; Romero-Andrade, R.; Taloor, A.K.; Ganeshan, G.; Sarma, K.K.; Aggarwal, S.P. 2-D ionosphere TEC anomaly before January 28, 2020, Cuba earthquake observed from a network of GPS observations data. Arab. J. Geosci. 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Legen’ka, A.D. Dynamics of the near-equatorial ionosphere prior to strong earthquakes. Geomagn. Aeron. 2002, 42, 227–232. [Google Scholar]
- Pulinets, S. Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process. Int. J. Geophys. 2012, 2012, 1–14. [Google Scholar] [CrossRef]
- Hayakawa, M. Electromagnetic Phenomena Associated with Earthquakes. IEEJ Trans. Fundam. Mater. 2006, 126, 211–214. [Google Scholar] [CrossRef]
- Smirnov, S. Negative Anomalies of the Earth’s Electric Field as Earthquake Precursors. Geosciences 2020, 10, 10. [Google Scholar] [CrossRef]
- Zhou, H.; Su, H.; Li, C.; Wan, Y. Geochemical precursory characteristics of soil gas Rn, Hg, H2, and CO2 related to the 2019 Xiahe Ms5.7 earthquake across the northern margin of West Qinling fault zone, Central China. J. Environ. Radioact. 2023, 264, 107190. [Google Scholar] [CrossRef] [PubMed]
- Ui, H.; Moriuchi, H.; Takemura, Y.; Tsuchida, H.; Fujii, I.; Nakamura, M. Anomalously high radon discharge from the atotsugawa fault prior to the western nagano prefecture earthquake (m 6.8) of September 14, 1984. Tectonophysics 1988, 152, 147–152. [Google Scholar] [CrossRef]
- Igarashi, G.; Saeki, S.; Takahata, N.; Sumikawa, K.; Tasaka, S.; Sasaki, Y.; Takahashi, M.; Sano, Y. Ground-water radon anomaly before the kobe earthquake in Japan. Science 1995, 269, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Su, H.; Zhang, H.; Zhou, H. Correlation between the spatial distribution of radon anomalies and fault activity in the northern margin of West Qinling Fault Zone, Central China. J. Radioanal. Nucl. Chem. 2015, 308, 679–686. [Google Scholar] [CrossRef]
- Fu, C.-C.; Walia, V.; Yang, T.F.; Lee, L.-C.; Liu, T.-K.; Chen, C.-H.; Kumar, A.; Lin, S.-J.; Lai, T.-H.; Wen, K.-L. Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake, Southern Taiwan. Terr. Atmos. Ocean. Sci. 2017, 28, 787–798. [Google Scholar] [CrossRef]
- Soldati, G.; Cannelli, V.; Piersanti, A. Monitoring soil radon during the 2016–2017 central Italy sequence in light of seismicity. Sci. Rep. 2020, 10, 13137. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.C.; Yang, T.F.; Tsai, M.C.; Lee, L.C.; Liu, T.K.; Walia, V.; Chen, C.H.; Chang, W.Y.; Kumar, A.; Lai, T.H. Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chem. Geol. 2017, 469, 163–175. [Google Scholar] [CrossRef]
- Kleimenova, N.; Kozyreva, O.; Michnowski, S.; Kubicki, M. Influence of geomagnetic disturbances on atmospheric electric field (Ez) variations at high and middle latitudes. J. Atmos. Sol.-Terr. Phys. 2013, 99, 117–122. [Google Scholar] [CrossRef]
- Liu, C.; Williams, E.R.; Zipser, E.J.; Burns, G. Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit. J. Atmos. Sci. 2010, 67, 309–323. [Google Scholar] [CrossRef]
- Telang, A.V.R. The influence of rain on the atmospheric-electric field. Terr. Magn. Atmos. Electr. 1930, 35, 125–131. [Google Scholar] [CrossRef]
- Tinsley, B.A.; Burns, G.B.; Zhou, L. The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv. Space Res. 2007, 40, 1126–1139. [Google Scholar] [CrossRef]
- Chen, T.; Wang, S.H.; Li, L.; Yang, M.P.; Zhang, L.Q.; Zhang, X.M.; Huang, F.Q.; Liu, J.; Xiong, P.; Ti, S.; et al. Analysis of the Abnormal Signal of Atmospheric Electric Feild before the Luanzhou Ms4.3 Earthquake on April 16,2021. J. Geod. Geodyn. 2022, 42, 771–776. [Google Scholar]
- Abhijit, C.; Anirban, G.; Barin Kumar, D.; Rakesh, R. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 2013, 56, R0331. [Google Scholar]
- Chen, T.; Zhang, X.X.; Zhang, X.M.; Jin, X.B.; Wu, H.; Ti, S.; Li, R.K.; Li, L.; Wang, S.H. Imminent estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field. Chin. J. Geophys. 2021, 64, 1145–1154. [Google Scholar]
- Smirnov, S. Earth electric field negative anomalies as earthquake precursors. E3S Web Conf. 2020, 196, 1–6. [Google Scholar] [CrossRef]
- Dautermann, T.; Calais, E.; Lognonn, P.; Mattioli, G.S. Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int. 2009, 179, 1537–1546. [Google Scholar] [CrossRef]
- Chen, C.H.; Saito, A.; Lin, C.H.; Liu, J.Y.; Tsai, H.F.; Tsugawa, T.; Otsuka, Y.; Nishioka, M.; Matsumura, M. Long-distance propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 881–884. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Lin, C.H.; Tsai, H.F.; Chen, C.H.; Kamogawa, M. Ionospheric disturbances triggered by the 11 March 2011M9.0 Tohoku earthquake. J. Geophys. Res. Space Phys. 2011, 116, 1–5. [Google Scholar] [CrossRef]
- Chou, M.Y.; Cherniak, I.; Lin, C.C.H.; Pedatella, N.M. The Persistent Ionospheric Responses Over Japan after the Impact of the 2011 Tohoku Earthquake. Space Weather 2020, 18, 1–22. [Google Scholar] [CrossRef]
- Huang, C.S.; Li, J. Nonlinear ionospheric response to the atmospheric gravity waves. Astron. Res. Technol. 1990, S1, 44–48. [Google Scholar]
- Li, J.; Li, L.B.; Wu, Z.H.; Wan, W.X.; Ning, B.Q. ionospheric disturbances related to the meteorology of Qinghai-Xizang plateau. Astron. Res. Technol. 1990, S1, 1–6. [Google Scholar]
- Kunitsyn, V.; Kurbatov, G.; Yasyukevich, Y.; Padokhin, A. Investigation of SBAS L1/L5 Signals and Their Application to the Ionospheric TEC Studies. IEEE Geosci. Remote Sens. Lett. 2015, 12, 547–551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Liu, J.; Zhang, X. The Analysis of Ionospheric TEC Anomalies Prior to the Jiuzhaigou Ms7.0 Earthquake Based on BeiDou GEO Satellite Data. Remote Sens. 2024, 16, 660. https://doi.org/10.3390/rs16040660
Jia X, Liu J, Zhang X. The Analysis of Ionospheric TEC Anomalies Prior to the Jiuzhaigou Ms7.0 Earthquake Based on BeiDou GEO Satellite Data. Remote Sensing. 2024; 16(4):660. https://doi.org/10.3390/rs16040660
Chicago/Turabian StyleJia, Xinyi, Jing Liu, and Xuemin Zhang. 2024. "The Analysis of Ionospheric TEC Anomalies Prior to the Jiuzhaigou Ms7.0 Earthquake Based on BeiDou GEO Satellite Data" Remote Sensing 16, no. 4: 660. https://doi.org/10.3390/rs16040660
APA StyleJia, X., Liu, J., & Zhang, X. (2024). The Analysis of Ionospheric TEC Anomalies Prior to the Jiuzhaigou Ms7.0 Earthquake Based on BeiDou GEO Satellite Data. Remote Sensing, 16(4), 660. https://doi.org/10.3390/rs16040660