Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,698)

Search Parameters:
Keywords = Jilin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4935 KiB  
Article
Steel Surface Defect Detection Algorithm Based on Improved YOLOv8 Modeling
by Miao Peng, Sue Bai and Yang Lu
Appl. Sci. 2025, 15(15), 8759; https://doi.org/10.3390/app15158759 (registering DOI) - 7 Aug 2025
Abstract
Detecting steel defects is a vital process in industrial production, but traditional methods suffer from poor feature extraction and low detection accuracy. To address these issues, this research introduces an improved model, EB-YOLOv8, based on YOLOv8. First, the multi-scale attention mechanism EMA is [...] Read more.
Detecting steel defects is a vital process in industrial production, but traditional methods suffer from poor feature extraction and low detection accuracy. To address these issues, this research introduces an improved model, EB-YOLOv8, based on YOLOv8. First, the multi-scale attention mechanism EMA is integrated into the backbone and neck sections to reduce noise during gradient descent and enhance model stability by encoding global information and weighting model parameters. Second, the weighted fusion splicing module, Concat_BiFPN, is used in the neck network to facilitate multi-scale feature detection and fusion. This improves detection precision. The results show that the EB-YOLOv8 model increases detection accuracy on the NEU-DET dataset by 3.1%, reaching 80.2%, compared to YOLOv8. Additionally, the average precision on the Severstal steel defect dataset improves from 65.4% to 66.1%. Overall, the proposed model demonstrates superior recognition performance. Full article
Show Figures

Figure 1

37 pages, 2092 KiB  
Article
Land Use Conflict Under Different Scenarios Based on the PLUS Model: A Case Study of the Development Pilot Zone in Jilin, China
by Shengyue Zhang, Yanjun Zhang, Xiaomeng Wang and Yuefen Li
Sustainability 2025, 17(15), 7161; https://doi.org/10.3390/su17157161 (registering DOI) - 7 Aug 2025
Abstract
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify [...] Read more.
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify their driving factors, based on land use data from 2000 to 2023. The study employs land use data, the PLUS model, SCCI, and the geographic detector to analyze conflict dynamics and influencing factors. Cropland and forest land have steadily declined, while construction land has expanded. Conflicts exhibit a spatial gradient of “western pressure, central alleviation, and eastern stability,” with hotspots in Changchun, Jilin, and Yanji. Conflict evolution is categorized into three phases: intensification (2000–2010), peak (2010–2015), and mitigation (2015–2023), as shaped by industrialization and later policy interventions. Among four simulated scenarios, the Sustainable Development (SD) scenario most effectively postpones conflict escalation. Population density and DEM emerged as dominant driving factors. Natural factors have greater explanatory power for land use conflicts than do socio-economic or locational factors. Strengthening spatial planning coordination and refining conflict governance are key to balancing human–environment interactions in the region. Full article
Show Figures

Figure 1

30 pages, 4254 KiB  
Article
Ultra-Short-Term Photovoltaic Power Prediction Based on Predictable Component Reconstruction and Spatiotemporal Heterogeneous Graph Neural Networks
by Yingjie Liu and Mao Yang
Energies 2025, 18(15), 4192; https://doi.org/10.3390/en18154192 - 7 Aug 2025
Abstract
Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this [...] Read more.
Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this paper, we propose a combined prediction framework that takes into account the reconfiguration of the predictable components of PV stations and the spatiotemporal heterogeneous maps. A circuit singular spectral decomposition (CISSD) intrinsic predictable component extraction method is adopted to obtain specific frequency components in sensitive meteorological variables, a mechanism based on radiation characteristics and PV power trend predictable component extraction and reconstruction is proposed to enhance power predictability, and a spatiotemporal heterogeneous graph neural network (STHGNN) combined with a Non-stationary Transformer (Ns-Transformer) combination architecture to achieve joint prediction for different PV components. The proposed method is applied to a PV power plant in Gansu, China, and the results show that the prediction method based on the proposed combined spatio-temporal heterogeneous graph neural network model combined with the proposed predictable component extraction achieves an average reduction of 6.50% in the RMSE, an average reduction of 2.50% in the MAE, and an average improvement of 11.93% in the R2 over the direct prediction method, respectively. Full article
(This article belongs to the Special Issue Advances on Solar Energy and Photovoltaic Devices)
Show Figures

Figure 1

17 pages, 780 KiB  
Review
Progress in the Study of Plant Nitrogen and Potassium Nutrition and Their Interaction Mechanisms
by Weiyu Cao, Hai Sun, Cai Shao, Yue Wang, Jiapeng Zhu, Hongjie Long, Xiaomeng Geng and Yayu Zhang
Horticulturae 2025, 11(8), 930; https://doi.org/10.3390/horticulturae11080930 - 7 Aug 2025
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key [...] Read more.
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key physiological functions of N and K individually and their respective absorption and transport mechanisms involving transporters such as NRTs and HAKs/KUPs. The review discusses the types of nutrient interactions (synergism and antagonism), with a primary focus on the physiological basis of N–K interactions and their interplay in root absorption and transport (e.g., K+-NO3 co-transport; NH4+ inhibition of K+ uptake), photosynthesis (jointly optimizing CO2 conductance, mesophyll conductance, and N allocation within photosynthetic machinery to enhance photosynthetic N use efficiency, PNUE), as well as sensing, signaling, co-regulation, and metabolism. This review emphasizes that N–K balance is crucial for improving crop yield and quality, enhancing fertilizer use efficiency (NUE/KUE), and reducing environmental pollution. Consequently, developing effective N–K management strategies based on these interaction mechanisms and implementing Balanced Fertilization Techniques (BFT) to optimize N–K ratios and application strategies in agricultural production represent vital pathways for ensuring food security, addressing resource constraints, and advancing green, low-carbon agriculture, including through coordinated management of greenhouse gas emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

18 pages, 5124 KiB  
Article
Effects of Different Drying Methods on the Quality of Forest Ginseng Revealed Based on Metabolomics and Enzyme Activity
by Junjia Xing, Xue Li, Wenyu Dang, Limin Yang, Lianxue Zhang, Wei Li, Yan Zhao, Jiahong Han and Enbo Cai
Foods 2025, 14(15), 2753; https://doi.org/10.3390/foods14152753 - 7 Aug 2025
Abstract
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) [...] Read more.
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) method on the quality of FG using metabolomics and enzyme activity. The results revealed that the enzyme activities of dried FG were reduced considerably. PCAD preserved higher enzyme activity than HAD. Metabolomics data demonstrate that HAD promotes the formation of primary metabolites (amino acids, lipids, nucleotides, etc.), whereas PCAD promotes the formation of secondary metabolites (terpenoids, phenolic acids, etc.). A change-transformation network was built by combining the metabolites listed above and their biosynthetic pathways, and it was discovered that these biosynthetic pathways were primarily associated with the mevalonate (MVA) pathway, lipid metabolism, phenylpropane biosynthesis, and nucleotide metabolism. It is also believed that these findings are related to the chemical stimulation induced by thermal degradation and the ongoing catalysis of enzyme responses to drought stress. The facts presented above will give a scientific basis for the selection of FG drying processes, as well as helpful references for increasing the nutritional quality of processed FG. Full article
Show Figures

Figure 1

12 pages, 5474 KiB  
Article
Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
by Yaojia Mou, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu and Ji’an Duan
Materials 2025, 18(15), 3707; https://doi.org/10.3390/ma18153707 - 7 Aug 2025
Abstract
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection [...] Read more.
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa−1), broad operational bandwidth (50–600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems. Full article
(This article belongs to the Special Issue Advanced Materials for Flexible Sensing Applications and Electronics)
Show Figures

Figure 1

16 pages, 2179 KiB  
Article
The Coupling Mechanism of the Electricity–Gas System and Assessment of Attack Resistance Based on Interdependent Networks
by Qingyu Zou and Lin Yan
Eng 2025, 6(8), 193; https://doi.org/10.3390/eng6080193 - 6 Aug 2025
Abstract
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model [...] Read more.
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model substantially enhances system robustness and adaptability. To quantify nodal vulnerability and importance, the study introduces two novel evaluation indicators: the Electric Potential–Closeness Fusion Indicator (EPFI) for power networks and the Pressure Difference–Closeness Comprehensive Indicator (PDCI) for natural gas systems. Leveraging these indicators, three coupling paradigms—assortative, disassortative, and random—are systematically constructed and analyzed. System resilience is assessed through simulation experiments incorporating three attack strategies: degree-based, betweenness centrality-based, and random node removal. Evaluation metrics include network efficiency and the variation in the size of the largest connected subgraph under different coupling configurations. The proposed framework is validated using a hybrid case study that combines the IEEE 118-node electricity network with a 20-node Belgian natural gas system, operating under a unidirectional gas-to-electricity energy flow model. Results confirm that the disassortative coupling configuration, based on EPFI and PDCI indicators, exhibits superior resistance to network perturbations, thereby affirming the effectiveness of the model in improving the robustness of integrated energy systems. Full article
Show Figures

Figure 1

17 pages, 6663 KiB  
Article
Study on Thermal Conductivity Prediction of Granites Using Data Augmentation and Machine Learning
by Yongjie Ma, Lin Tian, Fuhang Hu, Jingyong Wang, Echuan Yan and Yanjun Zhang
Energies 2025, 18(15), 4175; https://doi.org/10.3390/en18154175 - 6 Aug 2025
Abstract
With the global low-carbon energy transition, accurate prediction of thermal and physical parameters of deep rock masses is critical for geothermal resource development. To address the insufficient generalization ability of machine learning models caused by scarce measured data on granite thermal conductivity, this [...] Read more.
With the global low-carbon energy transition, accurate prediction of thermal and physical parameters of deep rock masses is critical for geothermal resource development. To address the insufficient generalization ability of machine learning models caused by scarce measured data on granite thermal conductivity, this study focused on granites from the Gonghe Basin and Songliao Basin in Qinghai Province. A data augmentation strategy combining cubic spline interpolation and Gaussian noise injection (with noise intensity set to 10% of the original data feature range) was proposed, expanding the original 47 samples to 150. Thermal conductivity prediction models were constructed using Support Vector Machine (SVM), Random Forest (RF), and Backpropagation Neural Network(BPNN). Results showed that data augmentation significantly improved model performance: the RF model exhibited the best improvement, with its coefficient of determination R2 increasing from 0.7489 to 0.9765, Root Mean Square Error (RMSE) decreasing from 0.1870 to 0.1271, and Mean Absolute Error (MAE) reducing from 0.1453 to 0.0993. The BPNN and SVM models also improved, with R2 reaching 0.9365 and 0.8743, respectively, on the enhanced dataset. Feature importance analysis revealed porosity (with a coefficient of variation of 0.88, much higher than the longitudinal wave velocity’s 0.27) and density as key factors, with significantly higher contributions than longitudinal wave velocity. This study provides quantitative evidence for data augmentation and machine learning in predicting rock thermophysical parameters, promoting intelligent geothermal resource development. Full article
Show Figures

Figure 1

19 pages, 398 KiB  
Article
Analyzing Regional Disparities in China’s Green Manufacturing Transition
by Xuejuan Wang, Qi Deng, Riccardo Natoli, Li Wang, Wei Zhang and Catherine Xiaocui Lou
Sustainability 2025, 17(15), 7127; https://doi.org/10.3390/su17157127 - 6 Aug 2025
Abstract
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the [...] Read more.
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the panel data of 31 provinces in China from 2011 to 2021 and constructs an evaluation index system for the green transformation of the manufacturing industry from four dimensions: environment, resources, economy, and industrial structure. This not only comprehensively and systematically reflects the dynamic changes in the green transformation of the manufacturing industry but also addresses the limitations of currently used indices. The entropy value method is used to calculate the comprehensive score of the green transformation of the manufacturing industry, while the key factors influencing the convergence of the green transformation of the manufacturing industry are further explored. The results show that first, the overall level of the green transformation of the manufacturing industry has significantly improved as evidenced by an approximate 32% increase. Second, regional differences are significant with the eastern region experiencing significantly higher levels of transformation compared to the central and western regions, along with a decreasing trend from the east to the central and western regions. From a policy perspective, the findings suggest that tailored production methods for each region should be adopted with a greater emphasis on knowledge exchanges to promote green transition in less developed regions. In addition, further regulations are required which, in part, focus on increasing the degree of openness to the outside world to promote the level of green manufacturing transition. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

11 pages, 3693 KiB  
Article
Construction of pH-Responsive Drug Carrier Based on Molecularly Imprinted Polymers for Controlled Capecitabine Release
by Zimeng Guo, Tianxiao He, Yuqi Lou, Guoxing Xu and Qiong Jia
J. Compos. Sci. 2025, 9(8), 421; https://doi.org/10.3390/jcs9080421 - 6 Aug 2025
Abstract
In this study, a pH-responsive molecularly imprinted polymer (MIP) drug carrier was developed utilizing boric acid-functionalized mesoporous silica nanoparticles (MSNs) as the substrate. The carrier was engineered for controlled drug release, with capecitabine (CAPE) being selected as the template molecule due to its [...] Read more.
In this study, a pH-responsive molecularly imprinted polymer (MIP) drug carrier was developed utilizing boric acid-functionalized mesoporous silica nanoparticles (MSNs) as the substrate. The carrier was engineered for controlled drug release, with capecitabine (CAPE) being selected as the template molecule due to its structural characteristics and clinical relevance. In vitro drug release studies demonstrated the pH-responsive release behaviors of the fabricated carrier, highlighting its promising applicability in the controlled release of pharmaceutical compounds containing cis-diols, particularly for site-specific therapy where pH variations serve as physiological triggers. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Graphical abstract

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

20 pages, 7016 KiB  
Article
Design, Analysis and Control of Tracked Mobile Robot with Passive Suspension on Rugged Terrain
by Junfeng Gao, Yi Li, Jingfu Jin, Zhicheng Jia and Chao Wei
Actuators 2025, 14(8), 389; https://doi.org/10.3390/act14080389 - 6 Aug 2025
Abstract
With the application of tracked mobile robots in detection and rescue, how to improve their stability and trafficability has become the research focus. In order to improve the driving ability and trafficability of tracked mobile robots in rugged terrain, this paper proposes a [...] Read more.
With the application of tracked mobile robots in detection and rescue, how to improve their stability and trafficability has become the research focus. In order to improve the driving ability and trafficability of tracked mobile robots in rugged terrain, this paper proposes a new type of tracked mobile robot using passive suspension. By adding a connecting rod differential mechanism between the left and right track mechanisms, the contact stability between the track and terrain is enhanced. The kinematics model and attitude relationship of the suspension are analyzed and established, and the rationality of the passive suspension scheme is verified by dynamic simulation. The simulation results show that the tracked robot with passive suspension shows good obstacle surmounting performance, but there will be a heading deflection problem. Therefore, a track drive speed of the driving state compensation control is proposed based on the driving scene, which can effectively solve the problem of slip and heading deflection. Through the field test of the robot prototype, the effectiveness of the suspension scheme and control system is verified, which provides a useful reference for the scheme design and performance improvement of the tracked mobile robot in complex field scenes. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

39 pages, 1121 KiB  
Article
Digital Finance, Financing Constraints, and Green Innovation in Chinese Firms: The Roles of Management Power and CSR
by Qiong Zhang and Zhihong Mao
Sustainability 2025, 17(15), 7110; https://doi.org/10.3390/su17157110 - 6 Aug 2025
Abstract
With the increasing global emphasis on sustainable development goals, and in the context of pursuing high-quality sustainable development of the economy and enterprises, this study empirically examines the effect of digital finance on corporate financing constraints and the impact on corporate green innovation [...] Read more.
With the increasing global emphasis on sustainable development goals, and in the context of pursuing high-quality sustainable development of the economy and enterprises, this study empirically examines the effect of digital finance on corporate financing constraints and the impact on corporate green innovation with a sample of China’s A-share-listed companies in the period of 2011–2020 and explores the issue from the perspectives of management power and corporate social responsibility (CSR) at the micro level of enterprises. The empirical results show that digital finance can indeed alleviate corporate financing constraints. Still, the synergistic effect of the two on corporate green innovation produces a “quantitative and qualitative separation” effect, which only promotes the enhancement of iconic green innovation, and the effect on substantive green innovation is not obvious. The power of management and CSR performanceshave different moderating roles in the alleviation of financing constraints by the empowerment of digital finance. Management power and corporate social responsibility have different moderating effects on digital financial empowerment to alleviate financing constraints. The findings of this study enrich the research in related fields and provide more basis for the promotion of digital financial policies and more solutions for the high-quality development of enterprises. Full article
(This article belongs to the Special Issue Advances in Economic Development and Business Management)
Show Figures

Figure 1

19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop