Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = L-arginine phosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 17723 KB  
Article
Effects of Hybrid Corrosion Inhibitor on Mechanical Characteristics, Corrosion Behavior, and Predictive Estimation of Lifespan of Reinforced Concrete Structures
by Duc Thanh Tran, Han-Seung Lee, Jitendra Kumar Singh, Hyun-Min Yang, Min-Gu Jeong, Sirui Yan, Izni Syahrizal Ibrahim, Mohd Azreen Bin Mohd Ariffin, Anh-Tuan Le and Anjani Kumar Singh
Buildings 2025, 15(7), 1114; https://doi.org/10.3390/buildings15071114 - 29 Mar 2025
Viewed by 768
Abstract
A fixed ratio amount, i.e., L-arginine (LA) and trisodium phosphate dodecahydrate (TSP) at 2:0.25, is considered as a hybrid inhibitor. This research aims to extensively investigate the impact of utilizing the hybrid corrosion inhibitor on the corrosion resistance properties in accelerated condition, mechanical [...] Read more.
A fixed ratio amount, i.e., L-arginine (LA) and trisodium phosphate dodecahydrate (TSP) at 2:0.25, is considered as a hybrid inhibitor. This research aims to extensively investigate the impact of utilizing the hybrid corrosion inhibitor on the corrosion resistance properties in accelerated condition, mechanical characteristics, and predictive estimation of the lifespan of reinforced concrete (RC) structures. Various experiments, such as setting time, slump, air content, porosity, compressive strength, and chloride diffusion coefficient, were conducted to elucidate the influence of the hybrid corrosion inhibitor on the mechanical properties of the concrete matrix. Meanwhile, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) in 10 wt. % NaCl under wet–dry cycles are utilized to assess the corrosion resistance property, corrosion initiation time, and kinetics of the passive film formation on the steel rebar. Alternatively, both deterministic and probabilistic-based predictions of service life by Life 365 software are utilized to demonstrate the efficacy of the hybrid corrosion inhibitor in protecting the steel rebar in RC structures. All the results confirm that the HI-4 mix (LA:TSP = 3.56:0.44) exhibits excellence in preventing the corrosion and extending the service life of RC structures, due to the adsorption of inhibitor molecules and formation of P-Zwitterions-(Cl)-Fe, Zwitterions-(Cl)-Fe, and FePO4 complexes onto the steel rebar surface. However, HI-3 shows the optimal mechanical and electrochemical properties for RC structures. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

19 pages, 10424 KB  
Article
Glass/Polyester Laminates Modified with L-Arginine Phosphate—Effects on the Flammability and Smoke Emission
by Adriana Dowbysz, Mariola Samsonowicz, Bożena Kukfisz and Piotr Koperniak
Materials 2025, 18(2), 286; https://doi.org/10.3390/ma18020286 - 10 Jan 2025
Viewed by 1029
Abstract
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by [...] Read more.
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5–15 wt.%) of bio-based flame retardant (FR) prepared via hand lay-up method were assessed in terms of the limiting oxygen index (LOI) and smoke density tests. It was observed that the addition of ArgPA results in the formation of a charred layer with visible bubbles. The LOI of GFRP with 15 wt.% of ArgPA increased from 20.73 V/V % (non-modified GFRP) to 24.55 V/V %, and the material classification was improved from combustible to self-extinguishing. FRs usually increase the specific optical density of smoke, which was also observed for ArgPA-modified GFRPs. However, the specific optical density of smoke at the 4th minute of measurement (Ds(4)) obtained for ArgPA-modified GFRPs was lower than for GFRPs modified with commercially used APP. TG/FTIR studies of resin modified with ArgPA revealed the presence of phosphorus compounds and non-combustible gases in the decomposition products. Results demonstrate the potential of ArgPA as an effective, bio-based FR for the enhancement of GFRP fire safety. Full article
Show Figures

Figure 1

14 pages, 2916 KB  
Article
Proteomic and Metabolomic Profiling Reveals Alterations in Boar X and Y Sperm
by Jia Cheng, Xu Hao, Weijing Zhang, Chenhao Sun, Xiameng Yuan, Yiding Yang, Wenxian Zeng and Zhendong Zhu
Animals 2024, 14(24), 3672; https://doi.org/10.3390/ani14243672 - 19 Dec 2024
Cited by 2 | Viewed by 1484
Abstract
Sex-controlled sperm combined with artificial insemination allows animals to reproduce offspring according to the desired sex, accelerates the process of animal genetics and breeding and promotes the development of animal husbandry. However, the molecular markers for sexual sperm sorting are unusual. To identify [...] Read more.
Sex-controlled sperm combined with artificial insemination allows animals to reproduce offspring according to the desired sex, accelerates the process of animal genetics and breeding and promotes the development of animal husbandry. However, the molecular markers for sexual sperm sorting are unusual. To identify the molecular markers of boar sperm sorting, proteomics and metabolomics techniques were applied to analyze the differences in proteins and metabolism between X and Y sperm. Label-free quantitative proteomics identified 254 differentially expressed proteins (DEPs) in the X and Y sperm of boars, including 106 proteins that were highly expressed in X sperm and 148 proteins that were highly expressed in Y sperm. Among the differential proteins, COX6A1, COX1, CYTB, FUT8, GSTK1 and PFK1 were selected as potential biological markers for X and Y sperm sorting. Moreover, 760 metabolites from X and Y sperm were detected. There were 439 positive ion mode metabolites and 321 negative ion mode metabolites identified. The various metabolites were phosphoenolpyruvate, phytosphingosine, L-arginine, N-acetylputrescine, cytidine-5′-diphosphate and deoxyuridine. These metabolites were mainly involved in the TCA cycle, oxidative phosphorylation pathway, glycolysis pathway, lipid metabolism pathway, amino acid metabolism pathway, pentose phosphate pathway and nucleic acid metabolism pathway. The differential proteins and differential metabolites obtained by the combined proteomics and metabolomics analysis were projected simultaneously to the KEGG pathway, and a total of five pathways were enriched, namely oxidative phosphorylation pathway, purine metabolism, unsaturated fatty acid biosynthesis, ABC transporters and peroxisomes. In summary, COX6A1 and CYTB were identified as potential biomarkers for boar X and Y sperm sorting. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 5297 KB  
Article
Titanium Dioxide Nanoparticles Negatively Influence Gill Metabolism in Pinctada fucata martensii
by Heqi Zou, Fengfeng Li, Luomin Huang, Jiaying Yao, Yujing Lin, Chuangye Yang, Ruijuan Hao, Robert Mkuye, Yongshan Liao and Yuewen Deng
Metabolites 2024, 14(12), 682; https://doi.org/10.3390/metabo14120682 - 5 Dec 2024
Viewed by 1569
Abstract
Background: In recent years, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals. Methods: Therefore, we assessed the [...] Read more.
Background: In recent years, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals. Methods: Therefore, we assessed the impact of TiO2 NPs (5 mg/L) on the marine bivalve, pearl oyster (Pinctada fucata martensii), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO2 NPs for 14 days, followed by 7 days of recovery in untreated seawater. Gill tissues and hepatopancreatic tissues were sampled on days 0, 14, and 21 of the experiment named C0, E14, and R7, respectively. Results: Metabolomic analysis identified 102 significantly different metabolites (SDMs) on gills tissue in pearl oysters following exposure to TiO2 NPs (C0 vs. E14). Compared with group C0, group E14 had 76 SDMs (such as acetylcholine, itaconic acid, citric acid, and taurine) with higher concentrations and 26 (including L-arginine and isobutyryl-L-carnitine) with lower concentrations. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that these SDMs enriched 28 pathways, including glycine, serine, and threonine metabolism, neuroactive ligand–receptor interaction, and taurine and hypotaurine metabolism. In addition, 116 SDMs were identified in E14 and R7 pearl oysters. Compared with group E14, group R7 had 74 metabolites (such as acetylcholine, 6-phosphogluconic acid, isocitric acid, and itaconic acid) with higher concentrations and 42 (including uracil, glycerophosphocholine, N-Acetyl-D-glucosamine) with lower concentrations. The SDMs identified between E14 and R7 enriched 25 pathways, including the pentose phosphate pathway, glutathione metabolism, and citrate cycle (TCA cycle). In addition, analysis of the energy metabolism-associated enzymes revealed that exposure to TiO2 NPs reduced Ca2+/Mg2+-ATPase, Na+/K+-ATPase, and Total-ATPase activities. Conclusions: These findings suggested that TiO2 NPs may inhibit the energy metabolism function of gill and hepatopancreas of pearl oysters. Meanwhile, TiO2 NPs may affect the normal functioning of immune and osmoregulatory functions of pearl oysters gill and even may lead to oxidative stress and neurotoxicity. Therefore, this study may provide a reference for analyzing the bioadaptation of marine bivalves to TiO2 NPs and the potential negative effects of TiO2 NPs on bivalves. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

16 pages, 3936 KB  
Article
Metabolomic Approaches to Study the Potential Inhibitory Effects of Plantaricin Q7 against Listeria monocytogenes Biofilm
by Yinxue Liu, Yisuo Liu, Linlin Hao, Jiayuan Cao, Lu Jiang and Huaxi Yi
Foods 2024, 13(16), 2573; https://doi.org/10.3390/foods13162573 - 17 Aug 2024
Cited by 5 | Viewed by 1614
Abstract
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found [...] Read more.
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found that plantaricin Q7 produced by Lactiplantibacillus plantarum Q7 could inhibit and reduce L. monocytogenes biofilm, but the specific mechanism remains unclear. In this study, the inhibitive and reduced activity of plantaricin Q7 on L. monocytogenes biofilm was investigated by metabolomics. The results showed that plantaricin Q7 inhibited the synthesis of L. monocytogenes biofilm mainly through purine metabolism and glycerol phospholipid metabolism, and the key differential metabolites included acetylcholine and hypoxanthine with a decrease in abundance from 5.80 to 4.85. In addition, plantaricin Q7 reduced the formed L. monocytogenes biofilm by purine metabolism and arginine biosynthesis, and the main differential metabolites were N-acetylglutamate and D-ribose-1-phosphate with a decrease in abundance from 6.21 to 4.73. It was the first report that purine metabolism and amino acid metabolism were the common metabolic pathway for plantaricin Q7 to inhibit and reduce L. monocytogenes biofilm, which could be potential targets to control L. monocytogenes biofilm. A putative metabolic pathway for L. monocytogenes biofilm inhibition and reduction by plantaricin Q7 was proposed. These findings provided a novel strategy to control L. monocytogenes biofilm in food processing. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 3696 KB  
Article
Adaptation of Conductometric Monoenzyme Biosensor for Rapid Quantitative Analysis of L-arginine in Dietary Supplements
by Olga Y. Saiapina, Kseniia Berketa, Andrii S. Sverstiuk, Lyubov Fayura, Andriy A. Sibirny, Sergei Dzyadevych and Oleksandr O. Soldatkin
Sensors 2024, 24(14), 4672; https://doi.org/10.3390/s24144672 - 18 Jul 2024
Cited by 9 | Viewed by 1630
Abstract
The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination [...] Read more.
The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.2, and the optimal temperature is 39.5 °C. The linear functioning range is 2.5–750 µM of L-arginine with a minimal limit of detection of 2 µM. The concentration of arginine in food additive samples was determined using the developed ADI-based biosensor. Based on the obtained results, the most effective method of biosensor analysis using the method of standard additions was chosen. It was also checked how the reproducibility of the biosensor changes during the analysis of pharmaceutical samples. The results of the determination of arginine in real samples using a conductometric biosensor based on ADI clearly correlated with the data obtained using the method of ion-exchange chromatography and enzymatic spectrophotometric analysis. We concluded that the developed biosensor would be effective for the accurate and selective determination of arginine in dietary supplements intended for the prevention and/or elimination of arginine deficiency. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

11 pages, 2072 KB  
Article
Effects of Counterion on the Formation and Hydration Behavior of α-Form Hydrated Crystals (α-Gels)
by Kenichi Sakai, Shuri Nishimoto, Yuki Hirai, Kyosuke Arakawa, Masaaki Akamatsu, Keisuke Tanaka, Toshiyuki Suzuki and Hideki Sakai
Gels 2023, 9(12), 928; https://doi.org/10.3390/gels9120928 - 25 Nov 2023
Cited by 2 | Viewed by 2242
Abstract
α-Form hydrated crystals form a lamellar gel in which the alkyl chains of the amphiphilic molecules are hexagonally arranged within bilayers below the gel–liquid crystal phase transition temperature. In practice, the lamellar gel network with excess water is called an “α-gel”, particularly in [...] Read more.
α-Form hydrated crystals form a lamellar gel in which the alkyl chains of the amphiphilic molecules are hexagonally arranged within bilayers below the gel–liquid crystal phase transition temperature. In practice, the lamellar gel network with excess water is called an “α-gel”, particularly in the cosmetics industry. In this study, the hydration or water sorption of amphiphilic materials in water vapor was assessed using a humidity-controlled quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The amphiphilic materials used in this study were hexadecyl phosphate salts neutralized with L-arginine (C16P-Arg), CsOH (C16P-Cs), KOH (C16P-K), and NaOH (C16P-Na). Small- and wide-angle X-ray scattering measurements revealed that C16P-Arg and C16P-Cs yielded α-form hydrated crystals. Humidity-controlled QCM-D measurements demonstrated that C16P-Arg and C16P-Cs more readily underwent hydration or water sorption than C16P-K and C16P-Na. The key conclusion is that the significant hydration ability of C16P-Arg and C16P-Cs promotes the formation of the corresponding α-form hydrated crystals. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization)
Show Figures

Graphical abstract

13 pages, 2465 KB  
Article
Assigning the Absolute Configuration of Inositol Poly- and Pyrophosphates by NMR Using a Single Chiral Solvating Agent
by Kevin Ritter, Nikolaus Jork, Anne-Sophie Unmüßig, Maja Köhn and Henning J. Jessen
Biomolecules 2023, 13(7), 1150; https://doi.org/10.3390/biom13071150 - 19 Jul 2023
Cited by 7 | Viewed by 2493
Abstract
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of [...] Read more.
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of each compound is crucial. Since the myo-inositol scaffold possesses an internal mirror plane, enantiomeric pairs can be formed. Most commonly employed methods for analyzing InsPs have been geared towards resolving regioisomers, but they have not been capable of resolving enantiomers. In this study, we present a general approach for enantiomer assignment using NMR measurements. To achieve this goal, we used 31P-NMR in the presence of L-arginine amide as a chiral solvating agent, which enables the differentiation of enantiomers. Using chemically synthesized standard compounds allows for an unambiguous assignment of the enantiomers. This method was applied to highly phosphorylated inositol pyrophosphates, as well as to lowly phosphorylated inositol phosphates and bisphosphonate analogs. Our method will facilitate the assignment of biologically relevant isomers when isolating naturally occurring compounds from biological specimens. Full article
Show Figures

Figure 1

12 pages, 752 KB  
Article
GC-MS Studies on Nitric Oxide Autoxidation and S-Nitrosothiol Hydrolysis to Nitrite in pH-Neutral Aqueous Buffers: Definite Results Using 15N and 18O Isotopes
by Dimitrios Tsikas
Molecules 2023, 28(11), 4281; https://doi.org/10.3390/molecules28114281 - 23 May 2023
Cited by 1 | Viewed by 2476
Abstract
Nitrite (O=N-O, NO2) and nitrate (O=N(O)-O, NO3) are ubiquitous in nature. In aerated aqueous solutions, nitrite is considered the major autoxidation product of nitric oxide (NO). NO is an environmental [...] Read more.
Nitrite (O=N-O, NO2) and nitrate (O=N(O)-O, NO3) are ubiquitous in nature. In aerated aqueous solutions, nitrite is considered the major autoxidation product of nitric oxide (NO). NO is an environmental gas but is also endogenously produced from the amino acid L-arginine by the catalytic action of NO synthases. It is considered that the autoxidation of NO in aqueous solutions and in O2-containing gas phase proceeds via different neutral (e.g., O=N-O-N=O) and radical (e.g., ONOO) intermediates. In aqueous buffers, endogenous S-nitrosothiols (thionitrites, RSNO) from thiols (RSH) such as L-cysteine (i.e., S-nitroso-L-cysteine, CysSNO) and cysteine-containing peptides such as glutathione (GSH) (i.e., S-nitrosoglutathione, GSNO) may be formed during the autoxidation of NO in the presence of thiols and dioxygen (e.g., GSH + O=N-O-N=O → GSNO + O=N-O + H+; pKaHONO, 3.24). The reaction products of thionitrites in aerated aqueous solutions may be different from those of NO. This work describes in vitro GC-MS studies on the reactions of unlabeled (14NO2) and labeled nitrite (15NO2) and RSNO (RS15NO, RS15N18O) performed in pH-neutral aqueous buffers of phosphate or tris(hydroxyethylamine) prepared in unlabeled (H216O) or labeled H2O (H218O). Unlabeled and stable-isotope-labeled nitrite and nitrate species were measured by gas chromatography–mass spectrometry (GC-MS) after derivatization with pentafluorobenzyl bromide and negative-ion chemical ionization. The study provides strong indication for the formation of O=N-O-N=O as an intermediate of NO autoxidation in pH-neutral aqueous buffers. In high molar excess, HgCl2 accelerates and increases RSNO hydrolysis to nitrite, thereby incorporating 18O from H218O into the SNO group. In aqueous buffers prepared in H218O, synthetic peroxynitrite (ONOO) decomposes to nitrite without 18O incorporation, indicating water-independent decomposition of peroxynitrite to nitrite. Use of RS15NO and H218O in combination with GC-MS allows generation of definite results and elucidation of reaction mechanisms of oxidation of NO and hydrolysis of RSNO. Full article
Show Figures

Scheme 1

13 pages, 2667 KB  
Article
Screening of Suitable Reference Genes for Immune Gene Expression Analysis Stimulated by Vibrio anguillarum and Copper Ions in Chinese Mitten Crab (Eriocheir sinensis)
by Fengyuan Yan, Hui Li, Xue Chen, Junjie Yu, Shengyan Su, Jianlin Li, Wei Ye and Yongkai Tang
Genes 2023, 14(5), 1099; https://doi.org/10.3390/genes14051099 - 17 May 2023
Cited by 3 | Viewed by 2035
Abstract
The reference gene expression is not always stable under different experimental conditions, and screening of suitable reference genes is a prerequisite in quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we investigated gene selection, and the most stable reference gene for the [...] Read more.
The reference gene expression is not always stable under different experimental conditions, and screening of suitable reference genes is a prerequisite in quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we investigated gene selection, and the most stable reference gene for the Chinese mitten crab (Eriocheir sinensis) was screened under the stimulation of Vibrio anguillarum and copper ions, respectively. Ten candidate reference genes were selected, including arginine kinase (AK), ubiquitin-conjugating enzyme E2b (UBE), glutathione S-transferase (GST), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF-1α), α-tubulin (α-TUB), heat shock protein 90 (HSP90), β-actin (β-ACTIN), elongation factor 2 (EF-2) and phosphoglucomutase 2 (PGM2). Expression levels of these reference genes were detected under the stimulation of V. anguillarum at different times (0 h, 6 h, 12 h, 24 h, 48 h and 72 h) and copper ions in different concentrations (11.08 mg/L, 2.77 mg/L, 0.69 mg/L and 0.17 mg/L). Four types of analytical software, namely geNorm, BestKeeper, NormFinder and Ref-Finder, were applied to evaluate the reference gene stability. The results showed that the stability of the 10 candidate reference genes was in the following order: AK > EF-1α > α-TUB > GAPDH > UBE > β-ACTIN > EF-2 > PGM2 > GST > HSP90 under V. anguillarum stimulation. It was GAPDH > β-ACTIN > α-TUB > PGM2 > EF-1α > EF-2 > AK > GST > UBE > HSP90 under copper ion stimulation. The expression of E. sinensis Peroxiredoxin4 (EsPrx4) was detected when the most stable and least stable internal reference genes were selected, respectively. The results showed that reference genes with different stability had great influence on the accurate results of the target gene expression. In the Chinese mitten crab (E. sinensis), AK and EF-1α were the most suitable reference genes under the stimulation of V. anguillarum. Under the stimulation of copper ions, GAPDH and β-ACTIN were the most suitable reference genes. This study provided important information for further research on immune genes in V. anguillarum or copper ion stimulation. Full article
(This article belongs to the Special Issue Feature Papers in Genes & Environments)
Show Figures

Figure 1

16 pages, 3302 KB  
Article
Effects of Apocynin, a NADPH Oxidase Inhibitor, in the Protection of the Heart from Ischemia/Reperfusion Injury
by Ali Mohammad, Fawzi Babiker and Maie Al-Bader
Pharmaceuticals 2023, 16(4), 492; https://doi.org/10.3390/ph16040492 - 27 Mar 2023
Cited by 10 | Viewed by 3309
Abstract
Ischemia and perfusion (I/R) induce inflammation and oxidative stress, which play a notable role in tissue damage. The aim of this study was to investigate the role of an NADPH oxidase inhibitor (apocynin) in the protection of the heart from I/R injury. Hearts [...] Read more.
Ischemia and perfusion (I/R) induce inflammation and oxidative stress, which play a notable role in tissue damage. The aim of this study was to investigate the role of an NADPH oxidase inhibitor (apocynin) in the protection of the heart from I/R injury. Hearts isolated from Wistar rats (n = 8 per group) were perfused with a modified Langendorff preparation. Left ventricular (LV) contractility and cardiovascular hemodynamics were evaluated by a data acquisition program, and infarct size was evaluated by 2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) staining. Furthermore, the effect of apocynin on the pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and anti-inflammatory cytokine (IL-10) was evaluated using an enzyme linked immunosorbent assay (ELISA). Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. Hearts were infused with apocynin before ischemia, during ischemia or at reperfusion. To understand the potential pathways of apocynin protection of the heart, a nitric oxide donor (S-nitroso-N-acetylpenicillamine, SNAP), nitric oxide blocker (N (gamma)-nitro-L-arginine methyl ester, L-Name), nicotinic acid adenine dinucleotide phosphate (NAADP) inhibiter (Ned-K), cyclic adenosine diphosphate ribose (cADPR) agonist, or CD38 blocker (Thiazoloquin (az)olin (on)e compound, 78c) was infused with apocynin. Antioxidants were evaluated by measuring superoxide dismutase (SOD) and catalase (CAT) activity. Apocynin infusion before ischemia or at reperfusion protected the heart by normalizing cardiac hemodynamics and decreasing the infarct size. Apocynin treatment resulted in a significant (p < 0.05) decrease in pro-inflammatory cytokine levels and a significant increase (p < 0.05) in anti-inflammatory and antioxidant levels. Apocynin infusion protected the heart by improving LV hemodynamics and coronary vascular dynamics. This treatment decreased the infarct size and inflammatory cytokine levels and increased anti-inflammatory cytokine and antioxidant levels. This protection follows a pathway involving CD38, nitric oxide and acidic stores. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 3499 KB  
Article
Understanding the Active Mechanisms of Plant (Sesuvium portulacastrum L.) against Heavy Metal Toxicity
by Emad A. Alsherif, Mohammad Yaghoubi Khanghahi, Carmine Crecchio, Shereen Magdy Korany, Renato Lustosa Sobrinho and Hamada AbdElgawad
Plants 2023, 12(3), 676; https://doi.org/10.3390/plants12030676 - 3 Feb 2023
Cited by 30 | Viewed by 3901
Abstract
Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, [...] Read more.
Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, and 5000 m away from a man-fabricated sewage dumping lake, with a wide range of pollutant concentrations. Heavy metals contaminations in contaminated soil and their impact on mineral composition and microbial population were also investigated. The significant findings to emerge from this research were the modifications of nitrogen and carbon metabolisms in plant tissues to cope with heavy metal toxicity. Increased plant amylase enzymes activity in contaminated soils increased starch degradation to soluble sugars as a mechanism to mitigate stress impact. Furthermore, increased activity of sucrose phosphate synthase in contaminated plants led to more accumulation of sucrose. Moreover, no change in the content of sucrose hydrolyzing enzymes (vacuolar invertase and cytosolic invertase) in the contaminated sites can suggest the translocation of sucrose from shoot to root under stress. Similarly, although this study demonstrated a high level of malate in plants exposed to stress, caution must be applied in suggesting a strong link between organic acids and the activation of defense mechanisms in plants, since other key organic acids were not affected by stress. Therefore, activation of other defense mechanisms, especially antioxidant defense molecules including alpha and beta tocopherols, showed a greater role in protecting plants from heavy metals stress. Moreover, the increment in the content of some amino acids (e.g., glycine, alanine, glutamate, arginine, and ornithine) in plants under metal toxicity can be attributed to a high level of stress tolerance. Moreover, strategies in the excitation of the synthesis of the unsaturated fatty acids (oleic and palmitoleic) were involved in enhancing stress tolerance, which was unexpectedly associated with an increase in the accumulation of palmitic and stearic (saturated fatty acids). Taken together, it can be concluded that these multiple mechanisms were involved in the response to stress which may be cooperative and complementary with each other in inducing resistance to the plants. Full article
(This article belongs to the Special Issue Heavy Metal Damage and Tolerance in Plants)
Show Figures

Figure 1

15 pages, 3965 KB  
Article
Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to Aerobic Growth: A Proteomic Approach
by Tatiana Yu. Dinarieva, Alena I. Klimko, Jörg Kahnt, Tatiana A. Cherdyntseva and Alexander I. Netrusov
Microorganisms 2023, 11(2), 313; https://doi.org/10.3390/microorganisms11020313 - 25 Jan 2023
Cited by 8 | Viewed by 3115
Abstract
The study describes the effect of aerobic conditions on the proteome of homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected [...] Read more.
The study describes the effect of aerobic conditions on the proteome of homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected by label-free LC-MS/MS. Upregulated proteins are involved in oxygen consumption (Pox, LctO, pyridoxine 5’-phosphate oxidase), xylulose 5-phosphate conversion (Xfp), pyruvate metabolism (PdhD, AlsS, AlsD), reactive oxygen species (ROS) elimination (Tpx, TrxA, Npr), general stress response (GroES, PfpI, universal stress protein, YqiG), antioxidant production (CysK, DkgA), pyrimidine metabolism (CarA, CarB, PyrE, PyrC, PyrB, PyrR), oligopeptide transport and metabolism (OppA, PepO), and maturation and stability of ribosomal subunits (RbfA, VicX). Downregulated proteins participate in ROS defense (AhpC), citrate and pyruvate consumption (CitE, PflB), oxaloacetate production (AvtA), arginine synthesis (ArgG), amino acid transport (GlnQ), and deoxynucleoside biosynthesis (RtpR). The data obtained shed light on mechanisms providing O2-tolerance and adaptation to aerobic conditions in strain CM MSU 529. The biosynthesis of 39 from 57 differentially abundant proteins was shown to be O2-sensitive in lactic acid bacteria for the first time. To our knowledge this is the first study on the impact of aerobic cultivation on the proteome of L. rhamnosus. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

14 pages, 3258 KB  
Article
Parboiled Germinated Brown Rice Improves Cardiac Structure and Gene Expression in Hypertensive Rats
by Nattira On-Nom, Kanoknad Khaengamkham, Aikkarach Kettawan, Thanaporn Rungruang, Uthaiwan Suttisansanee, Piya Temviriyanukul, Pattaneeya Prangthip and Chaowanee Chupeerach
Foods 2023, 12(1), 9; https://doi.org/10.3390/foods12010009 - 20 Dec 2022
Cited by 5 | Viewed by 2839
Abstract
Hypertension leads to oxidative stress, inflammation, and fibrosis. The suppression of these indicators may be one treatment approach. Parboiled germinated brown rice (PGBR), obtained by steaming germinated Jasmine rice, reduces oxidative stress and inflammation in vivo. PGBR contains more bioactive compounds than brown [...] Read more.
Hypertension leads to oxidative stress, inflammation, and fibrosis. The suppression of these indicators may be one treatment approach. Parboiled germinated brown rice (PGBR), obtained by steaming germinated Jasmine rice, reduces oxidative stress and inflammation in vivo. PGBR contains more bioactive compounds than brown rice (BR) and white rice (WR). Anti-hypertensive benefits of PGBR have been predicted, but research is lacking. The anti-hypertensive effects of PGBR were investigated in the downstream gene network of hypertension pathogenesis, including the renin–angiotensin system, fibrosis, oxidative stress production, and antioxidant enzymes in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. To strengthen our findings, the cardiac structure was also studied. PGBR-exposed rats showed significant reductions in systolic blood pressure (SBP) compared to the hypertensive group. WR did not reduce SBP because of the loss of bioactive compounds during intensive milling. PGBR also reduced the expression of the angiotensin type 1 receptor (AT1R), transforming growth factor-β (TGF-β), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4), which contribute to the renin–angiotensin system, fibrosis, and oxidative stress production, respectively. Losartan (Los, an anti-hypertensive drug)-treated rats also exhibited similar gene expression, implying that PGBR may reduce hypertension using the same downstream target as Los. Our data also indicated that PGBR reduced cardiac lesions, such as the cardiomyopathy induced by L-NAME. This is the first report on the anti-hypertensive effects of PGBR in vivo by the suppression of the renin response, fibrosis, and improved cardiac structure. Full article
Show Figures

Figure 1

13 pages, 6428 KB  
Article
Metabolomics Characterize the Differential Metabolic Markers between Bama Xiang Pig and Debao Pig to Identify Pork
by Changyi Chen, Junwen Zheng, Chenyong Xiong, Hongjin Zhou, Chuntao Wei, Xin Hu, Xinxiu Qian, Mengyi He, Yandi Shi, Yuwen Liu and Zongqiang Li
Foods 2023, 12(1), 5; https://doi.org/10.3390/foods12010005 - 20 Dec 2022
Cited by 9 | Viewed by 2854
Abstract
The Bama Xiang pig (BM) is a unique pig species in Guangxi Province, China. Compared to other breeds of domestic pig, such as the Debao pig (DB), it is smaller in size, better in meat quality, resistant to rough feeding and strong in [...] Read more.
The Bama Xiang pig (BM) is a unique pig species in Guangxi Province, China. Compared to other breeds of domestic pig, such as the Debao pig (DB), it is smaller in size, better in meat quality, resistant to rough feeding and strong in stress resistance. These unique advantages of Bama Xiang pigs make them of great edible value and scientific research value. However, the differences in muscle metabolites between Bama Xiang pigs (BM) and Debao pigs (DB) are largely unexplored. Here, we identified 214 differential metabolites between these two pig breeds by LC-MS. Forty-one such metabolites are enriched into metabolic pathways, and these metabolites correspond to 11 metabolic pathways with significant differences. In Bama pigs, the abundance of various metabolites such as creatine, citric acid, L-valine and hypoxanthine is significantly higher than in Debao pigs, while the abundance of other metabolites, such as carnosine, is significantly lower. Among these, we propose six differential metabolites: L-proline, citric acid, ribose 1-phosphate, L-valine, creatine, and L-arginine, as well as four potential differential metabolites (without the KEGG pathway), alanyl-histidine, inosine 2′-phosphate, oleoylcarnitine, and histidinyl hydroxyproline, as features for evaluating the meat quality of Bama pigs and for differentiating pork from Bama pigs and Debao pigs. This study provides a proof-of-concept example of distinguishing pork from different pig breeds at the metabolite level and sheds light on elucidating the biological processes underlying meat quality differences. Our pork metabolites data are also of great value to the genomics breeding community in meat quality improvement. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in Food Analysis and Quality Control)
Show Figures

Graphical abstract

Back to TopTop