Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (652)

Search Parameters:
Keywords = KU-0063794

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5939 KiB  
Article
Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle
by Haotian Wen, Hansheng Su, Yan Wen, Xin Ma and Deshuang Zhao
Electronics 2025, 14(15), 3111; https://doi.org/10.3390/electronics14153111 - 5 Aug 2025
Viewed by 58
Abstract
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) [...] Read more.
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) radiation-phase reconfigurable dipoles and a fixed-phase feeding network, achieving 1-bit beam steering via a direct current (DC) bias voltage of ±5 V. Measurement results demonstrate a peak gain of 9.2 dBi at a deflection angle of ±37°, with a 3 dB beamwidth of 94° across the scanning plane. Compared with conventional phased array radars with equivalent peak gains, the proposed design achieves a 16% increase in the detection range at the largest deflection angle. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 6688 KiB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 (registering DOI) - 2 Aug 2025
Viewed by 183
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

13 pages, 441 KiB  
Article
Pulmonary Involvement in Patients with Positive Myositis Antibodies in Rheumatology: A Retrospective Monocentric Analysis
by Falk Schumacher, Malte Kanbach, Maximilian Zimmermann, Daniel Majorski, Wigbert Schulze, Maximilian Wollsching-Strobel, Doreen Kroppen, Sarah Bettina Stanzel, Wolfram Windisch, Johannes Strunk and Melanie Berger
J. Clin. Med. 2025, 14(15), 5443; https://doi.org/10.3390/jcm14155443 - 1 Aug 2025
Viewed by 280
Abstract
Background: Pulmonary involvement is the most common prognosis-related organ involvement in idiopathic inflammatory myopathy (IIM). Owing to the large number of antibodies, the evidence for lung involvement and rare antibodies is limited. In everyday clinical practice, the interpretation of positive myositis antibodies represents [...] Read more.
Background: Pulmonary involvement is the most common prognosis-related organ involvement in idiopathic inflammatory myopathy (IIM). Owing to the large number of antibodies, the evidence for lung involvement and rare antibodies is limited. In everyday clinical practice, the interpretation of positive myositis antibodies represents a challenge. Methods: This study is a retrospective monocentric analysis. The data collection regarding positive myositis antibodies and possible pulmonary involvement was carried out from July 2019 to May 2022. Data analysis revealed positive results for one of the following antibodies: EJ, PL7, OJ, PL12, Mi-2α, TIF1γ, MDA5, SAE, NXP2, SRP, Ku, PM-Scl100 and PM-Scl75. In our analysis, patients with IIM, patients with inflammatory rheumatic disease other than IIM and patients without inflammatory rheumatic disease are described. The results of high-resolution computed tomography (HRCT), pulmonary function tests, echocardiographic examinations and their associated clinical findings are examined. Results: In the entire cohort, 209 patients with positive myositis antibodies were detected. In total, 22 (10.5%) patients had interstitial lung disease (ILD) patterns on HRCT. In the subgroup of patients with IIM, a significantly higher proportion of patients with lung involvement (n = 13, 35.1%) was found than in the group with other inflammatory rheumatic diseases (IRDs) (n = 6, 6.7%) or in the group without IRDs (n = 3, 3.7%). When the antibody groups were considered, the PL12-positive patients had the largest proportion of ILD (42%), followed by the MDA5-positive patients (40%). Conclusions: In patients with IIM, myositis antibodies are highly relevant for assessing the risk of lung involvement. In groups with other IRD or without IRD, antibody detection does not represent this high relevance for lung involvement. A differentiated assessment of the various MSAs or MAAs detected, as well as clinical parameters, allows for further important risk assessment for prognosis-relevant lung involvement. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

24 pages, 936 KiB  
Article
Anti-Ku Antibodies: Clinical Associations, Organ Damage, and Prognostic Implications in Connective Tissue Diseases
by Céline La, Julie Smet, Carole Nagant and Muhammad Soyfoo
Int. J. Mol. Sci. 2025, 26(15), 7433; https://doi.org/10.3390/ijms26157433 - 1 Aug 2025
Viewed by 170
Abstract
Anti-Ku antibodies are rare autoantibodies associated with connective tissue diseases (CTDs), but their clinical significance remains poorly understood due to limited studies. Semi-quantitative immunodot assays yield positive, negative, or borderline results, with the clinical relevance of borderline findings remaining unclear. The purpose of [...] Read more.
Anti-Ku antibodies are rare autoantibodies associated with connective tissue diseases (CTDs), but their clinical significance remains poorly understood due to limited studies. Semi-quantitative immunodot assays yield positive, negative, or borderline results, with the clinical relevance of borderline findings remaining unclear. The purpose of this study is to characterize the clinical spectrum of anti-Ku-positive patients and evaluate the clinical significance of anti-Ku-borderline results in CTD management. A retrospective cohort study was conducted at Hôpital Erasme, including all patients with anti-Ku-positive or borderline results, over a 10-year period. Clinical and biological data were collected from medical records and analyzed for disease associations, organ involvement, and outcomes. Among 47 anti-Ku-positive patients, systemic lupus erythematosus (SLE) and Sjögren’s syndrome (SS) were the most common diagnoses. Interstitial lung disease (ILD) occurred in 23.4% and renal involvement in 12.8% of patients. Cytopenia was significantly associated with glomerulonephritis. Organ damage, particularly pulmonary and renal involvement, correlated with increased mortality. In the borderline group (n = 33), SLE and SS remained the predominant diagnoses. During follow-up, three patients died (all with isolated ILD without associated CTD), one required chronic dialysis, and one underwent lung transplantation. ILD was present in 7/22 (31.8%) borderline patients, and renal involvement in 7/32 (21.9%). This study demonstrates significant associations between anti-Ku antibodies and organ damage, with increased mortality risk. The high prevalence of pulmonary and renal involvement in anti-Ku-borderline patients suggests that these results carry substantial clinical significance and should prompt comprehensive CTD evaluation. These findings support treating borderline anti-Ku results with the same clinical vigilance as positive results, given their similar association with severe organ involvement and adverse outcomes. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

23 pages, 11314 KiB  
Article
Transcriptomic Analysis Reveals Opposing Roles of CEL1B in Sophorose- and Lactose-Induced Cellulase Expression in Trichoderma reesei Rut C30
by Lu Wang, Junping Fan, Xiao He, Jian Cheng, Xinyan Zhang, Tian Tian and Yonghao Li
Fermentation 2025, 11(8), 439; https://doi.org/10.3390/fermentation11080439 - 31 Jul 2025
Viewed by 313
Abstract
The β-glucosidase CEL1B has been linked to regulating cellulase expression in Trichoderma reesei, yet its inducer-specific functions and broader regulatory roles remain poorly characterized. In this study, CRISPR-Cas9-mediated gene knockout was applied in the industrial high-producing T. reesei Rut C30 to investigate [...] Read more.
The β-glucosidase CEL1B has been linked to regulating cellulase expression in Trichoderma reesei, yet its inducer-specific functions and broader regulatory roles remain poorly characterized. In this study, CRISPR-Cas9-mediated gene knockout was applied in the industrial high-producing T. reesei Rut C30 to investigate CEL1B function without the confounding effects of KU70 deletion. Unlike previous studies focused solely on cellulose or lactose induction, transcriptomic analysis of the CEL1B knockout strain revealed its regulatory roles under both lactose- and sophorose-rich conditions, with sophorose representing the most potent natural inducer of cellulase expression. Under lactose induction, CEL1B deletion resulted in a 52.4% increase in cellulase activity (p < 0.05), accompanied by transcriptome-wide upregulation of β-glucosidase genes (CEL3A: 729%, CEL3D: 666.8%, CEL3C: 110.9%), cellulose-sensing receptors (CRT1: 203.0%, CRT2: 105.8%), and key transcription factors (XYR1: 2.7-fold, ACE3: 2.8-fold, VIB1: 2.1-fold). Expression of ER proteostasis genes was significantly upregulated (BIP1: 3.3-fold, HSP70: 6.2-fold), contributing to enhanced enzyme secretion. Conversely, under sophorose induction, CEL1B deletion reduced cellulase activity by 25.7% (p < 0.05), which was associated with transcriptome profiling showing significant downregulation of β-glucosidase CEL3H (66.6%) and cellodextrin transporters (TrireC30_91594: 79.3%, TrireC30_127980: 76.3%), leading to reduced cellobiohydrolase expression (CEL7A: 57.8%, CEL6A: 67.8%). This first transcriptomic characterization of the CEL1B knockout strain reveals its dual opposing roles in modulating cellulase expression in response to lactose versus sophorose, providing new strategies for optimizing inducer-specific enzyme production in T. reesei. Full article
Show Figures

Figure 1

14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 229
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

16 pages, 4815 KiB  
Technical Note
Preliminary Analysis of a Novel Spaceborne Pseudo Tripe-Frequency Radar Observations on Cloud and Precipitation: EarthCARE CPR-GPM DPR Coincidence Dataset
by Zhen Li, Shurui Ge, Xiong Hu, Weihua Ai, Jiajia Tang, Junqi Qiao, Shensen Hu, Xianbin Zhao and Haihan Wu
Remote Sens. 2025, 17(15), 2550; https://doi.org/10.3390/rs17152550 - 23 Jul 2025
Viewed by 258
Abstract
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses [...] Read more.
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses to cloud and precipitation structure. Results demonstrate that the W-band is highly sensitive to high-altitude cloud particles and snowfall (reflectivity < 0 dBZ), yet it experiences substantial signal attenuation under heavy precipitation conditions, and with low-altitude reflectivity reductions exceeding 50 dBZ, its probability density distribution is more widespread, with low-altitude peaks increasing first, and then decreasing as precipitation increases. In contrast, the Ku and Ka-band radars maintain relatively stable detection capabilities, with attenuation differences generally within 15 dBZ, but its probability density distribution exhibits multiple peaks. As the precipitation rate increases, the peak value of the dual-frequency ratio (Ka/W) gradually rises from approximately 10 dBZ to 20 dBZ, and can even reach up to 60 dBZ under heavy rainfall conditions. Several cases analyses reveal clear contrasts: In stratiform precipitation regions, W-band radar reflectivity is higher above the melting layer than below, whereas the opposite pattern is observed in the Ku and Ka bands. Doppler velocities exceeding 5 m s−1 and precipitation rates surpassing 30 mm h−1 exhibit strong positive correlations in convection-dominated regimes. Furthermore, the dataset confirms the impact of ice–water cloud phase interactions and terrain-induced precipitation variability, underscoring the complementary strengths of multi-frequency radar observations for capturing diverse precipitation processes. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

29 pages, 4988 KiB  
Article
Amphiphilic Oligonucleotide Derivatives as a Tool to Study DNA Repair Proteins
by Svetlana N. Khodyreva, Alexandra A. Yamskikh, Ekaterina S. Ilina, Mikhail M. Kutuzov, Ekaterina A. Belousova, Maxim S. Kupryushkin, Timofey D. Zharkov, Olga A. Koval, Sofia P. Zvereva and Olga I. Lavrik
Int. J. Mol. Sci. 2025, 26(15), 7078; https://doi.org/10.3390/ijms26157078 - 23 Jul 2025
Viewed by 161
Abstract
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the [...] Read more.
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the interaction between amphiphilic DNA duplexes, in which one of the chains contains a lipophilic substituent, and several DNA repair proteins, particularly DNA-damage-dependent PARPs, using various biochemical approaches. DNA with a lipophilic substituent (LS-DNA) demonstrates more efficient binding with DNA damage activated poly(AD-ribose) polymerases 1-3 (PARP1, PARP2, PARP3) and DNA polymerase β. Chemically reactive LS-DNA derivatives containing a photoactivatable nucleotide (photo-LS-DNAs) or a 5′ deoxyribose phosphate (dRP) group in the vicinity of double-strand breaks (DSBs) are used for the affinity labelling of PARPs and other proteins in several whole-cell extracts of human cells. In particular, photo-LS-DNAs are used to track the level of Ku antigen in the extracts of neuron-like differentiated SH-SY5Y, undifferentiated SH-SY5Y, and olfactory epithelial cells. In vitro, PARP1–PARP3 are shown to be able to slowly excise the 5′ dRP group at DSBs. LS-DNAs can activate PARP1 and PARP2 for autoPARylation, albeit less effectively than regular DNA duplexes. Full article
Show Figures

Figure 1

21 pages, 10783 KiB  
Article
An ALoGI PU Algorithm for Simulating Kelvin Wake on Sea Surface Based on Airborne Ku SAR
by Limin Zhai, Yifan Gong and Xiangkun Zhang
Sensors 2025, 25(14), 4508; https://doi.org/10.3390/s25144508 - 21 Jul 2025
Viewed by 340
Abstract
The airborne Synthetic Aperture Radar (SAR) has the advantages of high-precision real-time observation of wave height variations and portability in the high frequency band, such as the Ku band. In view of the Four Fast Fourier Transform (4-FFT) algorithm, combined with a Gaussian [...] Read more.
The airborne Synthetic Aperture Radar (SAR) has the advantages of high-precision real-time observation of wave height variations and portability in the high frequency band, such as the Ku band. In view of the Four Fast Fourier Transform (4-FFT) algorithm, combined with a Gaussian operator, a Laplacian of Gaussian (LoG) Phase Unwrapping (PU) expression was derived. Then, an Adaptive LoG (ALoG) algorithm was proposed based on adaptive variance, further optimizing the algorithm through iteration. Building the models of Kelvin wake on the sea surface and height to phase, the interferometric phase of wave height can be simulated. These PU algorithms were qualitatively and quantitatively evaluated. The Principal Component Analysis (PCA) scores of the ALoG iteration (ALoGI) algorithm are the best under the tested noise levels of the simulation. Through a simulation experiment, it has been proven that the superiority of the ALoGI algorithm in high spatial resolution inversion for the sea-ship surface height of the Kelvin wake, with good stability and noise resistance. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

27 pages, 11290 KiB  
Article
Experimental Study on Compressive Capacity Behavior of Helical Anchors in Aeolian Sand and Optimization of Design Methods
by Qingsheng Chen, Wei Liu, Linhe Li, Yijin Wu, Yi Zhang, Songzhao Qu, Yue Zhang, Fei Liu and Yonghua Guo
Buildings 2025, 15(14), 2480; https://doi.org/10.3390/buildings15142480 - 15 Jul 2025
Viewed by 263
Abstract
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear [...] Read more.
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear evolution of its load-bearing mechanisms. The XGBoost algorithm enabled the rigorous quantification of the governing geometric features of compressive capacity, culminating in a computational framework for the bearing capacity factor (Nq) and lateral earth pressure coefficient (Ku). The research findings demonstrate the following: (1) Compressive capacity exhibits significant enhancement with increasing helix diameter yet displays limited sensitivity to helix number. (2) Load–displacement curves progress through three distinct phases—initial quasi-linear, intermediate non-linear, and terminal quasi-linear stages—under escalating pressure. (3) At embedment depths of H < 5D, tensile capacity diminishes by approximately 80% relative to compressive capacity, manifesting as characteristic shallow anchor failure patterns. (4) When H ≥ 5D, stress redistribution transitions from bowl-shaped to elliptical contours, with ≤10% divergence between uplift/compressive capacities, establishing 5D as the critical threshold defining shallow versus deep anchor behavior. (5) The helix spacing ratio (S/D) governs the failure mode transition, where cylindrical shear (CS) dominates at S/D ≤ 4, while individual bearing (IB) prevails at S/D > 4. (6) XGBoost feature importance analysis confirms internal friction angle, helix diameter, and embedment depth as the three parameters exerting the most pronounced influence on capacity. (7) The proposed computational models for Nq and Ku demonstrate exceptional concordance with numerical simulations (mean deviation = 1.03, variance = 0.012). These outcomes provide both theoretical foundations and practical methodologies for helical anchor engineering in aeolian sand environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 3116 KiB  
Article
Joint Phase–Frequency Distribution Manipulation Method for Multi-Band Phased Array Radar Based on Optical Pulses
by Defu Zhou, Na Qian, Yinfu Liu, Peilin Li, Ruiheng Qin and Weiwen Zou
Electronics 2025, 14(14), 2747; https://doi.org/10.3390/electronics14142747 - 8 Jul 2025
Viewed by 285
Abstract
The demand for versatility and finer resolution drives phased array radars to develop towards multi-band operating. However, the bandwidth limitations of conventional electronic devices make multi-band manipulation of frequency and phase rather challenging. This paper introduces a joint phase–frequency distribution manipulation method. By [...] Read more.
The demand for versatility and finer resolution drives phased array radars to develop towards multi-band operating. However, the bandwidth limitations of conventional electronic devices make multi-band manipulation of frequency and phase rather challenging. This paper introduces a joint phase–frequency distribution manipulation method. By introducing a time delay line after optical pulses, the frequency conversion and phase shift are tightly coupled. Then, the phase–frequency–time mapping for multi-band signals in a single phased array system is established. The generation, transmission, and reception of multi-band signals are simultaneously achieved. Our approach enables multi-band frequency conversion and phase shifting in a single hardware framework, ensuring synchronization and coherence across multiple bands. We experimentally demonstrate the generation, frequency conversion, and phase control of signals across four bands (S, X, Ku, and K). Beamforming and data fusion of four-band linear frequency-modulated signals with a total bandwidth of 4 GHz are achieved, resulting in a four-fold improvement in range resolution. It is also verified that the number of bands and total bandwidth can be further expanded through channel interleaving. Full article
Show Figures

Figure 1

25 pages, 24212 KiB  
Article
Spatial Prediction of Soil Organic Carbon Based on a Multivariate Feature Set and Stacking Ensemble Algorithm: A Case Study of Wei-Ku Oasis in China
by Zuming Cao, Xiaowei Luo, Xuemei Wang and Dun Li
Sustainability 2025, 17(13), 6168; https://doi.org/10.3390/su17136168 - 4 Jul 2025
Viewed by 300
Abstract
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) [...] Read more.
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) algorithms enables rapid, efficient, and accurate large-scale prediction. However, single ML models often face issues like high feature variable redundancy and weak generalization ability. Integrated models can effectively overcome these problems. This study focuses on the Weigan–Kuqa River oasis (Wei-Ku Oasis), a typical arid oasis in northwest China. It integrates Sentinel-2A multispectral imagery, a digital elevation model, ERA5 meteorological reanalysis data, soil attribute, and land use (LU) data to estimate SOC. The Boruta algorithm, Lasso regression, and its combination methods were used to screen feature variables, constructing a multidimensional feature space. Ensemble models like Random Forest (RF), Gradient Boosting Machine (GBM), and the Stacking model are built. Results show that the Stacking model, constructed by combining the screened variable sets, exhibited optimal prediction accuracy (test set R2 = 0.61, RMSE = 2.17 g∙kg−1, RPD = 1.61), which reduced the prediction error by 9% compared to single model prediction. Difference Vegetation Index (DVI), Bare Soil Evapotranspiration (BSE), and type of land use (TLU) have a substantial multidimensional synergistic influence on the spatial differentiation pattern of the SOC. The implementation of TLU has been demonstrated to exert a substantial influence on the model’s estimation performance, as evidenced by an augmentation of 24% in the R2 of the test set. The integration of Boruta–Lasso combination screening and Stacking has been shown to facilitate the construction of a high-precision SOC content estimation model. This model has the capacity to provide technical support for precision fertilization in oasis regions in arid zones and the management of regional carbon sinks. Full article
Show Figures

Figure 1

18 pages, 7280 KiB  
Article
Bionic Bovine Achilles Tendon Collagen Composite Membrane Loaded with Anti-Inflammatory Kukoamine B Promotes Skin Wound Healing
by Ruting Luo, Yujie Mu, Le Zhao, Jinglin Hua, Lixin Cao, Danting Chen, Kun Li, Zhenkai Jin, Yanchuan Guo, Bing Zhang and Min Wang
Polymers 2025, 17(13), 1874; https://doi.org/10.3390/polym17131874 - 4 Jul 2025
Viewed by 488
Abstract
Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component [...] Read more.
Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component of the dermis. As a wound dressing, collagen not only provides nutrients to wounds but also enhances the immune response in the pre-healing phase, making it an excellent biomaterial for healing. In this study, we used electrospinning and freeze-drying technology to prepare a Bovine Achilles Tendon Collagen (BATC) electrospun composite membrane and a BATC freeze-dried composite membrane using BATC as a substrate supplemented with 16.7% Polyethylene oxide (PEO) and 0.2% Kukoamine B (KuB). The physicochemical properties and biocompatibility of the BATC composite membrane were verified via scanning electron microscopy, Fourier-transform infrared spectroscopy, and DSC analysis and by measuring the DPPH radical-scavenging capacity, water absorption, water retention, in vitro drug release, and extract cytotoxicity. The BATC composite membrane was found to have a significant effect on skin wound healing, especially in the middle stage of healing, in a mouse full-thickness skin injury model. The BATC/PEO/KuB electrospun composite membrane (EBPK) had the best capacity for promoting wound healing and can be used as a wound dressing for in-depth research and development, and KuB, a monomer component with a clear structure and mechanism of action, can be used as a candidate component of composite dressings. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 1231 KiB  
Review
Narrative Review: Predictive Biomarkers of Tumor Response to Neoadjuvant Radiotherapy or Total Neoadjuvant Therapy of Locally Advanced Rectal Cancer Patients
by Joao Victor Machado Carvalho, Jeremy Meyer, Frederic Ris, André Durham, Aurélie Bornand, Alexis Ricoeur, Claudia Corrò and Thibaud Koessler
Cancers 2025, 17(13), 2229; https://doi.org/10.3390/cancers17132229 - 3 Jul 2025
Viewed by 826
Abstract
Background/Objectives: Treatment of locally advanced rectal cancer (LARC) very often requires a neoadjuvant multimodal approach. Neoadjuvant treatment (NAT) encompasses treatments like chemoradiotherapy (CRT), short-course radiotherapy (SCRT), radiotherapy (RT) or a combination of either of these two with additional induction or consolidation chemotherapy, namely [...] Read more.
Background/Objectives: Treatment of locally advanced rectal cancer (LARC) very often requires a neoadjuvant multimodal approach. Neoadjuvant treatment (NAT) encompasses treatments like chemoradiotherapy (CRT), short-course radiotherapy (SCRT), radiotherapy (RT) or a combination of either of these two with additional induction or consolidation chemotherapy, namely total neoadjuvant treatment (TNT). In case of complete radiological and clinical response, the non-operative watch-and-wait strategy can be adopted in selected patients. This strategy is impacted by a regrowth rate of approximately 30%. Predicting biomarkers of tumor response to NAT could improve guidance of clinicians during clinical decision making, improving treatment outcomes and decreasing unnecessary treatment exposure. To this day, there is no validated biomarker to predict tumor response to any NAT strategies in clinical use. Most research focused on CRT neglects the study of other regimens. Methods: We conducted a narrative literature review which aimed at summarizing the status of biomarkers predicting tumor response to NAT other than CRT in LARC. Results: Two hundred and fourteen articles were identified. After screening, twenty-one full-text articles were included. Statistically significant markers associated with improved tumor response pre-treatment were as follows: low circulating CEA levels; BCL-2 expression; high cellular expression of Ku70, MIB-1(Ki-67) and EGFR; low cellular expression of VEGF, hPEBP4 and nuclear β-catenin; the absence of TP53, SMAD4, KRAS and LRP1B mutations; the presence of the G-allel of LCS-6; and MRI features such as the conventional biexponential fitting pseudodiffusion (Dp) mean value and standard deviation (SD), the variable projection Dp mean value and lymph node characteristics (short axis, smooth contour, homogeneity and Zhang et al. radiomic score). In the interval post-treatment and before surgery, significant markers were as follows: a reduction in the median value of circulating free DNA, higher presence of monocytic myeloid-derived suppressor cells, lower presence of CTLA4+ or PD1+ regulatory T cells and standardized index of shape changes on MRI. Conclusions: Responders to neoadjuvant SCRT and RT tended to have a tumor microenvironment with an immune–active phenotype, whereas responders to TNT tended to have a less active tumor profile. Although some biomarkers hold great promise, scarce publications, inconsistent results, low statistical power, and low reproducibility prevent them from reliably predicting tumor response following NAT. Full article
Show Figures

Figure 1

13 pages, 2636 KiB  
Article
Broadband Directional Coupler Based on Deformed Circular Waveguide for High-Power Application
by Minxing Wang, Xiaoyi Liao, Peng Liu, Zhipeng Li and Wenjie Li
Electronics 2025, 14(13), 2652; https://doi.org/10.3390/electronics14132652 - 30 Jun 2025
Viewed by 277
Abstract
A broadband oversized circular waveguide directional coupler for high-power applications is proposed in this paper. The coupler is composed of a group of crossed waveguides, including an oversized quasi-circular main waveguide and a rectangular branch waveguide. Angular deformation is introduced into the main [...] Read more.
A broadband oversized circular waveguide directional coupler for high-power applications is proposed in this paper. The coupler is composed of a group of crossed waveguides, including an oversized quasi-circular main waveguide and a rectangular branch waveguide. Angular deformation is introduced into the main waveguide to realize the compact cross-guide structure, which also contributes to an appropriate coupling degree and high directivity in a broad bandwidth. Moreover, the deformation increases the polarization discrimination ability of the coupler as well, making it feasible in a circularly polarized transmission system. The coupler is designed in the Ku band, of which simulation results indicate a directivity over 23.5 dB in the wide frequency range of 10 GHz to 16 GHz, corresponding to a fractional bandwidth of 46.2%. The impact of parasitic modes on the directional coupler is analyzed to comprehensively survey its performance in oversized waveguide transmission lines. For verification purposes, a prototype of the coupler is fabricated and measured. The experimental results show that a directivity over 22 dB is achieved within the bandwidth, and the coupling degree is around −46.7 dB with fluctuation under 0.9 dB. This paper provides an efficient design and analysis method to develop compact and broadband high-power directional couplers. Full article
(This article belongs to the Special Issue Broadband High-Power Millimeter-Wave and Terahertz Devices)
Show Figures

Figure 1

Back to TopTop